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ABSTRACT: We present a new theoretical approach to the
kinetics of micelle formation in surfactant solutions, in which
the various stages of aggregation are treated as constrained
paths on a single free-energy landscape. Three stages of well-
separated time scales are distinguished. The first and longest
stage involves homogeneous nucleation of micelles, for which
we derive the size of the critical nuclei, their concentration,
and the nucleation rate. Subsequently, a much faster growth
stage takes place, which is found to be diffusion-limited for
surfactant concentrations slightly above the critical micellar
concentration (cmc) and either diffusion-limited or kinetically limited for higher concentrations. The time evolution of the growth is
derived for both cases. At the end of the growth stage, the micelle size may be either larger or smaller than its equilibrium value,
depending on concentration. A final stage of equilibration follows, during which the micelles relax to their equilibrium size through
fission or fusion. Both cases of fixed surfactant concentration (closed system) and contact with a reservoir of surfactant monomers
(open system) are addressed and found to exhibit very different kinetics. In particular, we find that micelle formation in an open
system should be kinetically suppressed over macroscopic times and involve two stages of micelle nucleation rather than one.

’ INTRODUCTION

Self-assembly of amphiphilic molecules into mesoscopic ag-
gregates (micelles) in solution is a common and thoroughly
investigated phenomenon.1 Dynamic aspects of this process have
been extensively studied as well.2 The techniques applied in such
experiments and the interpretation of their results have used the
framework of reaction kinetics, where each aggregate size is
treated as a distinct chemical species and changes in size and
population are treated as chemical reactions (ref 2, chapter 3).
Two well-separated time scales are identified in experiments.3

The shorter of the two, denoted τ1 (typically ∼10-5-10-4 s),
corresponds to the exchange of a single molecule between a
micelle and the monomeric solution; during this time scale, the
number of micelles remains essentially fixed. The second time
scale, τ2 (which widely varies and may be, e.g., about∼10-2 s), is
associated with overcoming the barrier to the formation or
disintegration of an entire micelle. The total activation time for
such a process is mτ2, where m is the number of molecules in a
micelle. During this longer time scale, the number of micelles
changes.

The first and still prevalent theory of micellar kinetics by
Aniansson and Wall4 is based on these observations. It casts the
micellization process in the form of reaction kinetics with two
well-separated time scales, whereby micelles form and disinte-
grate through a series of single monomer exchange reactions.
While various extensions to the Aniansson-Wall theory have
been presented over the years,5-13 only a few alternative
approaches have been suggested. In ref 14, the interesting
possibility that micellization may behave as a bistable autocata-
lytic reaction was explored. An idealized (one-dimensional)
nucleation model for linear aggregates was suggested in ref 15.

An important alternative approach to study micellization kinetics
has been the use of computer simulations.16-23 In the case of
micellization of amphiphilic block copolymers, more progress
has been achieved (ref 2, chapter 4; refs 24-32). The kinetics of
such polymeric micelles, however, usually depends on qualita-
tively different effects, in particular, the high entropy barrier for
polymer penetration into a micelle.

In the current work, we present a new approach to the kinetics
of surfactant micellization, which is based on a free-energy
formalism. A similar strategy was previously applied to the
kinetics of surfactant adsorption at interfaces.33,34 This approach
has two main advantages. The first is that it provides a more
unified description of the kinetics. Rather than considering
different stages as separate processes (“reactions”), they can all
be cast as constrained pathways on a single free-energy land-
scape. Considering different processes on the same footing
allows, for example, easier identification of rate-limiting stages
such as diffusion-limited or kinetically limited ones.34 The
second advantage of such a formalism is that it can be relatively
easily extended to more complex situations, such as ionic
solutions or surfactant mixtures.35 On the other hand, the
shortcoming of the model is that it is phenomenological, follow-
ing coarse-grained thermodynamic variables rather than those
characterizing single molecules and aggregates. It is probably not
appropriate for large polymeric micelles, where intrachain de-
grees of freedom play an important role and a more detailed
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description of molecules and aggregates is required.24,27,28 We
shall focus here, therefore, on the micellization of short-chain
surfactants.

Another consequence of the coarse-grained modeling is that
the derivation for the kinetics of micellization bears similarities to
the kinetics of first-order phase transitions, an analogy that was
previously invoked.15,27 However, unlike macroscopic phase
separation, micellization is restricted to finite-size aggregates,
resulting, for example, in growth laws that are not scale-free.

In the next section, we present the free-energy formalism and
its implications for the process of micelle formation. As in
previous theories, we subsequently separate the kinetics into
stages of disparate time scales, during each of which a different set
of constraints is imposed. We discuss separately the kinetics of
closed and open systems. A closed system contains a fixed
number of surfactant molecules. In an open system, the surfac-
tant solution is in contact with a large reservoir, which is at
thermodynamic equilibrium. Whereas in equilibrium this dis-
tinction is usually immaterial, the kinetics of the two cases are
found to be strikingly different. While reading through the
various stages of micellization, it may be helpful to refer to
the two schematic diagrams provided at the end of the article
(Figures 13 and 14 for closed and open systems, respectively).
The first stage that we address is the nucleation of micelles.
Subsequently, we describe the growth of the micellar nuclei as
they absorb additional monomers from the surrounding solution.
Both options of kinetically limited and diffusion-limited growth
are studied. In addition, the possible role of long-distance dif-
fusive transport is examined. We then consider the final relaxa-
tion toward equilibrium. Finally, we summarize the conclusions
and discuss the experimental implications of our analysis, as well
as its limits of validity.

’MODEL

The model is based on a simple free-energy functional, which
has been recently introduced to study metastability issues of
micellization.36 Apart from the temperature T, the free energy
depends on three thermodynamic degrees of freedom, which we
take to be the total volume fraction of surfactant in the solution,
Φ, the volume fraction of surfactant monomers, Φ1, and the
number of molecules in a micelle (aggregation number), m.
Despite the simplified two-state (monomer-aggregate) descrip-
tion, polydispersity can be accounted for as fluctuations of the
variablem.37 (This, however, restricts the validity of the model to
compactmicelles whose size distribution is narrow.1) All energies
hereafter are given in units of the thermal energy, kBT.

The free energy has contributions from the entropy of mixing
and from the interactions among surfactant molecules. The
former is obtained from a coarse-grained lattice scheme
(Flory-Huggins model), in which a water molecule occupies a
single lattice cell of volume a3 and a surfactant molecule is larger
and occupies n such cells. The interactions in the solution are
represented by a single phenomenological function, u(m), which
is assumed to capture all of the molecular contributions to the
free energy of transferring a surfactant molecule from the
solution into an aggregate of size m. The resulting Helmholtz
free-energy density (per lattice site) is36

FðΦ, Φ1, mÞ ¼Φ1

n
ln Φ1 þ Φm

nm
½lnΦm-muðmÞ�

þ ð1-ΦÞ lnð1-ΦÞ ð1Þ

whereΦm =Φ-Φ1 is the volume fraction of micelles and 1-
Φ is the volume fraction of water. At equilibrium, the solution is
spatially uniform and characterized by those single mean values
of the variables, which minimize the free energy under the
appropriate constraints. For a closed system, F is minimized
with respect toΦ1 andm for a givenΦ. For an open system, one
should minimize F - μΦ with respect to Φ, Φ1, and m for a
given surfactant chemical potential μ. Out of equilibrium, the
values of variables, such as Φ, Φ1, and m, may be position-
dependent, and the total free energy is given by spatial integra-
tion of the local free-energy density. (We neglect here surface
tension (gradient) terms associated with boundaries between
such spatial domains.)

The specific choice of the interaction function u(m) is not
crucial so long as it has a maximum at a finite m to ensure the
stability of finite-size micelles. To provide numerical examples,
and following previous works,36,38 we use a simple three-para-
meter function

uðmÞ ¼ u0- σm-1=3-km2=3 ð2Þ
The first term in eq 2 represents a micelle-size-independent free-
energy gain in increasing m, the second is a surface energy
penalty, and the third is responsible for stabilizing a finite-size
aggregate. (For a more detailed discussion of these terms and the
restricted ranges of relevant values for u0, σ, and κ, see ref 36.)

Despite its simplicity, eq 1 defines a rather rich free-energy
landscape over a three-dimensional space of macrostates, para-
metrized by the axes (Φ,Φ1,m).We are going to treat the kinetics
of micellization as time-dependent paths along this landscape,
and it is beneficial, therefore, to first recall its key features,36

demonstrated in Figure 1. For any givenΦ and along theΦ1 axis,
F always has a single minimum atΦ1 =Φ1*(m,Φ) for all values of
m. This value of monomer volume fraction as a function of
aggregation number and total volume fraction is found by solving
the equation

Φ1 ¼ Φ�
1ðm, ΦÞ: ðΦ1ÞmemuðmÞþm-1 ¼ Φ-Φ1 ð3Þ

Along the m axis, however, F becomes nonconvex when Φ
exceeds a certain volume fraction, j1, with two minima at m = 1
and m*(Φ1,Φ) and a maximum in between at m = mnuc(Φ1,Φ)
(see Figure 1A and B). The extrema satisfy the equation

m ¼ m�, mnuc: m2 ¼ - lnðΦ-Φ1Þ=u0ðmÞ ð4Þ
where u0 = du/dm. Combining eqs 3 and 4, we can findm andΦ1

at the extrema for a given Φ according to

m ¼ m�; mnuc: m2 ¼ - ln½Φ-e-uðmÞ-mu
0ðmÞ-1þ1=m�=u0ðmÞ

ð5Þ

Φ�
1 ¼ e-uðmÞ-mu

0ðmÞ-1þ1=m ð6Þ

Above a larger volume fraction,j2 >j1 (Figure 1C), themicellar
state with Φ > j2, m = m*, and Φ1 = Φ1*(m*,Φ), though still
metastable, may become appreciably occupied, giving rise to
premicellar aggregates.36 Above yet another volume fraction,
j3 > j2 (Figure 1D), the micellar state for Φ > j3 becomes the
globalminimumofF. It is this point, analogous to the binodal line in
phase separation, which corresponds to the commonly defined
cmc,36 that is, cmc = c3 = j3/(na

3). We shall focus in the current
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work on the ordinary micellization region, Φ > j3 = jcmc, where
micelles are stable at equilibrium. It should be kept in mind,
however, that in this region, the monomeric and micellar states
are separated by a free-energy barrier in the form of a saddle point of
F, Fnuc(Φ) = F[Φ,Φ1*(mnuc,Φ),mnuc]. The barrier may be high,
leading to themeasurement of an apparent cmc, which is higher than
the equilibrium one, j3 = jcmc.

13 Finally, above a certain higher
volume fraction, j4 > j3, the barrier disappears, and the micellar
state for Φ > j4 remains the sole minimum of F, as seen in
Figure 1E. (This work is restricted to the isotropic micellar phase of
surfactant solutions; at higher concentrations, other phases and
mesophases appear.1) The point Φ = j4 is the analogue of the
spinodal line in macroscopic phase separation. As already men-
tioned in the Introduction, despite the analogy with phase separa-
tion, it should be borne in mind that micellization is essentially
different in that it involves finite-size aggregates and smooth cross-
overs rather than macroscopic phases and sharp transitions.

The initial and final states of the micellization kinetics are
defined as follows. At t = 0, the system is in the monomeric state,
(Φ1 =Φ,m = 1), whereas its equilibrium state is the micellar one.
In a closed system, this is done by setting the surfactant volume
fraction above the cmc, Φ > j3 (using, for example, the
temperature jump or stopped flow techniques2). In an open
system, the initial condition corresponds to opening a diffusive
contact with a bulk reservoir, whose surfactant volume fraction
Φb is above the cmc,Φb > j3. The reservoir is assumed to have
already reached the equilibrium micellar state. At t f ¥, the
system reaches the global minimum of the free energy,
[Φ,Φ1*(m*,Φ),m*(Φ)] in the closed case and [Φb,Φ1*(m*,Φb),
m*(Φb)] in the open one. In what follows, we consider the
kinetic pathway that the system takes between these initial and
final states. Assuming separation of time scales, we shall divide
the temporal path into separate stages. Note that the various time
scales are derived from the free-energy functional and a single

Figure 1. Cuts of the free-energy landscape (per surfactant molecule, in units of kBT) as a function of aggregation number along theΦ1*(m) line for the
surfactant parameters of Table 1 and increasing surfactant volume fraction,Φ: (A)Φ = 5� 10-4 <j1; (B)j1 <Φ = 7� 10-4 <j2; (C)j2 <Φ = 1.5�
10-3 < j3 = jcmc; (D) j3 < Φ = 2.5 � 10-3 < j4; and (E) Φ = 0.11 > j4.
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molecular time, τ0, thus enabling comparison of different stages
and processes.

Throughout the following sections, we demonstrate the
results using a single exemplary surfactant, whose parameters
are listed in Table 1. This allows comparison with refs 36 and 37,
where the behavior of the same exemplary surfactant forΦ < j3 =
jcmc was presented.

Figure 2 shows two cuts through the free-energy landscape as a
function of aggregation number for the exemplary surfactant in a
closed systemat a total surfactant volume fraction slightly larger than
j3 = jcmc. Along the first cut (solid line), the monomer volume
fraction is assumed to be at quasi-equilibrium,Φ1 =Φ1*(m). Thus,
the minimum of this curve corresponds to the global minimum—
the equilibrium aggregation number. Along the other cut (dashed
curve), which is relevant to the next two sections, we constrain the
concentration of micelles to remain at its nucleation value.

’MICELLAR NUCLEATION

Closed System. Let us set the total volume fraction at t = 0 to
some value,Φ >j3 =jcmc, and assume that the value (apart from
a short initial period of homogenization, which is ignored)
remains fixed and uniform throughout the micellization process.
The first stage to consider is the ascent of the free energy from the
initial metastable state, (Φ,Φ1 = Φ,m = 1), to the saddle point
[Φ,Φ1 =Φ1*(mnuc),m=mnuc], that is, the formation of the critical
nuclei. This activated process is assumed to be much slower than
diffusion. Hence, Φ1 can be taken during this stage as spatially
uniform and equal to the value that minimizes the free energy for
the given Φ and m(t). Thus, as m(t) increases from 1 to the
critical nucleus sizemnuc, the system proceeds along the path that
satisfies the constraints Φ = const and Φ1 = Φ1*[m(t),Φ].

A similarly constrained path was studied in detail in ref 37 to
obtain the lifetime of metastable micelles in the region j2 <Φ <
j3 using Kramers’ theory. Such a rigorous calculation, unfortu-
nately, cannot be repeated here because the metastable mono-
meric state is actually not a local minimum of F but just the edge,
at m = 1, of the range of allowed aggregation numbers (see
Figure 1D). Nevertheless, as demonstrated in ref 37, the nuclea-
tion time (dissociation time in ref 37) and its concentration
dependence are primarily determined by the height of the free-
energy barrier.
The free-energy barrier corresponds to the nucleation of a

single micelle. Our model, however, considers macrostates of a
solution containing many micelles and monomers. To switch
between these two descriptions, we introduce a subsystem
volume, V1, which contains (on average) a single nucleus. The
volume fraction of critical nuclei, their concentration, and the
volume per nucleus are readily given for closed systems by

ΦnucðΦÞ ¼ Φ - Φ�
1½mnucðΦÞ, Φ�

cnucðΦÞ ¼ ΦnucðΦÞ=½na3mnucðΦÞ�
V1ðΦÞ ¼ c-1nuc ¼

na3mnucðΦÞ
Φ-Φ�

1½mnucðΦÞ, Φ�
ð7Þ

wheremnuc(Φ) andΦ1*(Φ) are given by eqs 5 and 6. SinceΦnuc

is very small, V1 is much larger than the molecular volume, and
our coarse-grained approach is indeed applicable. Note the
distinction between the nuclei concentration cnuc and their
volume fraction Φnuc. Since the micelle size m is a variable,
constraining cnuc does not imply a fixed Φnuc. This will be
important in the next sections when we impose a constraint on
the number of nuclei. The nucleation barrier and nucleation time
scale are given for closed systems by

ΔFnucðΦÞ ¼ V1ðΦÞ
a3

fF½Φ, Φ�
1ðmnuc, ΦÞ, mnuc� - F1ðΦÞg

τnucðΦÞ = τ0eΔFnucðΦÞ
ð8Þ

where τ0 is a molecular time scale and F1 is the free energy of the
monomeric state. It should be mentioned that our formalism
artificially distinguishes between monomers and aggregates of
size m = 1. As in the previous works,36,37 this artifact has an
insignificant effect on the results. We calculate here the free
energy of the m = 1 state as F1(Φ) = F[Φ,Φ1*(1,Φ),1].
Various features of the nucleation stage can be calculated from

eqs 1-8, as demonstrated in Figures 3-5. The concentration of
critical nuclei (Figure 3A) sharply increases with surfactant
volume fraction as Φ is increased above j3 = jcmc. The size of
the critical nucleus (Figure 4A) decreases with Φ until it practi-
cally vanishes asΦ approaches j4. The height of the nucleation
barrier (Figure 5) decreases as well with Φ, leading to a sharp
decrease in the nucleation time scale (Figure 5, inset). To get an
estimate of the actual nucleation time scales, we may take τ0 ≈
10-8 s, which is the time that it takes a molecule with a diffusion
coefficient of∼10-6 cm2 s-1 to be displaced by∼1 nm. For the
example presented in Figure 5, τnuc is extremely large close to j3

but drops to ∼1 s for Φ = 2j3.
Open System. When the system is placed in contact with a

large reservoir of volume fractionΦb,Φb >j3 =jcmc, monomers
will first diffuse in, until the monomeric concentrations are
balanced. We shall assume that micellar diffusion from the

Figure 2. Cuts of the free-energy landscape (relative to the monomeric
state, per micelle, in units of kBT) as a function of aggregation number
for the surfactant parameters of Table 1 andΦ = 1.1j3. The two curves
correspond to two different constraints, relaxation of the monomer
volume fraction for the given aggregation number (solid) and fixed
concentration of micelles (dashed). Indicated by arrows are the sizes of
the critical nucleus (mnuc), the intermediate aggregate at the end of the
growth stage (mh), and the equilibrium micelle (m*). A closed system is
assumed. V1 is the volume of the solution per micelle at equilibrium.

Table 1. Parameters of the Exemplary Surfactant and the
Resulting Boundaries of the Micellar Region

n u0 σ κ j3 = jcmc j4

13 10 11 0.08 2.03� 10-3 0.106
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reservoir is either blocked or very slow. (If it is not, micellization
in the system will be dominated by simple transport of micelles
from the reservoir.) Thus, the starting point for the nucleation
stage in this case is different from that of a closed system; it is still
a monomeric state but with a lower volume fraction, Φ = Φ1,
where Φ1 = Φ1

b < Φb. Nucleation is again assumed to be much
slower than monomer diffusion. Hence, the monomer volume
fraction remains fixed at Φ1 = Φ1

b. At the same time it should

minimize F for the givenm(t), which in turn determines the value
of the third state variable,Φ. As the nuclei grow, the total volume
fraction increases, and the system proceeds along the path that
satisfies the constraints Φ1 = Φ1

b and Φ1*[m(t),Φ] = Φ1
b.

The nucleation path ends at the state of critical nuclei, which is
also different from the closed-system saddle point, because the
total volume fraction has not reached the bulk value, Φ < Φb.
This state is calculated using the following procedure for the
open case. First, we calculate themonomer volume fraction in the
reservoir according to the equilibrium condition

Φb
1ðΦbÞ ¼ Φ�

1½m�ðΦbÞ, Φb� ð9Þ
Second, we equate this monomeric volume fraction with the one
in our open system at the saddle point

Φ�
1½mnucðΦÞ,Φ� ¼ Φb

1ðΦbÞ ð10Þ
thus determining (via eqs 5 and 6) the total volume fraction in
the system,Φ, and the critical nucleus, mnuc, as functions ofΦb.
Third, we use these results to calculate Φnuc, cnuc, and V1 as
functions of Φb

ΦnucðΦbÞ ¼ Φ - Φb
1

cnucðΦbÞ ¼ Φnuc=ðna3mnucÞ
V1ðΦbÞ ¼ c-1nuc ¼

na3mnuc

Φ - Φb
1

ð11Þ

Figure 3. Concentration of critical nuclei (normalized by the molecular volume) as a function of surfactant volume fraction in the range between j3 =
jcmc = 2 � 10-3 and j4 for closed (A) and open (B) systems. Parameters are given in Table 1.

Figure 4. Critical nucleus size as a function of surfactant volume fraction in the range betweenj3 =jcmc= 2� 10-3 andj4 for closed (A) and open (B)
systems. Parameters are given in Table 1.

Figure 5. Nucleation barrier ΔFnuc (in units of kBT) as a function of
surfactant volume fraction for a closed system. The inset shows the
corresponding nucleation time (in units of the molecular time τ0).
Parameters are given in Table 1.
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Finally, the nucleation barrier and time scale are given for the
open system by

ΔFnucðΦbÞ ¼ V1

a3
½FðΦ, Φb

1, mnucÞ - F1ðΦb
1Þ�

τnucðΦbÞ = τ0eΔFnucðΦbÞ
ð12Þ

From eqs 1-6 and 9-12, one can calculate the various para-
meters of the nucleation stage for an open system. Examples are
shown in Figures 3B and 4B, revealing striking differences from
the case of a closed system. The explanation is straightforward;
the system is assumed to be in contact with the reservoir only
through its monomeric concentration (so-called intermicellar
concentration), Φ1

b, which hardly changes as Φb is increased
above the cmc. Hence, during this initial stage, Φ1 remains low,
regardless of the value of Φb. Consequently, the critical nuclei
remain relatively rare and large, almost independent of concen-
tration (Figures 3B and 4B). Moreover, sinceΦ1 does not reach
values above j3 = jcmc, we get very high nucleation barriers,
resulting in an unphysical nucleation time for the open system.
Thus, homogeneous nucleation in an open system, which does
not have micellar transport from the reservoir, is strongly
hindered. In the following discussion of open systems, it is
assumed that, despite this strong kinetic limitation, nuclei were
somehow caused to form.

’MICELLAR GROWTH

The nucleation stage addressed in the preceding section ends
when the critical nuclei have formed. On the free-energy land-
scape, the system has reached the saddle point of F. Subse-
quently, a stage of faster growth takes place. The free energy of
the system decreases while the nuclei absorb additional mono-
mers from the surrounding solution and m increases.

The growth is assumed to be much faster than the nucleation
of new micelles or fusion and fission of existing ones. Hence, the
concentration of micelles, cm = (Φ-Φ1)/(na

3m) remains fixed
at cm = cnuc. Consequently, the available volume per aggregate,
V1, remains unchanged as well. We shall assume that the growth
is also faster than the diffusive transport among the micelles (for
closed and open systems) and with the reservoir (open system).
The increase in m, therefore, comes solely at the expense of a
decrease in the concentration of the surrounding monomers,
while the total surfactant volume fraction is conserved. Thus, we
describe the growth kinetics as a constrained path, [Φ1(t),m(t)],
such that cm = cnuc = const and Φ = const.

Although diffusive transport into or out of the subsystem (of
volume V1) is assumed negligible during this stage, it is a priori
unclear whether the growth process itself, within V1, should be
kinetically limited or diffusion-limited. We shall therefore exam-
ine both possibilities below. The constraints and the equations
derived in this section apply to closed and open systems alike, yet

Figure 6. Intermediate micelle size at the end of the growth stage, mh , as a function of surfactant volume fraction in the range between j3 =jcmc= 2�
10-3 and j4 for closed (A) and open (B) systems. The inset in panel (A) focuses on volume fractions slightly above j3. Dotted lines show the
equilibrium micelle size, m*. Parameters are given in Table 1.

Figure 7. Intermediate monomer volume fraction at the end of the growth stage as a function of surfactant volume fraction in the range between j3 =
jcmc= 2� 10-3 andj4 for closed (A) and open (B) systems. The inset in panel (A) focuses on volume fractions slightly abovej3. Dotted lines show for
comparison the equilibrium monomer volume fraction, Φ1*. Parameters are given in Table 1.
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the values substituted for Φ and cnuc differ substantially. While
for a closed systemΦ is the experimentally controlled surfactant
volume fraction, for an open system,Φ gets the lower and weakly
changing values determined from Φb in the nucleation stage
according to eq 10. The concentration of nuclei is also much
lower in the open-system case (cf. Figure 3). Consequently, the
quantitative predictions for the two cases are quite different.

The aforementioned constraints imply that the average mono-
mer volume fraction decreases linearly with the aggregation
number, m(t)

Φ1ðtÞ ¼ Φ - na3cnucmðtÞ ð13Þ
We are left with one independent variable,m(t), whose change in
time could be either kinetically controlled or diffusion-con-
trolled. Yet, before studying the detailed evolution, let us examine
its final state, which is common to both limits.

The final state of the growth stage, denoted as (Φh1,mh),
is given by the minimum of F along the constrained path,
(∂F/∂m)|cm=cnuc,Φ=const = 0. This yields

m ¼ mh: ln½Φ1ðmÞ� þ uðmÞ þ mu0ðmÞ þ 1 - 1=m ¼ 0 ð14Þ

where Φ1(m) is given by eq 13 and, once mh is calculated, Φh1 =
Φ1(mh). The resulting aggregation numbers and their depen-
dence on the controlled surfactant volume fraction are presented
in Figure 6. Note that the intermediate aggregation number at the
end of the current stage is not equal to the equilibrium micellar
size since it corresponds to aminimum of F along the constrained
path rather than its global minimum. Unlike the equilibrium size,
m*, which is bound by thermodynamic stability to increase with
surfactant volume fraction (dotted lines in Figure 6), the inter-
mediate sizemh can have a richer behavior. Examined over a wider
range of Φ, mh is found to be nonmonotonous, having a maxi-
mum atΦ <j3 =jcmc. Hence, for the closed system, it decreases
withΦ (Figure 6A), whereas for the open system, which remains
dilute throughout this stage, it increases with Φ (and, there-
fore, with Φb; Figure 6B). In the closed system, the growth
overshoots the equilibrium size forΦJj3 and undershoots it at
higher values. Whethermh is larger or smaller thanm* is in accord
with the question of whether cnuc is, respectively, smaller or larger
than the equilibrium concentration of micelles. (We shall return

to this point when we deal with the final relaxation.) In the open
system, mh is very close to, and slightly smaller than, m*. Similar
observations can bemade concerning the intermediatemonomer
volume fraction, Φh1, as demonstrated in Figure 7.

We now turn to the evolution of themicellar size.We shall first
assume, in the first subsection below, that it is kinetically limited.
We will subsequently check in the second subsection whether
such a description is consistent with the rate of monomer
diffusion and consider the alternative of a diffusive growth.
Kinetically Limited Growth. In the case of kinetically limited

growth, the diffusive transport of molecules to the aggregate is
assumed to be sufficiently fast so as not to limit the growth.
The volume fraction of monomers, Φ1, satisfies eq 13 while
being uniform across the subsystem volume V1. The increase of
m with time is taken as proportional to the relevant thermo-
dynamic driving force (i.e., the slope of F along the constrained
path)

dm
dt

¼ -
R
τ0

V1

a3
δF
δm

�����cm¼cnuc
Φ¼const

¼ R
τ0

ln½Φ1ðmÞ� þ uðmÞ þ mu0ðmÞ þ 1 - 1=mf g ð15Þ

where R is an unknown dimensionless prefactor of order unity
and Φ1(m) is given by eq 13. Equation 15, supplemented by a
proper initial condition for m(t = 0), forms a simple initial value
problem for the temporal increase in micelle size and is solved
numerically. Because the initial state of this stage is a stationary
(saddle) point of F, we cannot begin with the strict initial
condition, m(0) = mnuc, but have to perturb it to start the
evolution. An example for a numerical solution of eq 15, where
we have taken m(0) = mnuc þ 1 and Φ = 1.1j3 = 1.1jcmc, is
shown in Figure 8. The time scale of the growth, denoted as τk, is
found to be about 2 orders of magnitude larger than the
molecular time τ0 (i.e., of order 10

-6 s in this example).
To get an expression for the kinetic time scale, we examine the

asymptotic behavior of eq 15 as m approaches mh , obtaining

jmðtÞ -mhj � e-t=τk

τ-1k ¼ R
τ0

Φ-Φ1

mΦ1
- 2u0ðmÞ - mu00ðmÞ - 1=m2

� �
m¼mh,Φ1¼ hΦ1

ð16Þ

The results for τk in terms of the molecular time τ0 are shown in
Figure 9. For the closed system, over one decade of surfactant
volume fraction, τk decreases from∼102τ0 to∼τ0. (Values below
τ0, evidently, should not be regarded as physical.) The inset
shows that the growth rate for the closed system increases
roughly linearly with Φ. For the open system, the time scale is
also about 2 orders of magnitude larger than τ0, yet its depen-
dence on Φb is much weaker for the reasons described in the
Micellar Nucleation section.
Diffusion-Limited Growth. In the preceding subsection, we

have assumed that the surrounding solution can supply the
amount of monomers required for micellar growth within the
time scale τk. Let us check whether this assumption is consistent
with the rate of diffusive transport from the solution into the
aggregate. The thickness of the diffusion layer around the
aggregate, ld (assumed to be much larger than the aggregate

Figure 8. Temporal increase in micellar size assuming kinetically
limited growth in closed (solid line) and open (dashed line) systems.
The curves are obtained from numerical solution of eq 15 for the
parameters given in Table 1,R = 1, andΦ = 2.23� 10-3 = 1.1j3 for the
closed system, while for the open system, the same value is taken forΦb.
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radius), satisfies the equation Δm = (4π/3)ld
3c1, where Δm =

mh - mnuc is the number of monomers to be transported and
c1 = Φ1/(na

3) is the monomer concentration. The diffusion
time scale is then τd ≈ ld

2/D, D being the diffusion coefficient
of a monomer. Using the definition τ0 ≈ (na)2/D, we obtain

τd=τ0 = ½3Δm=ð4πn2Þ�2=3Φ-2=3
1 � ð0:1 - 1ÞΦ-2=3

1 ð17Þ
where in the last relation, we have assumed n ≈ 10 and Δm ≈
50. For our typical example ofΦ1≈ 10-3 (cf. Figure 7), we get
τd ≈ (10-102)τ0, that is, comparable to τk. Thus, the situation
concerning the limiting process for micelle growth is not clear-
cut, and both mechanisms may be relevant in general.
To treat the diffusion-limited growth in more detail, we

employ the following approximations. First, we neglect the
increase in the aggregate radius, R, and take it as constant.
Although this description is evidently inaccurate, it crucially
allows us to avoid the complicated treatment of a moving
boundary. Since the growth does not begin from a single
monomer but from a critical nucleus of finite size mnuc, we do
not expect the approximation of constant R to qualitatively
affect the results. Second, the diffusion layer is assumed to
be much smaller than the subsystem, ld , V1

1/3, thus allowing
us to consider the latter as infinite and the monomer volume
fraction far from the micelle, as given by eq 13. Third,
we neglect desorption of monomers from the micelle to the
solution during the growth. This is justified in view of the strong

driving force (large slope of F) for growth above the critical
nucleus size.
We assume a radial volume fraction profile of monomers,

Φ1(r > R,t), which follows the diffusion equation

∂Φ1

∂t
¼ D

1
r2

∂

∂r
r2
∂Φ1

∂r

� �
ð18Þ

The growth of a micelle is determined by the diffusive flux of
monomers from the solution

dm
dt

¼ D
4πR2

na3
∂Φ1

∂r

�����r¼R ð19Þ

The boundary condition far from the micelle is given according
to eq 13 by

Φ1ðr f ¥, tÞ ¼ Φ - na3cnucmðtÞ ð20Þ
For the problem to be well-posed, eqs 18-20 should be

supplemented by appropriate initial conditions for Φ1(r,0) and
m(0), as well as a local “adsorption isotherm” at the aggregate
surface, relating Φ1(R,t) and m(t). The latter lies beyond the
scope of our coarse-grained description. At any rate, we are in-
terested primarily in the qualitative asymptotics of the diffusive
transport from the solution into the aggregate, for which these
details are not crucial. The asymptotic behavior as the final state
of the growth stage is approached is worked out in the Appendix,

Figure 9. Time scale of kinetically limited growth as a function of surfactant volume fraction in the range between j3 = jcmc = 2 � 10-3 and j4 for
closed (A) and open (B) systems. The insets show the increase of τk

-1 (growth rate) withΦ (in A) orΦb (in B). Parameters are given in Table 1, and we
have set R = 1 in eq 16.

Figure 10. Time scale of diffusion-limited growth as a function of surfactant volume fraction in the range between j3 = jcmc = 2 � 10-3 and j4 for
closed (A) and open (B) systems. Parameters are given in Table 1.
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yielding

Φ1ðR, t f ¥Þ= hΦ1½1-ðτd=tÞ3=2�

τd ¼ a2ðnΔmÞ2=3
4πD

hΦ
-2=3
1 ð21Þ

Thus, unlike the exponential relaxation of a kinetically limited
process (eq 16), the diffusive relaxation is characterized, as usual,
by a slow power law. Upon substituting τ0 ≈ (na)2/D in eq 21,
the general form of τd, derived earlier from heuristic arguments
(eq 17), is confirmed.
Figure 10 shows the dependence of τd on the controlled

surfactant volume fraction according to eq 21, where we have
taken τ0 = (na)2/D. The cases of closed and open systems are
again found to behave qualitatively differently, τd strongly
decreasing with Φ in the former and weakly increasing
with Φb in the latter. This is a consequence of the different
dependencies of mh on concentration, commented on earlier
(cf. Figure 6). In an open system, mh increases with Φb

[Figure 6B], and because more molecules are transported the
longer the diffusive process takes (i.e., τd increases with Δm in
eq 21), we get an increase of τd withΦb [Figure 10B]. Compar-
ison of Figures 9 and 10 confirms our earlier assessment, that τk
and τd are comparable in general, and both growth mechanisms
may be relevant. Only for a closed system at concentrations
slightly above the cmc do we get for our representative example
τd . τk, that is, strictly diffusion-limited growth. (Note that τk
and τd are associated with very different time dependencies— an
exponential law vs a power law — and are defined only up to a
numerical prefactor. Hence, they should be compared with
respect to the order of magnitude only.)
Role of Bulk Diffusion. In the preceding subsection, we have

considered the local diffusive transport that takes place around
individual micelles, feeding them with monomers. In the case of
an open system there should also be slower, long-distance
diffusion of monomers from the bulk reservoir. In principle this
should have been the next stage to consider. However, we find
that the monomer volume fraction at the end of the growth stage,
Φh1, is invariably very close to the equilibrium (bulk) value, Φ1*
(see Figure 7B). This is a consequence of the small number of
initial nuclei (Figure 3B), whose growth consumes a small
number of monomers. Thus, the driving force for bulk diffusion
is very weak. Consistently, for the open system, we find also that
the micellar size at the end of the growth stage,mh , is very close to
the equilibrium size, m* (Figure 6B). Therefore, the bulk
diffusion that does occur in an open system has a very minor
contribution to the micellization.

’FINAL RELAXATION

At the end of the growth stage, monomer transport into the
existing micelles has been exhausted, and the micelles have
equilibrated with the surrounding monomers. Yet, the final state
of this stage, (Φh1,mh), does not correspond to the global free-
energy minimum because up until now, we have constrained the
concentration of micelles to remain at its nucleation value (cf.
Figure 2). A slower process should ensue, therefore, during
which the size and/or concentration of micelles relax to their
equilibrium values.

In the open system, the situation is a bit unusual. (Recall from
the Micellar Nucleation section, however, that actually reaching
the current stage in an open system should already involve

overcoming unusually high barriers.) The monomer volume
fraction has equilibrated with the bulk reservoir and reached its
equilibrium value. The size of the existing individual micelles has
equilibrated as well. What has not equilibrated yet is the total
surfactant volume fraction, specifically, the contribution to Φ
from Φm, the micellar volume fraction. Because there is no
thermodynamic driving force for either monomer transport or
changes in the size of the existing micelles and because we do not
allow for transport of micelles from the reservoir, the only open
pathway to final relaxation is the very slow nucleation of
additional micelles. The newly formed micelles will take mono-
mers from the solution, causing transport of additional mono-
mers from the reservoir, until the total surfactant volume fraction
reaches its equilibrium value, Φb.

The relaxation of the closed system is qualitatively different.
Both the monomer volume fraction and aggregation number
have not equilibrated yet and will change in time while keeping
the total surfactant volume fraction fixed. Because there is no
longer a driving force for directional exchange of monomers with
the solution, we expect these changes to occur through fusion or
fission of micelles. Such processes occur on the scale of an entire
micelle and depend, therefore, on a different microscopic time,
denoted τm. It is expected to be much larger than the molecular
time τ0, either because of the long diffusion time required for two
micelles to meet before fusing (in which case, τm should be of
order, say, 10-5-10-4 s) or due to kinetic barriers for fusion or
fission. In addition, τm should depend on details of intermicellar
interactions. Such kinetic barriers and interactions are not
accounted for by the current model. Two additional processes,
which in principle could be considered, are irrelevant in this
case. First, nucleation of new micelles or complete disintegra-
tion of existing ones might occur but will require the much
longer time scale of τnuc discussed earlier. Second, Ostwald
ripening, a common relaxation mechanism in phase separa-
tion, where larger domains grow at the expense of smaller
ones, is not expected to take place because the finite domains
here (the micelles) are not unstable and the required positive
feedback is thus lacking.

Either fission or fusion should be dominant, depending on
whether mh has overshot or undershot, respectively, the equilib-
rium size m* (see Figure 6A). Correspondingly, the micellar
concentration cm will either increase or decrease with time.
Over the time scale of these rearrangements of aggregate size
and concentration, we can assume that the monomer volume
fraction is relaxed,Φ1(t) =Φ1*[m(t),Φ]. We are left again with a
single kinetic variable, either m(t) or cm(t). The two are
related via

cmðtÞ ¼ fΦ - Φ�
1½mðtÞ, Φ�g=½na3mðtÞ� ð22Þ

The kinetic equation for the micellar size reads

dm
dt

¼ -
β

τm

V1

a3
f ðmÞ

f ðmÞ ¼ δF
δm

�����Φ1¼Φ�
1 mð Þ

Φ¼const

¼ Φ
�0
1 ln Φ�

1

-
Φ-Φ�

1

m2
þ Φ

�0
1

m

" #
lnðΦ - Φ�

1Þ-ðΦ-Φ�
1Þu0ðmÞ

þ ½uðmÞ þ 1 - 1=m�Φ�0
1 ð23Þ
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where V1 = na
3m*/[Φ-Φ1*(m*)] is here the volume per micelle

at equilibrium, Φ1*(m) is given by eq 3, a prime denotes ∂/∂m,
and β is an unknown dimensionless prefactor of order unity.

Equations 3 and 23 are solved numerically to obtainm(t) and,
subsequently (via eq 22), also cm(t). Figure 11 shows the
solutions for our exemplary surfactant and two volume fractions,
corresponding to fission- and fusion-dominated relaxation.

To find the relaxation time, we examine the asymptotic
behavior of m(tf¥) according to eq 23, obtaining

jmðtÞ- m�j � e-t=τr

τr ¼ τm
β

a3

V1

1
f 0ðm�Þ

ð24Þ

where f(m) has been defined in eq 23. The dependence of τr on
the surfactant volume fraction is shown in Figure 12. The
relaxation time is found to weakly depend on Φ, remaining of
the same order as (or slightly larger than) the single-micelle time
τm throughout the concentration range.

’DISCUSSION

The detailed picture which arises from our analysis of micelli-
zation kinetics is schematically summarized in Figures 13 and 14.
We have divided the process of micelle formation into three
major stages, nucleation, growth, and final relaxation. On the one
hand, this crude separation into stages should be conceptually

valid because we find the corresponding time scales to be quite
well separated. In particular, the nucleation time is found to be

Figure 11. Evolution of micellar size (solid, left ordinate) and concentration (dashed, right ordinate) during the final relaxation stage in a closed system.
Parameters are given in Table 1, we have set β = 1 in eq 23, and the volume fraction isΦ = 2.23 � 10-3 = 1.1j3 (A) and 5.23 � 10-3 = 2.58j3 (B).

Figure 12. Time scale of final relaxation, τr (in units of the single-
micelle time scale), as a function of the surfactant volume fraction in the
range between j3 = jcmc = 2 � 10-3 and j4 for a closed system.
Parameters are given in Table 1, and we have set β = 1 in eq 24.

Figure 13. Schematic summary of micellization in a closed system. The
states of the system are represented by rectangles, besidewhich the values of
the state variables are indicated. The process is divided into three stages,
represented by arrows. The constraints on the kinetics during each stage are
indicated beside the arrows. (i) Slow nucleation stage (time scale τnuc), in
which critical nuclei of size mnuc form in a monomeric solution. (ii) Fast
growth stage, in which the nuclei grow frommnuc to an intermediate sizemh
without changing their concentration. The growth may be either diffusion-
limited (time scale τd with a -3/2 power law relaxation) or kinetically
limited (time scale τk with an exponential relaxation). (iii) Final relaxation
of the size and concentration of aggregates to their equilibrium values
through fusion or fission (time scale τr).
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macroscopic, several orders of magnitude longer than the time
scales of growth and equilibration. Such stages have been
resolved in a recent X-ray scattering experiment on block
copolymer micellization.31 They also emerged in other micelliza-
tion theories.15 On the other hand, the discreteness of these
stages, as illustrated in Figures 13 and 14, should not be taken too
strictly. In particular, in the example treated above, we find the
time scale of growth to be only 1-2 orders of magnitude shorter
than the typical time for final equilibration. Thus, in certain cases,

it may well be that these two stages should not be considered as
distinct.

The nucleation stage is much longer than all others, and
because it is an activated process, its duration is exponentially
sensitive to the surfactant volume fraction as well as other
parameters (Figure 5). The range of nucleation times that we
get for our exemplary surfactant in a closed system (typically
larger than 1 s) is in line with measured values of mτ2, the time
scale for formation or disintegration of entire micelles.2 The high
nucleation barriers found close to the equilibrium cmc (Φ = j3)
imply that the measured (apparent) cmc might, in certain cases,
be higher than the equilibrium value. This issue, which was raised
before in the context of block copolymer micelles,13 clearly
merits further study.

The growth stage occurs on much faster time scales (e.g.,
10-6-10-5 s for our example). These time scales are similar to
those measured for τ1, the single-monomer exchange time at
equilibrium.2 We have found that the growth may, in general, be
either diffusion-limited or kinetically limited and that it should be
diffusion-limited at concentrations close to the cmc. This is in
accord with τ1 being usually diffusion-limited for short-chain
surfactants while becoming kinetically limited for longer-chain ones,
which face higher kinetic barriers for incorporating into a micelle.2

Our theory predicts a distinctive-3/2 power law relaxation in the
case of diffusion-limited growth (eq 21). This prediction should be
verifiable in scattering experiments like the one described in ref 31
when they are applied to short-chain surfactants.

The final relaxation stage in a closed systemmay involve either
reduction in aggregate size (fission), accompanied by an increase
in aggregate concentration, or the other way around (fusion)
(see Figure 11.) Which of these scenarios holds depends on
whether the aggregate size attained in the preceding growth stage
has overshot or undershot the equilibrium aggregation number.
The former should hold at concentrations close to the cmc,
whereas the latter occurs at higher concentrations. We note that
in the experiment of ref 31, the aggregates grew in size during
their final relaxation, which is in line with the fact that the
amphiphilic concentration in that experiment was much higher
than its cmc.We note also that the somewhat surprising possibility of
an intermediate aggregate size overshooting the equilibrium value
was already pointed out in an earlier study.27 An interesting
consequence of our analysis is that, by tuning to the right surfactant
concentration, one should be able to eliminate the final relaxation
stage altogether, thus reaching the equilibriummicellar state already
at the end of the fast growth stage. Another relevant prediction is
that the relaxation time of this final stage should be almost
independent of surfactant concentration (Figure 12). It should be
stressed again that these predictions concerning the final relaxation
stage require that the preceding growth stage be sufficiently fast so
that the two processes could be considered separately. In particular,
observing oversized micelles before they shed their extra molecules
may be experimentally challenging.

Our findings concerning the kinetics of micelle formation have
a number of additional experimental implications. A particularly
clear-cut one relates tomicellization in an open system, a solution
in diffusive contact with a reservoir of monomers and micelles.
We have found that in cases where only monomer exchange with
the reservoir is allowed while the transport of micelles is blocked,
micellization should be kinetically suppressed. The suppression
is two-fold. First, strong activation is required for the homo-
geneous nucleation of the first micelles. This stems from the low
surfactant concentration maintained in the system due to the

Figure 14. Schematic summary of micellization in an open system,
having monomer exchange with a reservoir. The states of the system are
represented by rectangles, beside which the values of the state variables
are indicated. The process is divided into four stages, represented by
arrows. The constraints on the kinetics during each stage are indicated
beside the arrows. (i) Slow nucleation stage (time scale τnuc), in which
critical nuclei of size mnuc form in a monomeric solution; this stage is
found to be strongly hindered by kinetic barriers (dashed arrow). (ii)
Fast growth stage, in which the nuclei grow frommnuc to an intermediate
size mh without changing their concentration. The growth may be either
diffusion-limited (time scale τd with a -3/2 power law relaxation) or
kinetically limited (time scale τk with an exponential relaxation). (iii) Bulk
diffusion from the reservoir until the aggregates reach their equilibrium size
m*; this stage is found to have aminor contribution to themicellization. (iv)
Final relaxation of aggregate concentration through nucleation of additional
micelles (also kinetically hindered; dashed arrow).



7279 dx.doi.org/10.1021/jp1073335 |J. Phys. Chem. B 2011, 115, 7268–7280

The Journal of Physical Chemistry B ARTICLE

correspondingly low monomer concentration (sometimes re-
ferred to as the intermicellar concentration) in the reservoir.
Second, even after micelles do nucleate and grow, the final
relaxation of their concentration should be hindered because it
requires the nucleation of additional micelles.

The consequential prediction is that the formation of micelles
in such open monomeric solutions may be suppressed for a
macroscopic time. In fact, this behavior is regularly manifest in
applications involving micelle-enhanced ultrafiltration39 and has
been observed in dialysis experiments,40 where the time scale of
micelle formation was estimated to be 1-10 h. In both the
ultrafiltration techniques and the dialysis experiment, a micellar
solution is forced through a membrane whose pores are smaller
than the micelles. The surfactant solution on the other side of the
membrane remains monomeric for a macroscopic time, despite
its contact with a micellar solution above the cmc. To our best
knowledge, the analysis presented above provides the first
quantitative account of this regularly observed behavior.

Apart from the aforementioned strong assumption of time
scale separation, the main shortcoming of our model is its mean-
field character. We have assumed that the kinetics in the
surfactant solution can be described within a representative
subvolume, V1, containing a single aggregate and being uncorre-
lated with the other subvolumes. Upon closer inspection, in fact,
we find that V1 for a closed system typically contains ∼10-102

surfactant molecules, which is comparable to the aggregation
number. Hence, correlations among such subvolumes are to be
expected as the micelles nucleate and grow. Another important
mean-field aspect is our description of the state of the system as a
deterministic point on the free-energy landscape and its kinetics
as a sharply defined path on that landscape. In practice, and
particularly close to the cmc, the system should be more
accurately described by stochastic distributions, with polydisper-
sity and occupancies of both the monomeric and aggregated
states.36 Nonetheless, we do not expect these approximations to
qualitatively change the main results presented here.

’APPENDIX

In this appendix, we calculate the asymptotic time dependence
of the micellar size, m(t), in a diffusion-limited growth. The
equations to be handled are eqs 18-20.

To leading order at long times, we can substitute in eq 20m(t)=
mh , turning the boundary condition far away from the micelle into
Φ1(rf¥,t) =Φh1. We now defineψ(r,t) =Φ1(r,t)-Φh1, so that
ψ(rf¥,t) = 0, and introduce Laplace-transformed variables,
ψ̂(r,s) =

R
0
¥ dt e-stψ(r,t) and m̂(s) =

R
0
¥ dt e-stm(t). The

diffusion equation, eq 18, is then rewritten as

sψ̂ ¼ D
1
r2

∂

∂r
r2
∂ψ̂

∂r

 !
ðA1Þ

where we have assumed ψ(r,0) = 0, as the accurate initial profile
should not affect the long-time asymptotics. The boundary
conditions, eqs 19 and 20, transform to

sm̂ - mnuc ¼ D
4πR2

na3
dψ̂
dr

�����
r¼R

ðA2Þ

ψ̂ðr f ¥, tÞ ¼ 0 ðA3Þ

The solution of eqs A1-A3 is

ψ̂ðr, sÞ ¼ -
na3

4πD
sm̂ - mnuc

1 þ Rðs=DÞ1=2
 !

e-ðs=DÞ
1=2ðr-RÞ

r
ðA4Þ

from which we get

ψ̂ðR, sÞ ¼ -
na3

4πDR
sm̂ - mnuc

1 þ Rðs=DÞ1=2
 !

ðA5Þ

The limit t f ¥ corresponds to s f 0, at which sm̂ - mnuc =
mh -mnuc =Δm. Inverting eq A5 back to real time and taking the
limit t f ¥, we find

ψðR, t f ¥Þ=-
na3Δm

8ðπDtÞ3=2
ðA6Þ

which yields eq 21 for τd.
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