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We consider aspects of patternings that occur in a wide array of physical systems due to interacting combinations
of dipolar, interfacial, charge exchange, entropic, and geometric influences. We review well-established
phenomena as a basis for discussion of more recent developments. The materials of interest range from bulk
inorganic solids and polymer organic melts to fluid colloids. Often, there are unifying principles behind the
various modulated structures, such as the competition between surface or line tension and dipolar interaction
in thermally reversible systems. Generally, their properties can be understood by free-energy minimization.

I. Introduction

A diverse number of physical, chemical, and biological
systems exhibit some type of modulation in their structural
properties.1 Examples of such structures in two-dimensional
(2D) systems are elongated stripes and compact droplet-like
domains, as can be seen in Figure 1. In the figure, domains in
solid magnetic systems (garnet films) and in thin layers of
ferrofluids (to be discussed in detail below) are shown side-
by-side and exhibit striking similarity. In three-dimensional (3D)
systems, the domain morphology can be more complex and
includes sheets, tubes, rods, and droplets embedded in a three-
dimensional matrix. The similarity between the resulting patterns
in certain systems of different origins is quite surprising and
may allude to a common unifying mechanism. In other cases
additional mechanisms arise, as will be discussed.

It is convenient to view these systems as systems which, due
to a competition between different interactions, achieve ther-
modynamic equilibrium in a state in which the appropriate order
parameter shows a spatial modulation. Examples are abundant1

and include modulation of the magnetization field of ferromag-
netic slabs6-8 and ferrofluids,3 the polarization field in electric
dipolar systems and certain liquid crystalline phases,9,10 the
superconducting order parameter in the intermediate phase of
type I superconductors,11 as well as the relative composition in
block copolymer systems.12-14

We present in this paper some of the interesting phenomena
associated with modulated phases. We start by considering a
simple example explaining the underlying mechanism of
wavelength selection in a quasi two-dimensional dipolar system.
We then address domains in magnetic garnet films and related
dipolar organic films at the water/air interface (Langmuir
monolayers). Two other examples of systems of current
scientific interest having many applications are subsequently
discussed, mesophases in block copolymers and magnetic fluids
(ferrofluids). Competing interactions create interesting new

phenomena when these systems are subjected to an external
field (electric, magnetic), and we describe their morphology,
structure, phase separation, various instabilities, and related
phenomena.

II. Domains in Two-Dimensional Ferromagnetic Layers

Ferromagnetism is an important physical phenomenon as-
sociated with elements like nickel, iron, and cobalt, as well as
a large number of metallic alloys that show spontaneous
magnetization M in the absence of an external applied magnetic
field.

In bulk magnetic systems, the uniform magnetization does
not persist throughout the system but breaks up into spatial
domains, each having a specific and distinct magnetic orienta-
tion. The domain size and its structure depend on competing
interactions inside of the magnet: the direct exchange interaction,
the demagnetization fields, and the crystal anisotropy.
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Figure 1. Domains in magnetic solids and fluids. (a) Stripes and (b)
bubble phase in a ferromagnetic garnet film of 13 µm thickness grown
on the 〈111〉 face of gadolinium gallium garnet. Visualization is made
using polarized optical microscopy (Faraday effect). Period: d* ∼
10 µm. Adapted from ref 2. (c) Ferrofluid confined between two glass
plates exhibiting labyrinthine instability in a magnetic field.3,4 The period
is d* ∼ 2 mm. (d) Bubble phase of a ferrofluid confined in a cell having
a gap that increases from left to right. The mean bubble size is ∼
1 mm. Adapted from ref 5.
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In order to explain on general grounds why dipolar systems
prefer to break into domains of a well-defined size, we use the
following simplified model for two-dimensional layers, which
gives the essential features without the need to review all of
the technical details. This model is applied in later sections to
explains analogous features of magnetic garnet and films and
dipolar Langmuir layers and is related to the labyrinthine
instability of ferrofluids, as will be discussed below.

We consider a monomolecular layer of atomic dipoles in the
(x,y) plane, each having a magnetic dipole (electronic spin) that
can point only along the perpendicular z direction. The spins
are taken to possess two possible values, Sz ) ((1/2), related
to the two values of the atomic magnetic moment m ) g0µBSz,
where g0µB is the gyromagnetic factor, µB ) ep/2mec is the Bohr
magneton, and g0 ≈ 2 is the g factor. The system can be
described using an Ising model with nearest-neighbor-only
ferromagnetic coupling and the direct exchange interaction
between adjacent spins minimized when two neighboring spins
point in the same direction. Therefore, at low enough temper-
atures, the magnetic order will be (Ising-like) ferromagnetic.

By treating the Ising monolayer defined above at a coarse-
grained level, we can perform the thermal average, namely, to
sum with the proper Boltzmann weight factor over the micro-
scopic spin degrees of freedom at finite temperatures. A local
magnetization field for this 2D system, M(r), can be defined
as a continuous function of the 2D position r. Close to the Curie
temperature Tc and at zero applied magnetic field H, the
magnetization is small, and the ferromagnetic (M * 0) to
paramagnetic (M ) 0) transition can be described by an
expansion of the free energy expressed in powers of M and its
gradient. This is the starting point of the well-known Ginzburg-
Landau theory.15 Because of the up-down spin symmetry in
the absence of an orienting field, an expansion of the free energy
has only even powers in M, and up to fourth order in M, it can
be written as

The parameter c > 0 (related to the direct exchange interaction),
R ∼T -Tc, and � > 0 are phenomenological parameters. The
uniform state of the system, in which the magnetization is
independent of position, can be obtained from the above free
energy expression by minimizing the integrand without the
gradient term. For T < Tc, R < 0 and the minimization yields
two possible ferromagnetic states, M (T) ) (M0 ) ((|R|/�)1/2,
while for T > Tc, the only solution is the paramagnetic state, M
) 0.

Any two magnetic spins (i, j) also have a dipolar interaction
leading to demagnetization terms which need to be included in
the free energy. We consider the addition of these long-range
interactions for Ising spins because these interactions have an
important effect on the magnetic domain size. Any two colinear
Ising spins, S i

z and S j
z, S i

z ) ((1/2), located in the (x,y) plane,
distance r apart and pointing in the z direction have a dipolar
interaction Ui,j

where mi ) g0µBSi
z is the magnetic moment of the ith atom and

µ0 the vacuum permeability.

The coarse-grained dipolar magnetic energy can be derived
from eq 2 and after thermal averaging is written as

where the double integral is taken over all possible dipole pairs.
The (1/2) prefactor is included in order to avoid double counting
of pairs. The kernel g(r, r′) ) 1/|r - r′|3 expresses the long-
range nature of the dipole-dipole interaction, eq 2. The integral
in eq 3 can subsequently be manipulated more conveniently in
Fourier space. Using Mq and G(q) as the 2D Fourier transform
of M(r) and g(r), respectively, we obtain

Because g(r) ) 1/r3, where r ) |r| is the vectorial magnitude,
the small q behavior of its Fourier transform G(q) )
∫d2rg(r) exp(-iq · r) is G(q) ≈ -g1|q|, and a lower length cutoff,
r ) a, has to be introduced in the integration of eq 4 in order
to take care of the diverging of g(r) ) 1/r3 at r f 0. We note
that this cutoff has no other effect on the q dependence of eq 4.

The Fourier transform of the |∇ M |2 term yields a positive
contribution that is proportional to q2M q

2, whose minimum is
always attained for q ) 0 (uniform state). However, the
dipolar-dipolar term in eq 4 favors short wavelength modula-
tions (high q modes) due to the reduction in dipolar energy when
the spin pair is in an antiparallel state. The combined free energy,
Fd + FGL, includes the direct exchange, eq 1, as well as the
long-range dipole-dipole interactions, eq 4. Representing the
total free energy as an integral in Fourier space, its minimization
with respect to q gives the most stable mode,10 q ) q*

In the derivation of q* in eq 5, we neglected fourth and higher
order terms in the free energy, eq 1. Estimating the free energy
by its value at q* is called the single-mode approximation. It
can be justified for T j Tc, where the most dominant q* mode
contribution is a good approximation for the entire free energy.16

Note that for a single q mode, the domain size by definition
is d* ) 2π/q*. Up to a numerical prefactor, the domain wall
width � is approximately equal to d*. As the temperature is
lowered and becomes considerably lower than Tc, the system
cannot be described any longer within the single-mode ap-
proximation. Domains still prevail, but their wall width � (on
order of nanometers) becomes much smaller than the domain
size d* (micrometers).

At low temperatures, an estimate of d* includes many q
modes and can be done for stripes, circular, and other simple
arrangements of domains. By considering an alternating ar-
rangement of (M stripe domains, the dipolar energy, eq 3, can
be calculated exactly. This energy competes with the domain

FGL ) ∫ d2r[c
2

|∇ M |2 + R
2

M 2(r) + �
4

M 4(r)] (1)

Ui,j )
mimj
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3
)
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zSj

z

r3
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d
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wall energy γ, which favors as few domains as possible. These
two competing interactions10 give in 2D

where a is a microscopic length and b is a dimensionless
prefactor. The dimensionless number NB0

)µ0M 2/γ is called
the magnetic Bond number and is also discussed in section VI.
The same Bond number that fixes the domain size is also
instrumental in providing an understanding of various instabili-
ties of isolated drop-like domains, such as domain division and
elongation, and tip splitting.1

III. Magnetic Garnet Films

Garnet films are ferromagnetic solid films grown so that the
easy axis of magnetization is along the axis of growth.6 The
magnetic spin can point up or down. Using polarized light
microscopy coupled to the spin orientation (via the Faraday
effect) to visualize details on the micrometer scale, it is observed
that below the Curie temperature, the film spontaneously forms
domains with a disordered stripe morphology [see Figure 1a].
It is quite evident that the stripe thickness (domain size) is well
defined even though the stripes have no preferred orientation
in the plane. Note that for larger external fields, the garnet film
morphology changes into a bubble phase [see Figure 1b], as
will be discussed below.

The physics behind the creation of domains in garnet films
and, in particular, their preferred size d* is well understood6,7,17

and closely related to the model 2D layered system presented
in section II. The major difference between the two is that the
garnet film has a slab geometry of finite thickness t.

Any magnetized body of finite size produces magnetic charges
or poles at its surface. This surface charge distribution, acting
in isolation, is itself another source of a magnetic field, called
the demagnetizing field. It is called the demagnetizing field
because it acts in opposition to the magnetization that produces
it. Consequently, the coarse-grained dipolar magnetic energy
as in eq 3 can be calculated by mapping the system into a
Coulomb interaction between two monolayers of opposite
charges separated by a distance t. The kernel appearing in eq 3
is now replaced by17

and the corresponding Fourier transform is

As in section II, the minimization of the free energy of eq 5
with the form of G(q) given by eq 8 yields an optimal value of
the modulation wavevector, q*. The connection between the
finite thickness slab of the garnet and the 2D monomolecular
dipolar layer can be seen by examining the qt , 1 limit, where
we find that G(q) ∼ -|q| as in eq 4. In the other limit of a thick
slab, qt . 1, G(q) ∼ 1/q, which also gives rise to a free-energy
minimum at a nonzero value of q*.

Stripe-like domains can be stabilized even for zero applied
magnetic field, where there is a complete symmetry between

the up and down spin orientations. In a slab of thickness t in
the micrometer range, the resulting demagnetizing fields are
strong enough to compete with the magnetic wall energy and
yield stable stripe-like domains with size d* in the 1-100 µm
range. Beside its dependence on the slab thickness t, the stripe
width d* depends on the temperature.

A typical phase diagram of a garnet film17 is shown
schematically in Figure 2 and depends on the temperature and
external magnetic field (for a fixed slab thickness t). For H )
0, the up and down stripes are completely symmetric. When an
external field is applied below the Curie temperature, the
domains whose magnetization is parallel to the field direction
grow at the expense of the oppositely oriented domains.
However, at some value of H, there is a first-order phase
transition between the stripe morphology (S) and the so-called
bubble phase (B), as seen in Figure 2. The bubble phase is
composed of thin cylinders of up spin embedded in a back-
ground of down spins. Upon further increase of the magnetic
field, the system has another first-order phase transition from
the bubble phase into a paramagnetic (P) phase. Note that the
two transition lines, S f B and B f P, terminate at the Curie
temperature Tc for H ) 0. Although the periodicity is, by and
large, determined by such equilibrium considerations, the system
shows a wide range of in-plane disorder [Figure 1a and c]. This
disorder is very sensitive to the sample history, indicating that
care be taken to avoid trapping the system in metastable states.
A sample cooled in a nonzero H field which is then removed
shows different disorder compared with a sample annealed at
the same temperature but at zero magnetic field.

Garnet films had their days of glory in the 1960s and 1970s
when they were used as magnetic storage devices (bubble
memory), but their larger size and slower speed compared to
hard disk drives and flash memory devices made this application
short-lived.7,18 However, even current research8 on meso- and
nanomagnetism is largely inspired by the garnet films.

IV. Dipolar Langmuir Films

Amphiphilic molecules have a hydrophobic tail and a
hydrophilic head that is either charged or dipolar. When these
molecules are highly insoluble in the water, they form a
Langmuir monolayer s a monomolecular layer that is spread

d* ) 2π
q*
= a exp[bγ

2
1

µ0M
2] ) a exp[b

2
NB0

-1] (6)

g(r) ∼ 2
r
- 2

√r2 + t2
(7)

G(q) ∼ 4π
qt

(1 - exp(-qt)) (8)

Figure 2. Schematic phase diagram of modulated phases (garnet films).
The 2D system exhibits stripe (S) and bubble (B) phases, along with
the usual paramagnetic (P) phase in the temperature-field (T-H) plane.
The lines indicate first-order transition lines from S to B and then from
the B to P phase. Both lines merge at the Curie point Tc for H ) 0.
Also indicated is the geometry of the stripe and bubble arrays for
magnetic garnet films. Arrows indicate the magnetization direction.
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at the air-water interface.19 The layer thermodynamics can be
controlled by regulating the temperature or applying a surface
(in-plane) pressure. Visualization of domains in the micrometer
range is accomplished by fluorescence optical and Brewster
angle microscopies,20 while ordered lipid domains are studied
using small-angle X-ray scattering (SAXS).21

Such a Langmuir monolayer can be viewed as a manifestation
of a 2D layer of dipoles at the water-air interface9,10,20 whose
surface density can be varied by applying a surface pressure.
Although the dipoles are electric ones, the treatment of the long-
range dipole-dipole interaction is similar to the one discussed
in the preceding sections for dipoles having a nonzero contribu-
tion along the perpendicular z direction. We simply need to
replace the magnetic field by an electric one and the magnetiza-
tion by the electric polarization. The variation in the polarization
P ) Pẑ is related to the variation in the local concentration, P
) µeln, where P is the polarization, µel the electric dipole
moment of an individual molecule and, n(r) the local number
concentration of dipoles (per unit area). One predicts various
thermodynamic states of the system as a function of temperature
T and lateral pressure Π, in analogy with the gas, liquid, and
solid phases in 3D systems.

When the molecular dipole is large, the selection of a
preferred domain size can be largely attributed to the competition
between dipolar interactions and the domain line tension γ. This
selection is analogous to the pattern selection, as discussed in
the previous two sections. For example, we show in Figure 3
the domain structure of an alkyl lipid forming a Langmuir
monolayer22 and in Figure 4a the fluoro-alkylated lipids where
most of the alkyl groups are replaced by fluorinated ones. Due
to the large dipole associated with the CF3 chain extremity, the
domain size of the fluorinated lipids is much smaller than that
of hydrogenated lipids.

We mention one set of experiments that indicate that the
observed patterns are due to an equilibrium q mode selection,

as we have discussed. In a Langmuir monolayer formed by the
phospholipid DPPC,20 liquid-crystalline domains are seen. They
take the shape of a network of elongated stripe-like structures
embedded in a liquid-like background. It is known that
cholesterol preferentially adsorbs to the domain perimeter and
reduces the line tension γ between the domains and their liquid-
like background.20 Indeed, when cholesterol was added to the
DPPC monolayer, the system quickly reduced the domain width
to another characteristic width. This experimental observation
is in accord with the theoretical prediction, eq 6, where a
reduction in γ strongly reduced the size of d*. The effect of
cholesterol was also studied for fluorinated lipids in ref 22.
Addition of a small amount of 0.1 mol% of cholesterol thins
the fluoro-alkylated stripes by a large factor, as can be seen in
Figure 4b.

Some of the problems in understanding the thermodynamics
of Langmuir monolayers are related to their slow kinetics. In
some cases, it is not clear whether the system reached its
equilibrium state or was trapped in a long-lived metastable one.
Thus, although dipoles play an important role in determining
domain size and morphology, their precise role is not fully
understood.

V. Block Copolymers

We depart from 2D systems and consider now extensions to
3D modulations occurring in block copolymers (BCP). These
are polymeric systems in which each polymer chain is composed
of several homogeneous blocks. Block copolymers exhibit a
fascinating variety of self-assembled nanoscale structures with
various types of chain organization. We focus only on the
simplest, linear A-B diblock chain architecture, in which a
homogeneous and long polymer chain of type A is covalently
bonded with a B chain.13,14,23-26 Composite materials made by
mixing two or more different types of polymers are often
incompatible and undergo phase separation. Such macrophase
separation is hindered in BCP systems due to the chain
connectivity.

By properly choosing the polymer blocks, it is possible to
design novel composite materials made of BCP chains with
desired mechanical, optical, electrical, and thermodynamical
properties.13 For example, by joining together a stiff (rod-like)
block with a flexible (coil) block, one can obtain a material
that is rigid but not brittle. Moreover, the interplay between
flexibility and toughness can be controlled by temperature. More
recently, BCPs are being explored in applications such as
photonic band-gap materials, dielectric mirrors, templates for
nanofabrications, and in other optoelectronic devices.27,28

Liquid melts of block copolymers or BCP-solvent liquid
mixtures form spatially modulated phases in some temperature
range. As an example, we show in Figure 5 the multitude of
modulated phases in the well-studied polystyrene-polyisoprene
(PS-PI) block copolymer system.29 The two important param-
eters that determine the phase diagram of the figure are the mole
fraction of one of the two components, fA, and the product of
two parameters, N�AB, where N ) NA + NB is the BCP chain
degree of polymerization (total number of monomers) and �AB

∼ T-1 is the Flory constant. The latter is a dimensionless
parameter representing the ratio of the energy of interaction to
the thermal energy kBT and quantifies the relative interaction
between the A and B monomers. Typical values of �AB are small
compared to unity (about �AB = 0.1 for styrene-isoprene).

At high temperatures (low value of N�AB), the BCP melt is
in a disordered liquid state in which the different chains show
no particular organization. As the temperature is reduced below

Figure 3. Fluorescence microscopy of alkyl lipid monolayers at
T ) 20 °C and area per molecule of 60Å2 showing 2D gas-liquid
coexistence. The outer circle has a diameter of ∼240 µm. Adapted
from ref 22.

Figure 4. (a) Partially fluoro-alkylated lipid monolayers at the same
temperature and with an area per molecule of 97Å2 showing stripe-
like domains with a stripe thickness of around 5-8 µm. (b) Same setup
as that in (a) but with the addition of 0.1 mol% of cholesterol. A
noticeable thinning of the stripe is seen to about ∼1-3 µm. The outer
circle has a diameter of ∼240 µm in both figure parts. Adapted from
ref 22.
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some critical value (N�c ≈ 10.5 in Figure 5), the partial
incompatibility between the A and B blocks causes a microphase
separation into one of several modulated phases. These so-called
mesophases have spatial modulation in the 10-100 nm range
and can have several symmetries. Figure 5 shows the lamellar
(LAM), hexagonal (HEX), body-centered cubic (of group
symmetry Im3jm) and bicontinuous gyroid (of group symmetry
Ia3jd) phases, as well as a perforated lamellar phase (HPL) that
is believed to be a long-lived metastable state but not a true,
thermodynamic stable phase.

A. Modulated Periodicity in BCP. How can we understand
the self-assembly and stability of various BCP modulated phases
with definite periodicity? While sophisticated theories24,30-37

quite successfully reproduce complex phase diagrams such as
Figure 5, we present here a qualitative and heuristic explana-
tion.23 Consider a symmetric diblock copolymer (fA ) NA/N )

0.5) whose structure is that of a lamellar stack as depicted in
Figure 6. The unidirectional periodicity d is taken as a parameter,
and its value will be determined later. We also assume that the
two blocks have the same monomer size, a. If the A and B
chains were not connected, the coarsening that usually occurs
during phase separation would result in a macrophase separation
(theoretically with d f ∞). However, as the BCP periodicity d
increases, the A-B chains start to stretch and lose entropy. The
competition between coarsening and chain entropy results in a
preferred domain size d; this is a characteristic of all BCP
systems.

For a lamellar phase with fA ) 0.5, the free energy per
copolymer chain can be written as a sum of two terms

The first term expresses the entropy cost of stretching an ideal
chain (similar to a Gaussian random walk) of N monomers to
span half of the lamellar period, d/2, from its unperturbed size
aN1/2. The second term is the interfacial energy per chain where
σ ∼ �AB

1/2 is the surface tension (in units of energy per area), and
Σ is the area per chain at the A/B interface. Because we consider
a diblock polymer melt (i.e., with no solvent), the system is
assumed to be incompressible; the volume occupied by each
chain is fixed, Vchain ) Na3 ) Σd/2, where a3 is the volume of
one monomer. Substituting the incompressibility condition, Σ
∼ d-1, into eq 9, the chain free energy is minimized with respect
to the lamellar thickness d, whose optimal value is

where we used the simple scaling dependence of σ on �AB.
Hence, from a simple free-energy minimization, we find that
the lamellae have a preferred periodicity d0 ∼ N2/3 that scales
as the two-thirds power of the BCP molecular weight; this
should be compared with the unperturbed size ∼N1/2. Hence,
this means that the BCP chains in a lamellar phase are highly
stretched due to their partial incompatibility. The prediction of
novel structures using a simple free-energy minimization subject
to structural and composition constraints is an essential element
behind the more refined theories24 and is characteristic of all
BCP systems.

B. Orientation of Anisotropic Phases by an Electric Field.
As noted previously, block copolymers form heterogeneous
composite materials. Since most polymers are nonconducting
dielectrics, a modulated phase of BCP is a heterogeneous
dielectric, with a spatially varying dielectric constant that
depends on the dielectric constants of the two blocks, εA and
εB. When an anisotropic BCP phase (such as a lamellar stack
or a hexagonal arrangement of cylinders) is placed in a strong
enough external electric field E, the most apparent effect is an
orientation of the BCP domains in the direction of the external
field.38-48 The term in the free energy accounting for this effect
is proportional to (εA - εB)2E2. In coarse-grained models of
BCP melts, only the local relative A/B concentration is retained.
It is represented by a continuous composition variable, φ(r),
that varies between 0 (pure B) and 1 (pure A). The dielectric
constant can be taken as a linear interpolation of the local
composition φ, ε(r) ) φ(r)εA + (1 - φ(r))εB, and its spatial
average is 〈ε〉 )fAεA + (1 - fA)εB. In the weak segregation

Figure 5. N�AB versus fPI phase diagram for PI-PS diblock copoly-
mers, where fPI is the mole fraction of the isoprene block. The dash-dot
curve is the mean-field prediction for the instability of the disordered
phase. Solid curves are experimental ones and have been drawn to
delineate the different phases observed but might not correspond to
precise phase boundaries. Five different ordered microstructures (shown
schematically) have been observed for this chemical system. Adapted
from ref 29.

Figure 6. Schematic representation of a symmetric lamellar phase of
di-BCP (fA ) 0.5). The periodicity d0 is twice the thickness of each of
the A and B lamellae.

fchain ) kBT
3(d/2)2

2Na2
+ σΣ (9)

d0 = 1.39(γABσa2

kBT )1/3

aN2/3 ∼ �AB
1/6N2/3 (10)
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limit (�AB ≈ �c), the electrostatic energy per unit volume was
shown by Amundson and Helfand39 to have the form

where the sum is taken over all Fourier modes, φ(r) )
∑qφq cos(q · r). Minimizing the sum of the electrostatic energy,
eq 11, and the nonelectrostatic BCP free energy produces an
orientation transition38 shown in Figure 7. At a large enough E
field, there is a first-order transition to a lamellar phase that is
oriented in the direction parallel to the E field (the y axis in the
figure). The modulations seen in Figure 7b are typical of the
weak segregation limit and disappear for larger E fields. In other
works, such electric field orientation was also reported for
cylindrical phases.48,49

C. Phase Transitions Induced by Electric Fields. It is well-
known that a drop of highly permeable ferrofluid placed in a
strong magnetic field elongates into a prolate ellipsoid and then,
via a first-order phase transition, sharply transforms into a
needle-like drop.3 This transition also occurs for charged or
dipolar liquid drops.

Quite recently, a similar phenomenon was observed and
modeled in bulk BCP systems.50-53 The starting point is a cubic
(bcc) phase of isolated spherical drops rich in one of the blocks
(say A), embedded in a background of the other component
(B). As can be seen in Figure 8, this situation occurs for
asymmetric BCP (fA * 0.5). When such a cubic phase of spheres
(bcc) is placed in an external E field, each of the spheres
elongates in the same (111) direction of the E field (Figure 8a).
As the value of the E field increases above a critical value Ec,
the distorted cubic phase undergoes a first-order phase transition
to a hexagonal phase of cylinders pointing also along the same
E field direction, Figure 8b.

Using two different computational techniques,52 the full phase
diagram in the parameter space of fA, �AB, and E can be
calculated with semiquantitative agreement between the two
methods. The resulting phase diagram for a fixed value of fA )
0.3 is shown in Figure 9. The distorted cubic phase has an R3jm
group symmetry and undergoes a phase transition to a hexagonal
phase (hex) or a completely disorder phase (dis) depending on
the initial value of the Flory constant, �AB. Although the full
phase diagram has not yet been measured, some of the
observations agree with the model presented here for the
PS-PMMA (polystyrene-polymethylmethacrylate) system.50

We end this section by mentioning that mobile ionic impurities
can have an important effect on the phase transitions and
alignment of modulated BCP phases. This is an active field of
current investigations.51,54

VI. Ferrofluids and Their Composites

This section pertains to the magnetic fluids termed ferrofluids,
suspensions of single-domain magnetic particles in a liquid
carrier that are ultrastable against settling.3 The prototypical
ferrofluid is made up of magnetite (Fe3O4) colloidal particles
having a mean size (diameter) of 10 nm, coated with a 2 nm
monolayer of oleic acid, and suspended in a hydrocarbon carrier
fluid such as kerosene. Many surfactants in addition to oleic
acid are known to produce stable ferrofluids in a wide variety
of liquid carriers such as other hydrocarbons, aromatics, esters,
alcohols, fluorocarbon, and water carriers. The particles are in
rapid thermal or Brownian motion that prevents them from
settling under gravity. Concomitantly, the particles collide with
each other, and the coating prevents the particles from ag-

Figure 7. Calculated contour plots of a symmetric BCP lamellar phase
between two planar electrodes and under an external electric field. The
electrode surfaces are at y ) (2d0, and the field is in the y direction.
The B monomers (colored black) are attracted to both surfaces. (a)
For an E field slightly smaller than the critical field, E ) 0.98Ec, the
film exhibits a perfect parallel ordering. (b) For an E field just above
the threshold, E ) 1.02Ec, the film morphology is a superposition of
parallel and perpendicular lamellae. Adapted from ref 38.

(εA - εB)2
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Figure 8. Contour plots of a BCP phase in an electric field with fA )
0.37 and N�AB ) 12. At zero E field, the stable phase is a cubic phase
(bcc) (not drawn). (a) For E ) 0.98Ec, just 2% below the critical field
and oriented along the (111) direction of the lattice, each of the spheres
deforms into a prolate ellipsoid, and the bcc phase changes continuously
into a phase with an R3jm space group symmetry. (b) For E ) 1.02Ec,
just 2% above the critical field, the system undergoes a first-order phase
transition into a hexagonal array of cylinders, also pointing along the
E field direction. Adapted from ref 51.

Figure 9. Phase diagram of block copolymers in an electric field, in
the plane defined by the Flory constant �AB, and the normalized electric
field Ê0 for fA ) 0.3. The distorted bcc phase, denoted by its space
group symmetry as R3jm, is bounded by the hexagonal (hex) and
disordered (dis) phases and terminates at a triple point where all three
phases coexist. The solid line is the prediction of an analytical one-
mode approximation, whereas the dashed lines are obtained by a more
accurate, self-consistent numerical study. The axes are scaled by (�t, Et),
which are the values of �AB and Ê0 at the triple point. Adapted from
ref 52.
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glomerating together and settling out. The particles are said to
be sterically stabilized. Another class of water-based ferrofluids
are ionically stabilized with electric double layers.55

A ferrofluid worthy of the name is free of the chaining that
results from the magnetic attraction and adherence of magnetic
particles to each other with an energy that exceeds that of
thermal displacements. Chaining is a topic in which there is
much confusion in the literature. Using the typical colloidal
particle size of 10 nm and the magnetization of the usual
magnetic particle magnetite, the mean number of particles in a
chain computed from the de Gennes and Pincus theory56 is 1.36
in a strong H field and 1.26 in zero field. Thus, the particles are
essentially monodispersed. In simulations, the ferromagnetic
particles are invariably taken to be larger and/or with stronger
magnetic dipoles, resulting in particle chaining. The particle size
does not have to be much larger than 10 nm before chaining
becomes a practical problem in ferrofluids; at 13 nm, chains of
magnetite are predicted to be infinite in length. The much larger
(micrometers diameter) particles of a magnetorheological (MR)
fluid chain easily, which is the basis for their entirely different
applications.57-59

Ferrofluids based on elemental ferromagnetic particles of iron,
nickel, cobalt, and their alloys oxidize after days of contact with
the atmosphere and are not suitable for long-term use, except
in sealed systems. However, other magnetic solids such as
maghemite (Fe2O3) and mixed metal ferrites yield ferrofluids
that are long-term stable against oxidation in contact with the
atmosphere.

Due to the nanometer size colloidal particles, thermal
fluctuations are a governing influence in the behavior of
ferrofluids. Accordingly, statistical mechanical analysis permits
computation of the magnetization law and other physical
properties. This stands in contrast, for example, to the behavior
of magnetorheological fluids containing particles in the micron
size range which aggregate together when subjected to an
applied magnetic field and require mechanical force to become
redispersed. Flow of magnetic fluid in a magnetic field is subject
to polarization force and constitutes a discipline in itself
(ferrohydrodynamics), comparable to but distinct from magne-
tohydrodynamics, that is, the flow of conductive, nonmagnetic
fluid (such as molten metals) in the presence of magnetic fields.
An introduction to the science with an extensive treatment of
the effects of flow fields is found in the monograph of
Rosensweig.3a

Figure 10 is a schematic illustration of six types of fluid
systems containing magnetic particles. Four out of the six, (a),
(b), (c), and (e), include ferrofluid as a component. Black
particles indicate single-domain magnetic particles having size
on the order of 10 nm, typical of particles in a stable ferrofluid,
that is, one which remains free of chaining of particles whether
subjected to an applied magnetic field or not. Gray denotes
multidomain magnetic particles, and white denotes particles that
are nonmagnetic. Modulations (e.g., formation of particle chains)
can take place when the composites are subjected to an applied
magnetic field. A discussion of systems (d) and (f) can be found
in ref 3c.

A. Modulation of Ferrofluid Interfaces. Ferrofluids exhibit
a number of unique interfacial instabilities. These are phenomena
occurring in ferrofluids of uniform temperature and colloidal
composition. The number density of particles is on the order of
1023 per cubic meter (Avogadro number); hence, the ferrofluid
can be considered a continuum for most purposes. The modula-
tions can be grouped into categories. Except where cited, the
phenomena listed below are discussed in detail in ref 3a.

Cases when a uniform, steady, magnetic field is applied to
motionless ferrofluid include (i) the normal-field instability, (ii)
prevention of Rayleigh-Taylor instability, (iii) stabilization of
a fluid column, (iv) droplet shape modulation, and (v) labyrin-
thine patterning. Cases with uniform, steady, magnetic field
applied to ferrofluid in motion include (i) modulation of
Kelvin-Helmholtz instability and (ii) modulation of Saffman-
Taylor instability. In another category, we mention modulations
in a time-varying magnetic field.60,76

Additional modulations occur in ferrofluids supporting a
temperature gradient when the magnetization is temperature-
dependent. Studied cases include (i) convection of a plane layer
in uniform applied magnetic field, (ii) convection of a plane
layer in a constant magnetic field gradient, and (iii) convection
in a spherical system with a radial magnetic field gradient.61

The above is not an exhaustive list as systems can be rotated,
the concentration can be nonuniform, various instabilities can
be combined, and so forth. In addition, in all of the systems
listed, the magnetization is equilibrated and hence is collinear
with the applied field. In comparison, in systems where the
ferrofluid is subjected to rapid change in direction and magnitude
of the applied field, the magnetization lags the field, which
excites additional forces. Modulation in this latter category is
virtually unexplored.

Most studied is the normal-field Rosensweig instability; see
Figure 11. Accordingly, after a brief introduction, we highlight
a selection of related works, many of which are concerned with
nonlinear aspects of this patterning phenomenon.

B. Normal-Field Instability. This is the first instability of
a ferrofluid to be observed; it is striking, and it is the best known.
Peaks form in a patterned array on the free surface of a pool of
ferrofluid exposed to a uniform, vertically oriented magnetic
field. This pattern persists under static conditions, in contrast
to patterns such as Bénard cells produced in dissipative systems
far from equilibrium.

The ferrofluid pattern is sustained as a conservative system,
that is, in the absence of energy input or dissipation. The
patterning can only onset in a ferrofluid having a magnetization

Figure 10. Classification of particle suspensions in a fluid carrier prior
to modulation by an applied magnetic field. (a) Nanometer single-
domain magnetic particles in a nonmagnetic carrier; (b) nonmagnetic
micrometer size range particles in a matrix of ferrofluid; (c) nonmagnetic
millimeter particles in ferrofluid; (d) multidomain magnetic particles
in nonmagnetic carrier fluid; (e) multidomain magnetic particles in
ferrofluid; (f) multidomain magnetic particles suspended in a flowing
stream of gas or liquid. MR denotes magnetorheological. MSB denotes
magnetically stabilized (fluidized) bed. Particles indicate the ordering
of sizes only.

Modulated Phases J. Phys. Chem. B, Vol. 113, No. 12, 2009 3791



that exceeds a critical value and was never seen until a ferrofluid
having a sufficiently high magnetization was synthesized.63 The
instability in its pristine form is realized in a horizontal pool of
ferrofluid subjected to a uniform, vertically oriented magnetic
field. The linear analysis and experimental validation were given
by Cowley and Rosensweig,64 valid for a ferrofluid having
magnetization nonlinearly dependent on the magnetic field H.
The critical magnetization Mc is specified in dimensionless form
by

where µ0 denotes the permeability of vacuum, g the gravitational
constant, ∆Fm the difference in mass densities of fluids across
the interface, σ the interfacial tension, and rp the dimensionless
permeability ratio

For the nonlinear medium, the parameter rp depends on two
permeabilities at the operating point, the chord permeability µc

)B(H)/H and the tangent permeability µt ) ∂B(H)/∂H. Although
the onset of instability depends crucially on the magnetic field
via the critical magnetization Mc, the spacing between peaks λ
at the onset is independent of the magnetization and is given
by

which is simply the capillary length between the two fluids.
Note that it is the same as the wavelength at onset of ordinary
Rayleigh-Taylor instability.3

It is instructive to indicate the physics of the normal-field
instability in a simple way. The onset of the instability is
governed by two conditions; (i) the undulating surface has the

same energy as the free surface at the point of onset, and (ii)
its energy is minimized at the onset.

The total energy is the sum of surface, gravitational, and
magnetic terms. We will consider the energies associated with
a wave train of sinusoidal form, h(x) ) δ cos(2πx/λ), where λ
is the wavelength and δ is the amplitude of the disturbance,
assumed small.

The surface energy is proportional to the surface area.
Distance along the surface between crests is given by s ≈ λ +
(πδ)2/λ. The length along the unperturbed interface is λ; hence,
the perturbation of surface energy is given by σ(πδ)2/λ, where
σ is the surface tension.

The perturbation of gravitational energy along a wavelength
corresponds to the work done in lifting ferrofluid from the trough
region to the crest region. This is given by the product of the
lifted fluid volume λδ/π with the mass density difference of
the ferrofluid ∆Fm, the distance between the centroids πδ/4, and
the gravitational acceleration g. Thus, the gravitational term is
λFmδ2g/4.

Rigorous formulation of the magnetic energy requires a
separate computation of the magnetic field distribution to
determine the energy density given by difference of the integral
of HdB over the system volume, before and after the perturbation
of the surface form. Magnetic energy density is reduced in a
region occupied by the permeable ferrofluid as the fluid is more
easily magnetized than empty space. Thus, because magnetiza-
tion increases at the peaks of the waveform and decreases at
the troughs, the overall magnetic energy decreases with the
formation of peaks and tends to offset the concomitant increase
in gravitational and surface energies. At a critical value of
magnetization, the sum of the energies changes sign, and
instability onsets.

Here, we assume that the energy term depends on magnetic
permeability of free space µ0, magnetization M, and wave
amplitude δ. From dimensional consideration, the magnetic term
is thus expressed as -Rµ0M2δ2, where R is a proportionality
factor, and the negative sign (see section 3.6 of ref 3a)
corresponds to the reduction in field energy attendant to an
increase of magnetization. Adding the three energy terms and
factoring out δ2 yields

The equality follows from the first governing condition.
Differentiation with respect to λ and rearranging yields the result
of the second governing condition in the form

This is the expression for spacing between the peaks, the same
as that given by eq 14. Note that if λ were introduced along
with or in place of δ in the dimensional analysis, eq 16 would
contain a dependence of λ on δ. This would be wrong because
δ is of arbitrary size. Substituting for λ in the previous equation
yields the relationship for the intensity of magnetization required
for onset to occur.

Comparison with eq 12 shows that π/R ) 2(1 + rp)/rp.

Figure 11. Surface relief of normal-field instability of a ferrofluid
reconstructed from X-ray images. (a) Oblique view. Each layer of a
peak having a given color represents 1 mm of thickness; (b) plane view.
The containing vessel is 12 cm in diameter, and the initial liquid depth
is 3 mm. Adapted from ref 62.
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It is of interest to note that the onset of the normal-field
instability of a ferrofluid bears analogy to the hexagonal patterns
seen by direct observation in the transition of type-II super-
conductors.65

In an incisive study, Gailitis,66 using an energy method to
investigate nonlinear aspects of the patterning, showed that the
instability is subcritical, that is, onset could occur at a lower
value of applied field provided the disturbance is sufficiently
large, while at the critical point, the onset is hard, that is, the
surface deformation onsets as a jump rather than in a continuous
manner. In addition, the prediction was made that the pattern,
which onsets as a hexagonal array, can transform to a square
array at higher applied magnetic field and that both transitions
exhibit hysteresis. Some doubt remains, however, as the analyses
are restricted to small values of the relative permeability.
Subsequently, however, numerical analysis67 using the Galerkin
finite element method confirmed the subcritical character of the
instability and correctly predicted experimentally measured
heights of the peaks, while conditions for the transition from
hexagons to squares was studied by Abou et al.68 The sketch of
Figure 12 illustrates the predictions of Gailitis.

More recently, interesting work has focused on the question
of the shape and size of the peaks under various conditions.
The most successful experimental results are obtained using the
attenuation of X-rays directed vertically through the pool of
ferrofluid.62 In Figure 11, which displays the usual array of peaks
over the entire surface, each color indicates a layer thickness
of 1 mm. This technique was applied69 to study the surface shape
generated by a local perturbation in the first subcritical hysteretic
regime of the instability. This is the regime identified as
1-2-3-8-1 in Figure 12. The perturbation is generated on a
flat area of the fluid surface using a pulse of field from a small
air coil placed below the center of the vessel. A single pulse
produced a single peak of the hysteretic regime, and additional
pulses generated additional peaks. A remarkable fact is that the
peaks remain present after the pulse field is removed. The peaks
are termed solitons by these authors (although solitons are
generally understood to refer to nonlinear traveling waves that
can pass through others with no loss of form). These soliton
peaks self-organize into molecule-like clusters of 2, 3, 4, 5, 6,
and more peaks in symmetric arrays. Figure 13 illustrates a
pattern of nine solitons.

Figure 14 illustrates the distribution of the magnetic field and
the cusped shape of a peak in a hexagonal array in the normal-
field instability as determined by a numerical computation. The
concentration of the field and attendant increase in the normal
stress difference across the interface is mainly responsible for
the formation of the peaks.

Petrelis et al.70 experimentally demonstrated the parametric
stabilization of the normal-field instability of a ferrofluid using
vertical vibrations of the fluid container. The measurements were
in good agreement with an analytical model.

C. Labyrinthine Instability in Polarized Fluids. Labyrin-
thine instability of a ferrofluid shown previously in Figure 1c
is shown again in Figure 15a alongside its dielectric dual in
Figure 15b. The ferrofluid is contained between closely spaced
horizontal glass plates (Hele-Shaw cell) together with an
immiscible nonmagnetic fluid that preferentially wets the glass
allowing a clear view of the pattern. A magnetic field is applied
normal to the cell faces producing a pattern of stripes. The
system is governed by the interaction between magnetic dipolar
and interfacial energies.4 Because thinner stripes have a fixed

Figure 12. Schematic illustration of transformations in the normal-
field instability according to Gailitis.66 Field intensities from 1 to 2 are
in the subcritical range; 2 is the onset field predicted by linear analysis;
2 to 3 represents the hard transition to the hexagonal array of peaks; 4
to 5 depicts transition to a square array. Two regions of hysteresis can
be seen on the curves. In decreasing field, 8 is known as the turning
point. Adapted from ref 3.

Figure 13. Nine solitons (solitary structures), each generated by a
transient, local pulse of magnetic field applied in the subcritical range
1-2 of Figure 12. Peaks along the rim of the container are an artifact
due to the curved surface of the meniscus. The containing vessel is 12
cm in diameter, and the liquid depth is 3 mm. Adapted from ref 69.

Figure 14. Finite element computation of the ferrofluid peak shape in
the range 3-4 of Figure 12 using µ/µ0 ) 30. Adapted from ref 71.

Figure 15. (a) The magnetic field applied to the ferrofluid and (b) the
electric field applied to the dielectric oil yield labyrinthine patterning.
Photos are 7 cm2. Adapted from ref 4.
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extent between the cell faces, they possess a smaller demag-
netizing field, resulting in a higher magnetization and a further
reduction in magnetic energy. Concomitantly, the thinner stripes
present a larger interfacial area and, hence, a larger interfacial
energy, which limits formation of ever thinner stripes.

Dielectric fluids are polarizable just as ferrofluids are
magnetizable, and their response to applied electric fields,
provided that free charge is absent, is analogous mathematically
and physically to the response and patterning of the ferrofluids.
Although the high intensity of the requisite applied electric field
tends to be difficult to achieve, a successful implementation is
shown in Figure 15b using lubricating oil (dark) paired with
castor oil (transparent) in a specially insulated Hele-Shaw cell.
An applied electric field of frequency 500 Hz ensured the
absence of free charge, while the insulation ensured similarity
of field boundary conditions at the interface between the fluids
and the electrodes.

It should be noted that just as the magnetic garnet stripes in
Figure 1a are analogous to the ferrofluid stripes in Figure 15a,
the stripe domains of the dipolar Langmuir monolayer shown
in Figure 4a are closely analogous to the dielectric labyrinth
seen in Figure 15b. As implied previously, the magnetic systems
are dual to the electric systems.

Figure 16 illustrates stages of the onset of a related phenom-
enon when only a small amount of ferrofluid (a drop) is put
into the cell. Numerical analysis has been successful in
producing realistic simulations. In one approach, the dipolar
energy of the system is formulated as a function of its
boundary.73 Another approach writes the free energy in terms
of particle concentration expressed as a Ginzburg-Landau
expansion similar to eq 1 and combines these terms with a
formulation expressing the surface energy.74 The latter study
predicts a further transformation of the labyrinthine pattern into
a bubble array when a rotating in-plane magnetic field is

superposed on the steady, perpendicular magnetic field. Different
patterns are formed depending on which field is applied first.60

In a vertically oriented cell, the two fluids form one layer
over the other due to their difference in mass density, with the
ferrofluid on the bottom when it is the denser. The flat interface
between the fluids undergoes a transition that, in addition,
depends on gravitational energy.3,63 A linearized theory predicts
the onset condition,72 and the same authors present experimental
photographs of the early onset terming the behavior “comb”
instability. The highly convoluted labyrinthine patterns generated
in a vertical cell subjected to higher applied fields are shown in
ref 63.

A model stripe system is depicted in Figure 17. Two glass
plates with a spacing of t in the z direction (Hele-Shaw cell)
bound an immiscible mixture of a ferrofluid and another
nonmagnetic fluid. In the model, the two fluids are assumed to
form a periodic pattern of infinitely long and straight stripes.
The ferrofluid stripes have a width of wf in the x direction, while
the nonmagnetic ones are of width wl. The total energy per cycle
is a sum of magnetic and fluid interfacial energies, U ) Um +
Uσ, where the interfacial energy Uσ ) 2σt depends on the
interfacial tension σ and the magnetic energy is given by

Thus, the energy per unit length along the interfacial direction
is given by U/(wf + wl).

The problem reduces to calculating the magnetization M )
�H ) �H0/(1 + �D) inside of the magnetic stripes of finite cross
section, where � is susceptibility and D ) (H0 - H)/M is the
demagnetization coefficient. In this system with putative
spatially uniform magnetization, the volume density of poles
disappears, and only surface poles remain. The demagnetization
field of the surface poles is then computed from integration of
the Coulomb expression for an infinitely long stripe,
-M sin θ dx/2πs, where s ) [x2 + (t/2)2]1/2 is distance from
the pole, x is the in-plane distance coordinate, and θ is angle
subtended between s and the x coordinate (see Figure 17).

The integration generates an infinite series of terms due to
contributions from opposite poles of all of the stripes. Mini-
mization of the total energy per unit length yields the governing
expression for normalized stripe width W )wf/t

and the magnetic Bond number, NB0
) µ0H0

2t/2σ, introduced
above in section II is the ratio of the magnetostatic energy to
the interfacial energy. Computation shows that the stripe width
decreases with increasing applied magnetic field H0 and
susceptibility �.

Experiments in which wall spacing and applied field were
systematically varied yielded stripe thicknesses in reasonable
agreement with theory over a three decade range of the magnetic
Bond number.

Figure 18 illustrates the influence of the container geometry
on the patterning of labyrinthine instability.75 The comb pattern
that develops in the Hele-Shaw cell is replaced by the spiraling
finger of the fluid.

The normal-field instability sets a limit on certain applications
where it is desired that the ferrofluid maintain a smooth surface.

Figure 16. Experimental transition of a circular cylindrical drop of
ferrofluid in response to increasing magnetic field. Adapted from ref
72.

Figure 17. The labyrinth (see Figure 1c) modeled as a periodic system
of infinitely long and parallel stripes in the x direction, alternating
between ferrofluid stripes with permeability µ, magnetization M, and
width wf, and nonmagnetic fluid stripes of width wl and permeability
µ0. The system has a thickness t in the z direction, which coincides
with the direction of the applied field H0. The interfacial tension between
the two fluids is σ.
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An illustrative example is the use of ferrofluid to produce
inexpensive and versatile mirrors for astronomical optics and
other uses.77 The application has been intensely studied and
found to be feasible. A reflective colloidal film of silver particles
is spread on a ferrofluid and forms a mirror surface. The surface
can be shaped by the application of a magnetic field to yield
adaptive mirrors. Local regions of the surface can be shaped in
real time by application of magnetic fields to yield adaptive
mirrors that compensate for atmospheric disturbances of refrac-
tive index that, otherwise, cause twinkling of stars and reduction
of the resolution of images. The shape can be rapidly varied in
time with surface vertical displacements ranging from nanom-
eters to several millimeters. Magnetization of the ferrofluid must
be kept within limits to avoid the formation of peaks.

Beneficial use of peak formation is studied in a novel
approach78 to electrospinning of polymer nanofibers. A two-
layered system is employed with the lower layer being a
ferromagnetic suspension and the upper layer a polymer solution.
Vertical peaks perturb the interfaces so that when, in addition,
an electrical voltage is applied, the perturbations of the free
surface are drawn out as in ordinary electrospinning. As the
desired result, the production rate of fiber is higher.

D. Phase Transitions in Ferrofluids. A phase transition of
the gas-liquid type has been observed by a number of
investigators in sterically stabilized ferrofluid.79-81 Upon ap-
plying an external magnetic field of critical intensity to a thin
layer of the ferrofluid, highly elongated droplets of a concen-
trated phase of ferromagnetic colloid are formed, having a
clearly formed interface separating the drops from a surrounding
dilute ferrofluid phase; see Figure 19. When the applied field is
removed, the elongated drops are unstable under interfacial
tension and break up into smaller spherical drops that diffuse
into the surroundings. Instability can also be initiated by adding
a less compatible solvent to the ferrofluid. Ionically stabilized
ferrofluids undergo phase separation when electrolyte concentra-
tion is altered.83

This modulational behavior differs in character from our other
examples as magnetic particles transfer from one phase to the
other, thus changing the concentration in these regions. The
phenomenon is rich with magnetochemical content, but a full
discussion is outside the scope of this overview.

E. Modulation of Embedded Objects. Modulation of
embedded objects in a ferrofluid has multiple interests: as a
model for two-dimensional melting of solids, for producing
periodic structures of large molecules for analysis by scattering

of waves, for self-organized manufacturing of microscopic
arrays, and so forth.

To a first approximation, when a spherical nonmagnetic
particle is dispersed in a magnetized ferrofluid, the void
produced by the particle possesses an effective magnetic
moment, m, equal in size but opposite in direction to the
magnetic moment of the displaced fluid, that is, m ) -µ0V�H,
where V is volume of the sphere, � is the effective volume
susceptibility of the ferrofluid, and H is the magnetic field. For
relatively low fields (µ0H < 0.01 T), � is approximately constant,
and m increases linearly with H. The interaction energy between
two spheres with a center-to-center separation distance of rd is
given by the dipolar relationship

θ is the angle between the line connecting the centers of the
spheres and the direction of the field. A thermodynamic system
is obtained by using sufficiently small spheres (of diameter d <
2 µm) having Brownian motion. The controlling parameter
determining structural modulation is the ratio between the
dipolar energy and the thermal energy. From eq 20, using the
magnitude of U with θ ) 0, rd )d, and ignoring a constant
factor

Figure 18. Spiral interfacial instability resulting from the tangential
field applied to a column of ferrofluid in a capillary tube.75 The magnetic
field increases from left to right. Note the rupture of continuity at the
highest field.

Figure 19. (a) Droplets in a thin layer with field oriented normal to
the layer of a kerosene-based sterically stabilized ferrofluid. (b)
Elongated droplets induced by a 12.7 kA m-1 magnetic field oriented
tangential to the layer. (c) Breakup into spherical droplets ∼0.8 s after
removal of the field permits estimation of interfacial tension, ∼8.1 ×
10- 4 mN m-1, based on viscous dominated instability;82 the droplets
subsequently diffuse into the surrounding continuous phase. Parts (b)
and (c) are adapted from ref 81. Part (a), not previously published, is
taken from a video recording.

U ) m2(1 - 3 cos2 θ)

4πµ0rd
3

(20)
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A monolayer of equal size nonmagnetic spheres immersed
in a thin layer of magnetic fluid yields an intriguing model
exhibiting phase change properties of melting.84 This analogue
model utilizes micrometer-size polystyrene spheres that exhibit
Brownian motion and can be viewed under a microscope as
depicted in Figure 20a. Figure 20b shows that crystalline
ordering of the spheres results from the application of a magnetic
field oriented perpendicular to the layer. Each sphere is a hole
in the magnetic fluid and acts as a magnetic dipole of reverse
polarity repelled from its neighbors. Varying the field in this
system changes the value of m and, hence, that of the ratio in
eq 21 and can be considered as an adjustment of temperature
in a molecular system. Thus, for example, melting or return to
randomness is observed if the field is reduced. The system has
been suggested for testing theories of two-dimensional melting
via the vortex unbinding mechanism.15 Shown in Figure 20c is
the chain formation that results from a tangential orientation of
the field. In this configuration, the spheres attract each other.

Ordering of dilute suspensions of macromolecules is attain-
able in magnetized ferrofluids for assemblies that are not
amenable to conventional alignment techniques. Using this
technique to obtain neutron diffraction patterns permits study
of the internal structure of macromolecules such as the tobacco
mosaic virus (TMV) and tobacco rattle virus (TRV).85 TMV is
a hollow cylindrical assembly of length 300 nm, external
diameter 18 nm, and internal diameter 4 nm. Similarly, TRV is
23 nm in diameter, 5 nm in internal diameter, and shorter than
TRV. TMV and TRV both align when dispersed in a ferrofluid
and subjected to a modest level of magnetic field. The ability
of the method to work with low concentrations makes the
method of particular interest for aligning biological materials
such as chromatin, which are not easily obtainable in quantity.

VII. Patterning Overview

The patterns discussed in this paper have in common that
they are generated as the result of a competition between
disparate physical influences. Here, we briefly categorize the
influences responsible for the modulations in the various cases.
Although other interesting patterns exist in dynamical systems,
we restrict ourselves to systems in thermodynamic equilibrium
where the state (and hence the specific pattern) is determined
by free-energy minimization.

The physical influences are energetics of charge exchange,
magnetic or electric dipolar interaction, interfacial energy,
geometric constraint, and entropic effects, see Figure 21.
Patterning in garnet films results from a competition between
short-range energetics due to charge exchange (of quantum
mechanical origin) and long-range dipolar interaction with the
resultant scale of patterning in the micron range. The combina-
tion of interfacial energy, which is short-range and of chemical
origin, with dipolar long-range energetics gives rise to the
patterning of Langmuir monolayers having scale in the micron
range and the patterns in the millimeter range of the ferrofluid
and dielectric fluids labyrinths, as well as the centimeter scale
patterning in the normal-field instability. Block copolymer
patterning arises from the interaction of interfacial and entropic
influences with a length scale in the submicron range, while in
ferrofluids, entropic and dipolar influences interact to produce
phase change with a structure in the micron range. Finally, in
the case of the ferrofluid composites, the lateral scale of the

chains, typically in the micron range, is determined by the size
of the nonmagnetic particles of the mixture under the influence
of dipolar energetics.

The various systems with their competing interactions are
schematically illustrated in Figure 21. Again the particular
coupling of interactions determines the characteristic length scale
of the resultant patterns which range in size from the atomic to
beyond the millimeter in scale. The patterning in most of these
systems is essentially two-dimensional, and this is largely due
to a geometrical setup that imposes a spatial constraint. As there
are only a limited number of simple geometric patterns, it is
not surprising that similar ones are generated at the different
length scales. In block copolymer systems, more complex three-
dimensional ordered patterns (such as gyroid and cubic phases)
have been observed and analyzed, as was seen in Figure 5.

Hierarchical behavior arises in these systems. As an example,
the magnetic particles of a ferrofluid are small enough that each
of them represents a single ferromagnetic domain, as determined

Dipolar energy
Thermal energy

)
m2/µ0d

3

kBT
(21)

Figure 20. (a) A side view of a single layer of nonmagnetic,
micrometer-size spheres immersed in ferrofluid. (b) The layer organizes
into a hexagonal lattice when the field is oriented normal to the layer
and (c) into chains when the field is tangential to the layer. A uniform
volumetric magnetization is equivalent to a distribution of poles on
the surface of the spheres. These poles confer strong diamagnetic
character to the spheres. Adapted from ref 84.

Figure 21. A classification of modulated equilibrium systems. Circled
parameters represent physical influences. Solid bonds indicate couplings
and the resultant patterns. Dashed bonds indicate possibly undiscovered
couplings.

3796 J. Phys. Chem. B, Vol. 113, No. 12, 2009 Andelman and Rosensweig



by charge exchange in competition with a magnetic dipolar
influence. However, the patterning of the entire ferrofluid is
independent of the micromagnetics of the particles. Instead, it
results from the superparamagnetic behavior arising from the
collective behavior of an enormous number of the permanently
magnetized particles.

VIII. Concluding Remarks

We considered modulated phases in a broad context encom-
passing scales ranging from the nano- to the macroscale in
diverse solid-state and liquid materials. In equilibrated systems,
the structure that develops is often due to a competition between
the various energies associated with the structure and yields
interesting visual patterning. We concentrated on systems where
an external electric field or magnetic one has a strong effect on
the system structure, its interfacial properties, and instabilities.
Such well-controlled external fields (together with temperature)
can facilitate fabrication and control of the desired structure and
attributes even on a length scale as small as the nanoscopic
one and offer many challenges for future research and
applications.
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