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Chapter 1

The Phenomenology of Modulated Phases:
From Magnetic Solids and Fluids to
Organic Films and Polymers™

David Andelman

The Raymond and Beverly Sackler School of Physics and Astronomy
Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel

Ronald E. Rosensweig
34 Gloucester Rd., Summit, NJ 07901, USA

This chapter surveys aspects of patternings that occur in a wide array
of physical systems due to interacting combinations of dipolar, interfa-
cial, charge exchange, entropic, and geometric influences. We review
well-established phenomena as a basis for discussion of more recent de-
velopments. While the materials of interest range from bulk inorganic
solids and polymer organic melts to fluid colloids and granular suspen-
sions, we note that often there are unifying principles behind the various
modulated structures, such as the competition between surface or line
tension and dipolar interaction in thermally reversible systems; their
properties can be understood by free-energy minimization. In other
cases, the patterns are determined by dissipative forces. In all these
systems the patterning is modulated by the application of force fields.
Another common feature of these disparate systems is that a phase dia-
gram often emerges as a convenient descriptor. We also mention a num-
ber of interesting technological applications for certain of the systems
under review.

1. Introduction

A large number of diverse physical systems manifest some type of mod-

1

ulation in their structural properties.” Examples of such structures in

*This chapter is dedicated to the memory of Pierre-Gilles de Gennes, 1932-2007, a great
scientist and close friend, who, with his characteristic gleefulness and insight, stimulated
and supported us in our own studies.
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Table 1. Table of Symbols
Symbol  Definition Units
a microscopic length m
B = po(H + M), magnetic induction tesla
d particle diameter m
a* domain size of modulated phase m
do domain size of BCP system m
D demagnetization coefficient dimensionless
E electric field m kg/s3ampere
fp free energy per particle joule
Fa dipolar layer free energy joule
fa mole fraction of the A monomers dimensionless
g acceleration of gravity m/s?
g(r) kernel in Eq. (3) 1/m3
G(q) 2D Fourier transform of g(r) 1/m
g1 linear coefficient in the expansion of G(¢) in Eq. (4)  dimensionless
H magnetic field magnitude ampere/m
kp Boltzmann constant joule/kelvin
m = po MV magnetic moment teslam?
M magnetization ampere/m
M 2D magnetization as in Sec. 3 ampere
My Fourier component of the 2D magnetization ampere m?
n particle number density 1/m3
Na number of monomers of the A block on the chain dimensionless
Np number of monomers of the B block on the chain dimensionless
N = Ny + Np; total length of polymer chain dimensionless
Np, magnetic Bond number dimensionless
P electric polarization ampere s/m?
q wavenumber 1/m
r distance between dipoles m
rq center to center distance between particles m
t sample thickness in the z-direction m
T temperature kelvin
Te critical (Curie) temperature kelvin
14 volume m?3
o = (Onf/0n) g, 1; chemical potential per particle joule
1o permeability of vacuum henry/m
Pm mass density kg/m3
o interfacial tension newton,/m
X magnetic susceptibility dimensionless
XaB Flory constant for polymers dimensionless
€ dielectric constant ampere?s* /m3kg
5 domain wall energy or line tension (in 2D) joule/m
o(r) local volume fraction in an A-B di-block copolymer  dimensionless

tesla=kgs™

2 2

ampere; henry=m?2 kg s~

ampere?; joule=newton m; newton=kgms—

2



Modulated Phases in Nature 3

two-dimensional (2D) systems are elongated stripes and compact droplet-
like domains as can be seen in Fig. 1. In the figure, domains in solid
magnetic systems (garnet films) and in thin layers of ferrofluids (to be
discussed in detail below) are shown side-by-side and exhibit striking simi-
larity. In three dimensional (3D) systems, the domain morphology can be
more complex and includes sheets, tubes, rods and droplets embedded in a
three-dimensional matrix. The similarity between the resulting patterns in
systems of different origins is quite surprising and may allude to a common
unifying mechanism.

An approach we adopt here is to view these systems as a manifestation
of modulated phases, i.e. systems which, due to a competition between dif-
ferent interactions, achieve thermodynamic equilibrium in a state in which

(\\ﬂ \
J/%fé
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(b) (d)

Fig. 1. Domains in magnetic solids and fluids. (a) stripes and (b) bubble phase in
ferromagnetic garnet film of 13 ym thickness grown on (111) face of gadolinium gallium
garnet. Visualization in made using polarized optical microscopy (Faraday effect). Pe-
riod d* ~10 um. Adapted from Ref. 2. (c) Ferrofluid confined between two glass plates
exhibiting labyrinthine instability in a magnetic field.?* The period is d* ~2mm. (d)
Bubble phase of a ferrofluid confined in a cell having a gap that increases from left to
right. The mean bubble size is ~1 mm. Adapted from Ref. 5.
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the appropriate order parameter shows a spatial modulation. Examples are
abundant! and include modulation of the magnetization field of ferromag-
netic slabs®® and ferrofluids,® polarization field in electric dipolar systems
and certain liquid crystalline phases,”'° the superconducting order param-
eter in the intermediate phase of type I superconductors,!' as well as the
relative composition in block copolymer systems.!? 14

Thus, in this chapter we review some of the interesting phenomena
associated with modulated phases. We start by considering a simple ex-
ample explaining the underlying mechanism of wavelength selection in a
quasi two-dimensional dipolar system. We then review domains in related
dipolar organic films on water/air interface (Langmuir monolayers) and
magnetic garnet films. Two other examples of systems of current scientific
interest having many applications are subsequently discussed: magnetic
fluids (ferrofluids) and mesophases in block copolymers. We review how
the competing interactions create interesting new phenomena when these
systems are subjected to an external field (electric, magnetic) and describe
their morphology, structure, phase separation, various instabilities and re-
lated phenomena. In addition, certain systems of granular suspensions are
discussed having structures that are modulated by the application of forces
such as magnetic attraction and viscous drag.

A table of symbols is given at the beginning of this chapter.

2. Domains in Magnetic Solids

5 is an important physical phenomenon associated with

Ferromagnetism!
elements like nickel, iron and cobalt, as well as a large number of metallic
alloys that show spontaneous magnetization M in the absence of exter-
nal applied magnetic field. The reason for a macroscopic magnetization
is deeply rooted in the existence of electronic spin S; associated with an
atom at position ¢, and the strong direct exchange interactions of the type
—JS; - S; where J is the direct exchange integral. It is positive for ferro-
magnetic coupling and is related to the overlap in the charge distribution
of the two neighboring atoms (7,5). The magnetization is temperature de-
pendent. In the absence of an H field, as the temperature T is increased,
the system gradually loses its magnetization, M (T, H=0), until at a special
temperature, T, called the Curie temperature, the spontaneous magnetiza-
tion drops to zero, M=0.

In bulk magnetic systems, the uniform magnetization does not persist
throughout the system but breaks up into spatial domains , each having a
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specific and distinct magnetic orientation. P.-E. Weiss in 1907 first intro-
duced the concept of these magnetic domains.'® Study of the phenomenon
has a long history including the notable analysis of Landau and Lifshitz
in the 1930s'7 [See also Refs. 18,19]. The domain size and its structure
depend on competing interactions inside the magnet: the direct exchange
interaction, the demagnetization fields and the crystal anisotropy. In order
to explain on general grounds why dipolar systems prefer to break into do-
mains of a well-defined size, we use the following simplified model, which
gives the essential features without the need to review all the technical
details.’»'® This model is applied in later sections to explain analogous
features of magnetic garnet and films and dipolar Langmuir layers and is
related to the labyrinthine instability of ferrofluids, as will be discussed
below.

3. Domains in Two-Dimensional Ferromagnetic Layers

Consider a monomolecular layer of atomic dipoles in the (z,y) plane, each
having a magnetic dipole (electronic spin) that can only point along the
perpendicular z—direction. We assume that the spins possess two possible
values: S% = +1/2, related to the two values of the atomic magnetic mo-
ment m = goppS?, where goup is the gyromagnetic factor, ug = ehi/2mec
is the Bohr magneton and gop ~ 2 is the g-factor. The system can be
described using an Ising model with nearest-neighbor-only ferromagnetic
coupling, and the direct exchange interaction between adjacent spins mini-
mized when two neighboring spins point in the same direction. Therefore, at
low enough temperatures the magnetic order will be ferromagnetic; i.e. the
spins prefer to be aligned in the same orientation even in the absence of an
external field.

By treating the Ising monolayer defined above at a coarse-grained level,
we can perform the thermal average; namely, to sum with the proper Boltz-
mann weight factor over the microscopic spin degrees of freedom at finite
temperatures. A local magnetization field for this 2D system, M (r) can be
defined as a continuous function of the 2D position r. Close to the Curie
temperature T, and at zero applied magnetic field H, the magnetization
is small and the ferromagnetic (M##0) to paramagnetic (M=0) transition
can be described by an expansion of the free energy expressed in powers of
M and its gradient. This is the starting point of the well-known Ginzburg-
Landau theory.2? Because of the up-down spin symmetry in the absence of
an orienting field, an expansion of the free energy has only even powers in
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M, and up to fourth order in M it can be written as:

FarL = /d2r E|V/\/l|2 + %MQ(I‘) + §M4(r) (1)
The parameter ¢ (related to the direct exchange interaction), a ~ T — T
and [ are phenomenological parameters. The uniform state of the system,
in which the magnetization is independent of position can be obtained from
Fc1 by minimizing the integrand without the gradient term. This is known
as the Landau theory. For T' < T, the minimization yields two possible
ferromagnetic states, M(T) = £t Mg = £+/|a|/8, while for T > T, the
only solution is the paramagnetic state, M = 0.

Any two magnetic spins also have a dipolar interaction leading to de-
magnetization terms which need to be included in the free energy. We
consider the addition of these long-range interactions for Ising spins be-
cause these interactions have an important effect on the magnetic domain
size. The dipolar interaction between any two colinear Ising spins, S7 and
S7, that point in the z-direction with possible values £1 /2, are located in
the (z,y) plane, and separated by a distance r is
mim; _ (gops)® 575}

= (2)

 Ampgr3 Ay 13

,J

where m; = goppS7 is the atomic magnetic moment and po the vacuum
permeability. We recall that the energy for a parallel pair is repulsive
(U > 0), while that of an anti-parallel pair is attractive (U < 0).

The coarse-grained dipolar magnetic energy can be derived from Eq. (2)
and after thermal averaging is written as:

Fa= 5_72 /er d’r’ M(r)g(r,x')M(x') (3)
where the double integral is taken over all possible dipole pairs. The %
prefactor is included in order to avoid double counting of pairs. The kernel
g(r,r’) = 1/|r — r'|? expresses the long-range nature of the dipole-dipole
interaction, Eq. (2). The integral in Eq. (3) can subsequently be manipu-
lated more conveniently in Fourier space. Using M, and G(q) as the 2D
Fourier transform of M(r) and g(r), respectively, we obtain

Ho ~ Mo
Fi= g [ EFaMG@My x-S [ Eald Mo, @

Because g(r) = 1/r®, where r = |r| is the vectorial magnitude, the
small ¢ behavior of its Fourier transform G(g) = [ d*r g(r) exp(—iq - r) is
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G(q) = —g1]g|, and a lower length cutoff, » = a, has to be introduced in the
integration of Eq. (4) in order to take care of the diverging of g(r) = 1/73
at 7 — 0. We note that this cutoff has no other effect on the small ¢
dependence of Eq. (4).

With H=0, a ferromagnetic state is described by a uniform magneti-
zation, M = const., while a paramagnetic one by a zero magnetization,
M = 0. These two states can be considered as the limit of zero g-mode.
But is it possible to stabilize a non-zero ¢g-mode in the layered system?
Clearly the gradient square term in Eq. (1) opposes any such modulations.
The Fourier transform of the |[VM|? term yields a positive contribution
that is proportional to szz, whose minimum is always attained for ¢ =0
(uniform state). However, the dipolar-dipolar term in Eq. (4) favors short
wavelength modulations (high ¢-modes) due to the reduction in dipolar
energy when the spin pair is in an anti-parallel state. The combined free
energy, Fq4 + FaL, includes the direct exchange, Eq. (1), as well as the
long-range dipole-dipole interactions, Eq. (4). Representing the total free
energy as an integral in Fourier space, its minimization with respect to ¢
gives the most stable mode,'? ¢ = ¢*

d ( ko 2\ _ «_  ModG/dg  po ¢
dq (32773G(q)+cq)_0 = U= e Seame o0 O

Some remarks are in order. In the derivation of ¢* in Eq. (5) we ne-
glected 4*" order and higher terms in the free energy, Eq. (1). Estimating
the free energy by its value at ¢* is called the single-mode approzimation. It
can be justified for T < T, where the most dominant ¢*-mode contribution
is a good approximation for the entire free energy.?! Note that for a single
g-mode, the domain size by definition is d* = 27w /¢*. Up to a numerical
prefactor, the domain wall width £ is approximately equal to d*. This is
indeed characteristic to domains close to the critical point. Their domain
wall is not sharp and £ can be substantially larger than atomic length scales.

As the temperature is lowered and becomes considerably lower than T,
the system cannot be described any longer within the single-mode approxi-
mation. Domains still prevail but their wall width £ (of order of nanometers)
becomes much smaller than the domain size d* (micrometers). The domain
wall energy 7 (per unit length) can be calculated and depends mainly on
the short-ranged, direct exchange interaction. At low temperatures, an es-
timate of d* includes many g-modes and can be done for stripes, circular
and other simple arrangement of domains. By considering an alternating
arrangement of +£M stripe domains, the dipolar energy Eq. (3) can be
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calculated exactly. It includes logarithmic corrections related to magnetic
fringe fields in 2D. This energy competes with the domain wall energy, which
favors as few domains as possible. These two competing interactions'® give
in 2D

- 21 b"}/ 1 b —1
d = — X aexp [EW] = aexp |:§NB :| (6)

where a is a microscopic length and b is dimensionless prefactor. The di-
mensionless number N, = 1gM? /v is called the magnetic Bond number
and is also discussed in Sec. 7. We note that d* has a complicated depen-
dence on temperature and magnetic field, but we do not further discuss it
in this chapter.

The same Bond number that fixes the domain size, is also instrumental
in understanding various instabilities of isolated drop-like domains, such as
domain division and elongation, and tip splitting.’

4. Dipolar Langmuir Films

A manifestation of a 2D layer of dipoles can be achieved by spreading
amphiphilic molecules at the water-air interface.?'%22 Although the dipoles
are electric ones, the treatment of the long-range dipole—dipole interaction
is similar to the one discussed in the preceding section for dipoles having a
non-zero contribution along the perpendicular z direction. We simply need
to replace the magnetic field by an electric one, and the magnetization
by the electric polarization. The variation in the polarization P = Pz is
related to the variation in the local concentration: P = pen, where P is
the polarization, pe the electric dipole moment of an individual molecule
and n(r) the local number concentration of dipoles (per unit area).

Amphiphilic molecules have a hydrophobic tail and a hydrophilic head
that is either charged or dipolar. When these molecules are highly insoluble
in the water, they form a Langmuir monolayer — a monomolecular layer
that is spread at the air-water interface.2> The layer thermodynamics can
be controlled by regulating the temperature or applying a surface (in-plane)
pressure.

Visualization of domains in the micrometer range is done by fluorescence
optical and Brewster angle microscopies,?? while ordered lipid domains is
studied using small angle X-ray scattering (SAXS).?* One predicts various
thermodynamic states of the system as a function of temperature T' and
lateral pressure 11, in analogy with the gas, liquid, and solid phases in 3D
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systems. In some cases, domains of various shapes and morphologies appear
to be stable over long time scales.

When the molecular dipole is large, the selection of a preferred domain
size can be largely attributed to the competition between dipolar interac-
tions and the domain line tension «. This selection is analogous with the
pattern selection as discussed in the previous sections. For example, we
show in Fig. 2 the domain structure of an alkyl lipid forming a Langmuir
monolayer,?® and compared it with a fluoro-alkylated lipids where most of
the alkyl groups are replaced by fluorinated ones, Fig. 3(a). Due to the
large dipole associated with the CF3 chain extremity, the domain size of
the fluorinated lipids is much smaller than that of hydrogenated lipids.

Fig. 2. Fluorescence microscopy of alkyl lipid monolayers at 7" = 20°C and area per
molecule of 60A2 showing 2D gas-liquid coexistence. The outer circle has a diameter of
~ 240 pm. Adapted from Ref. 25.

We mention one set of experiments indicating that the observed pat-
terns are due to an equilibrium g-mode selection as we have discussed
above. In a Langmuir monolayer formed by the phospholipid DPPC,??
liquid-crystalline domains are seen. They take the shape of a network of
elongated stripe-like structures embedded in a liquid-like background. It is
known that cholesterol preferentially adsorbs to the domain perimeter and
reduces the line tension vy between the domains and their liquid-like back-
ground.?? Indeed, when cholesterol was added to the DPPC monolayer, the
system quickly reduced the domain width to another characteristic width.
This experimental observation is in accord with the theoretical prediction,
Eq. (6), where a reduction in 7 strongly reduces the size of d*. The effect
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Fig. 3. (a) Partially fluoro-alkylated lipid monolayers at the same temperature and
with area per molecule of 97A2 showing stripe-like domains with stripe thickness around
5-8 um. (b) Same setup as in (a) but with the addition of 0.1% mol of cholesterol. A
noticeable thinning of the stripe is seen to about ~ 1—3 um. The outer circle has a
diameter of ~ 240 um in all figure parts. Adapted from Ref. 25.

of cholesterol was studied also for fluorinated lipids in Ref. 25. Addition of
a small amount of 0.1% mol of cholesterol thins the fluoro-alkylated stripes
by a large factor, as can be seen in Fig. 3(b).

Some of the problems in understanding the thermodynamics of Lang-
muir monolayers are related to their slow kinetics. In some cases, it is not
clear whether the system reached its equilibrium state or is trapped in a
long-lived metastable one. Thus, although dipoles play an important role
in determining domain size and morphology, their precise role is not fully
understood.

5. Magnetic Garnet Films

A well-studied system that exhibits a domain structure arising from com-
peting energies is a magnetic garnet film . The theoretical ideas date back
to the 1930’s with the pioneering work!” of Landau and Lifshitz and their
related work on the intermediate phase of type I superconductors.!'’ Garnet
films had their days of glory in the 1960s and 1970s when they were used
as magnetic storage devices (‘bubble memory’), but their larger size and
slower speed compared to hard disk drives and flash memory devices made
this application short-lived.”'® However, even current research on meso—
and nano—magnetism is largely inspired by the garnet films® and is briefly
reviewed below.

Garnet films are ferromagnetic solid films grown so that the easy axis
of magnetization is along the axis of growth.® The magnetic spin can point
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‘up’ or ‘down’. Using polarized light microscopy coupled to the spin orien-
tation (via the Faraday effect) to visualize details on the micrometer scale,
it is observed that below the Curie temperature the film spontaneously
forms domains with a disordered stripe morphology [see Fig. 1(a)]. It is
quite evident that the stripe thickness (domain size) is well defined even
though the stripes have no preferred orientation in the plane. Note that
for larger external fields the garnet film morphology changes into a ‘bubble’
phase [see Fig. 1(b)], as will be discussed below in Sec. 5.1.

The physics behind the creation of domains in garnet films, and in
particular their preferred size d* is well understood,® 726 and closely related
to the model 2D layered system presented in Sec. 3 above. The major
difference between the two is that the garnet film has a slab geometry of
finite thickness .

Any magnetized body of finite size produces magnetic charges or poles
at its surface. This surface charge distribution, acting in isolation, is itself
another source of a magnetic field, called the demagnetizing field. It is called
the demagnetizing field because it acts in opposition to the magnetization
that produces it. Consequently, the coarse-grained dipolar magnetic energy
as in Eq. (3) can be calculated by mapping the system into a Coulomb
interaction between two monolayers of opposite ‘charges’ separated by a
distance ¢t. The kernel appearing in Eq. (3) is now replaced by2°

2 2
Q(T)N;—W (7)

and the corresponding Fourier transform is

Glg) ~ % (1 - exp(—qt)) (3)

As in Sec. 3, the minimization of the free energy of Eq. (5) with the
form of G(q) given by Eq. (8) yields an optimal value of the modulation
wavevector, ¢*. The connection between the finite thickness slab of the
garnet and the 2D monomolecular dipolar layer can be seen by examining
the gt < 1 limit, where we find that G(¢) ~ —|q| as in Eq. (4). In the
other limit of a thick slab, gt > 1, G(q) ~ 1/q, which also gives rise to
a free—energy minimum at a non-zero value of ¢*. The calculation of the
demagnetizing field can also be done in another way. It is sensitive to
the technique used to sum over the microscopic scale (lattice of atomic
dipoles) and how the coarse-graining is done. The results in the small
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g limit should all converge to the same continuum description. For the
opposite large ¢ (small ) limit, different ways of introducing a microscopic
cutoff are employed, but these have no qualitative effect on the free energy.

Stripe-like domains can be stabilized even for zero applied magnetic
field where there is a complete symmetry between the up and down spin
orientations. In a slab of thickness ¢ in the micrometer range, the result-
ing demagnetizing fields are strong enough to compete with the magnetic
wall energy, and yield stable stripe-like domains with size d* in the 1-100
micrometer range. Beside its dependence on the slab thickness ¢, the stripe
width d* depends on the temperature.

HA
P
NN

External Magnetic Field

nnaann S
Temperature Tc "

Fig. 4. Schematic phase diagram of modulated phases (garnet films). The 2D system
exhibits stripe (S) and bubble (B) phases, along with the usual paramagnetic (P) phase
in the temperature-field (T'—H) plane. The lines indicate first-order transition lines from
S to B and then from the B to P phase. Both lines merge at the Curie point Tt for H=0.
Also indicated is the geometry of the stripe and bubble arrays for magnetic garnet films.
Arrows indicate the magnetization direction. Adapted from Ref. 26.

5.1. Phase transitions

The phase diagram of the garnet is shown in Fig. 4 and depends on temper-
ature and external magnetic field (for a fixed slab thickness t). For H = 0,
the up and down stripes are completely symmetric. When an external field
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is applied below the Curie temperature, the domains whose magnetization is
parallel to the field direction grow at the expense of the oppositely oriented
domains. But at some value of H, there is a first-order phase transition
between the stripe morphology (S) and the so-called ‘bubble’ phase (B), as
seen in Fig. 4. The bubble phase is composed of thin cylinders of up spin
embedded in a background of down spins.

Upon further increase of the magnetic field, the system has another
first-order phase transition from the bubble phase into a paramagnetic (P)
phase. Note that the two transition lines: S— B and B— P terminate at the
Curie temperature T, for H = 0. Although the periodicity is by and large
determined by such equilibrium considerations, the system shows a wide
range of in-plane disorder [Fig. 1(a) and (c¢)]. This disorder is very sensitive
to the sample history indicating that care be taken to avoid trapping the
system in metastable states. A sample cooled in a non-zero H field which
is then removed, shows different disorder compared with a sample annealed
at the same temperature but at zero magnetic field.

6. Mesomagnetism and Nanomagnetism

Mesomagnetism and nanomagnetism refer to domain structures in certain
solid state magnetic materials and composites having small dimensions,
e.g. thin magnetic films® with thickness in the submicron range, see Fig. 5.
These magnetic systems are to be compared with ferromagnetic garnet
and ferrofluid films where the domain size and thickness are much larger,
Fig. 1.

The spatial modulations in these materials correspond as usual to min-
imum energy configurations. But in addition to the contributions of mag-
netic field and surface energy terms, one must also include the effects of the
exchange and anisotropy energies. Exchange energy arises from the pres-
ence of electron spins as noted earlier, and anisotropy energy arises from
the presence of a finite angle between magnetization and the crystalline
axis. These energies govern the thickness of a domain wall, and when the
sample size is small enough to be comparable with the wall thickness new
phenomena arise including electron spin effects. A convenient method to
control the sample size is by using thin films, in which only one dimension
of the sample is small. Wires with two small lateral dimensions are also
studied.

Electrons carry charge and spin but conventional electronics employs
only the transport of charge (current). In the newly developed field of



14 D. Andelman and R. E. Rosensweig

t =50 nm t=50 nm h t=25nm

Fig. 5. Examples of induced stripe domains ~ 0.5 um wide in epitaxial cobalt dots
50 nm thick. (a) Field applied parallel to the edge of the square dot, and; (b) along the
diagonal as indicated by the H vector. (c) Circular stripe domains induced in ~ 0.5 ym
wide epitaxial cobalt dots 25 nm thick and demagnetized in the direction of the H vector.
The dots were fabricated using X-ray lithography and ion—beam etching from continuous
epitaxial hep cobalt films in arrays of 5x5 mm?. Visualization is done by a Magnetic Force
Microscope (MFM). Adapted from Ref. 27.

spintronics (a neologism for spin-based electronics), the electron spin is
transported from one location to another.?® The so-called giant magnetore-
sistive (GMR) effect is based on the field-dependent scattering properties
of electron spin. In GMR and related devices having discrete (modulated)
layers, the scattering that increases the electrical resistance can be tuned.

Modulation of the structure in spintronic devices is achieved by design
and manufacturing rather than as the result of a phase transition. The pro-
totype device that is already in wide use, e.g. in most laptop computers, is a
hard disk read head employing the GMR, sandwich structure schematically
shown in Fig. 6. This device called a spin-valve consists of thin ferromag-
netic/nonmagnetic/ferromagnetic metal layers. One ferromagnetic layer
has its magnetization latched by a fourth, permanently magnetic layer over-
laid on it. Magnetic fringe field emanating from bits written on the hard
disk change the direction of magnetization of the other, close by, ferro-
magnetic layer as they pass by. For ferromagnetic layers having parallel
magnetization with that of the bits, the resistance to current flow is small,
while antiparallel magnetization yields large resistance. At constant po-
tential, the change in current passing through the films is sensed by an
external electronic circuit to read out the bits (zeros and ones) of memory.
The technology makes it possible to read out the information stored in the
memory even though the physical size of a bit is very small.



Modulated Phases in Nature 15

magnetic
recording
medium

Fig. 6. A GMR magnetic media reading head. As the magnetic recording medium
passes beneath the GMR sensor, it switches the direction of magnetization of the adjacent
soft magnetic film. When the direction of magnetization is the same in both magnetic
sensor films, the resistance to current flow is least, whereas when the directions are
opposite, the resistance is greatest.

A similar structure of thin parallel layers can be configured as a magnetic
tunnel junction (MTJ) for the storing of bits of information.?? Latching
of ferromagnetic films having parallel magnetization can represent a ‘0’
while antiparallel magnetization represents a ‘1’. Addressing an array of
the junctions is accomplished with a cross grid of normal conductors. These
memory devices require no power to preserve their magnetic state and could
yield computers that boot up nearly instantaneously.

7. Ferrofluids and Other Dispersions of Magnetic Particles

Much of the material of the following sections pertains to the magnetic
fluids termed ferrofiuids, suspensions of single-domain magnetic particles
in a liquid carrier that are ultrastable against settling.? The prototypical
ferrofluid is made up of magnetite (Fe3O4) colloidal particles having mean
size (diameter) 10nm, coated with a 2 nm monolayer of oleic acid, and sus-
pended in a hydrocarbon carrier fluid such as kerosene. Many surfactants
in addition to oleic acid are known that produce stable ferrofluids in a wide
variety of liquid carriers such as other hydrocarbons, aromatics, esters, al-
cohols, fluorocarbon and water carriers. The particles are in rapid thermal
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or Brownian motion that prevents them from settling under gravity. Con-
comitantly the particles collide with each other and the coating prevents
the particles from agglomerating together and settling out. The particles
are said to be sterically stabilized. Another class of water-based ferrofluids
are ionically stabilized with electric double layers.3°

A ferrofluid worthy of the name is free of the chaining that results from
the magnetic attraction and adherence of magnetic particles to each other
with an energy that exceeds that of thermal displacements. Chaining is a
topic in which there is much confusion in the literature. Using the typical
colloidal particle size of 10 nm and the magnetization of the usual magnetic
particle magnetite, the mean number of particles in a chain computed from
the deGennes and Pincus theory®! is 1.36 in a strong H field, and 1.26 in
zero field. Thus, the particles are essentially monodispersed. In simulations,
the ferromagnetic particles are invariably taken to be larger and/or with
stronger magnetic dipoles, resulting in particle chaining. The particle size
does not have to be much larger than 10nm before chaining becomes a
practical problem in ferrofluids; at 13 nm, chains of magnetite are predicted
to be infinite in length. The much larger (micrometers diameter) particles
of a magnetorheological fluid (MR) chain easily, which is the basis for their
applications, as discussed later.

Ferrofluids based on elemental ferromagnetic particles of iron, nickel,
cobalt and their alloys oxidize after days of contact with the atmosphere
and are not suitable for long—term use, except in sealed systems. But other
magnetic solids such as maghemite (FeoO3) and mixed metal ferrites yield
ferrofluids that are long-term stable against oxidation in contact with the
atmosphere.

Ferrofluids are a solution of nanometer size colloidal particles in which
thermal fluctuations are a governing influence in their behavior. Accord-
ingly, statistical mechanical analysis permits definition of the magnetization
law and other physical properties. This stands in contrast, for example, to
the behavior of magnetorheological fluids containing particles in the micron
size range which aggregate together when subjected to applied magnetic
field and require mechanical force to become redispersed. Flow of magnetic
fluid in a magnetic field is subject to polarization force and constitutes
a discipline in itself (ferrohydrodynamics) comparable to but distinct from
magnetohydrodynamics, i.e. the flow of conductive, nonmagnetic fluid (such
as molten metals) in the presence of magnetic fields. An introduction to
the science with an extensive treatment of the effects of flow fields is found
in the monograph of Rosensweig.?
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Fig. 7. Classification of particle suspensions in a fluid carrier prior to modulation by an
applied magnetic field. (a) Nanometer single-domain magnetic particles in a nonmag-
netic carrier; (b) Nonmagnetic micrometer size-range particles in a matrix of ferrofluid;
(¢) Nonmagnetic millimeter particles in ferrofluid; (d) Multi-domain magnetic particles
in nonmagnetic carrier fluid; (e¢) Multi-domain magnetic particles in ferrofluid; (f) Multi-
domain magnetic particles suspended in a flowing stream of gas or liquid. MR denotes
magnetorheological. MSB denotes magnetically stabilized (fluidized) bed. Particles in-
dicate the ordering of sizes only.

Figure 7 is a schematic illustration of six types of fluid systems contain-
ing magnetic particles that will be discussed. Four out of the six are fer-
rofluid systems. Black particles indicate single-domain magnetic particles
having size on the order of 10nm typical of particles in a stable ferrofluid,
i.e. one which remains free of chaining of particles whether subjected to
an applied magnetic field or not. Gray denotes multi-domain magnetic
particles, and white denotes particles that are nonmagnetic. Modulations
(e.g. formation of particle chains) can take place when the composites are
subjected to an applied magnetic field. The relative sizes of the particles
are not shown to scale. For example, a one micrometer particle is 10 times
larger and a one millimeter particle is 10° times larger in diameter than
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a 10nm ferromagnetic particle typical of a ferrofluid. The illustrations in-
dicate the random distribution of particles in the absence of an applied
magnetic field.

7.1. Modulation of ferrofluid interfaces

Modulation in the physical systems discussed up to this point refer to
changes in the topology of systems having essentially constant volume and
overall shape. This also is the case in certain phenomena of ferrofluids; for
example, phase transition in applied magnetic field. In addition, in ferroflu-
ids an important class of modulations concerns change in the geometry of
the surface or interface, as in the normal field instability and labyrinthine
instability. Other modulations concern steady motions induced within the
fluid itself, such as occur in field-modulated convection.

As indicated, ferrofluids exhibit a number of unique interfacial instabil-
ities. These are phenomena occurring in ferrofluids of uniform temperature
and colloidal composition. The number density of particles is on the order
of 10?3 per cubic meter, hence, the ferrofluid can be considered a contin-
uum for most purposes. The modulations can be grouped into categories.
Except where cited, the phenomena listed below are discussed in detail in
Ref. 3.

e Uniform steady magnetic field applied to motionless ferrofluid

— The normal-field instability

— Prevention of Rayleigh—Taylor instability
— Stabilization of a fluid column

— Droplet shape modulation

— Labyrinthine patterning

e Uniform steady magnetic field applied to ferrofluid in motion

— Modulation of Kelvin-Helmholtz instability
— Modulation of Saffman-Taylor instability

e Modulations in time-varying magnetic field32

Additional modulations occur in ferrofluids supporting a temperature
gradient when the magnetization is temperature dependent:

e Convection of a plane layer in uniform applied magnetic field
e Convection of a plane layer in a constant magnetic field gradient
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Fig. 8. Surface relief of normal-field instability of a ferrofluid reconstructed from X-ray
images. (a) Oblique view. Each layer of a peak having a given color represents one
millimeter of thickness; (b) Plan view. The containing vessel is 12 cm in diameter and
the initial liquid depth is 3mm. Adapted from Ref. 34.

e Convection in a spherical system with a radial magnetic field
gradient?3

The above is not an exhaustive list as systems can be rotated, con-
centration can be non-uniform, various instabilities can be combined, etc.
In addition, in all the systems listed the magnetization is equilibrated,
hence is collinear with the applied field. In comparison, in systems where
the ferrofluid is subjected to rapid change in direction and magnitude of
the applied field the magnetization lags the field, which excites additional
forces. Modulation in this latter category is virtually unexplored.

The normal-field instability is the best known, most studied one which
many refer to as the Rosensweig instability, see Fig. 8. Accordingly, after
a brief introduction, this overview highlights a selection of related works,
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many of which are concerned with non-linear aspects of this patterning
phenomenon.

7.1.1. Normal field instability

This is the first instability of a ferrofluid to be observed; it is striking, and
it is the best known. Peaks form in a patterned array on the free surface of
a pool of ferrofluid when the ferrofluid is exposed to a uniform, vertically-
oriented magnetic field. This pattern persists under static conditions, in
contrast to patterns such as Bénard cells produced in dissipative systems
far from equilibrium.

The ferrofluid pattern is sustained as a conservative system, i.e., in the
absence of energy input or dissipation. The patterning can only onset in
a ferrofluid having a magnetization that exceeds a critical value and was
never seen until a ferrofluid having a sufficiently high magnetization was
synthesized.?® The instability in its pristine form is realized in a horizon-
tal pool of ferrofluid subjected to a uniform, vertically oriented, magnetic
field, Fig. 8. The linear analysis and experimental validation were given by
Cowley and Rosensweig?S valid for a non-linearly magnetizable fluid, where
‘nonlinearly’ refers to the functional dependence of magnetization on mag-
netic field H. The critical magnetization M, is specified in dimensionless

form by
proM? < 1 >
HOTe o914+ — 9

VaApmo Tp ©)

where g denotes the permeability of vacuum, g the gravitational constant,
Apy, is the difference in mass densities of fluids across the interface, o the
interfacial tension, and 7, is the dimensionless permeability ratio:

lefit 1/2
= = (10)
: ( I )

For non-linear media, the parameter 7, depends on two permeabilities
at the operating point: the chord permeability . = B(H)/H, and the
tangent permeability p; = 0B(H)/0H. Although the onset of instability
depends crucially on the magnetic field via the critical magnetization M.,
the spacing between peaks A at the onset is given by

- 1/2

A=27 < ) (11)
9Apm

which is simply the capillary length between the two fluids. Note that it is

the same as the wavelength at onset of Rayleigh-Taylor instability.?
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It is instructive to indicate the physics of the normal-field instability in
a simple way. Normally oriented magnetization transforms the flat surface
of a pool of the ferrofluid into a lower energy surface having an array of
peaks that are spaced apart from each other. The onset of the instability is
governed by two conditions: i) The undulating surface has the same energy
as the free surface at the point of onset; ii) Its energy is minimized at the
onset.

The total energy is the sum of surface, gravitational, and magnetic
terms. We will consider the energies associated with a wave train of si-
nusoidal form: h(z) = §cos(2wx/)N), where A is the wavelength and § is
amplitude of the disturbance, assumed small.

The surface energy is proportional to the surface area. Distance along
the surface between crests is given by s &~ A + (78)?/\. The length along
the unperturbed interface is A, hence the perturbation of surface energy is
given by o(76)% /A, where o is the surface tension.

The perturbation of gravitational energy along a wavelength corre-
sponds to the work done in lifting ferrofluid from the trough region to the
crest region. This is given by the product of the lifted fluid volume AJ/7
with mass density of the ferrofluid p,,, the distance between the centroids
wd/4, and the gravitational acceleration g. Thus, the gravitational term is
Apmé2g/4.

Rigorous formulation of the magnetic energy requires a separate com-
putation of the magnetic field distribution to determine the energy density
given by the integral of HdB over the system volume, before and after
the perturbation of surface form. Magnetic energy density is reduced in a
region occupied by the permeable ferrofluid as the fluid is more easily mag-
netized than empty space. Thus, because magnetization increases at the
peaks of the waveform, and decreases at the troughs, the overall magnetic
energy decreases with the formation of peaks and tends to offset the con-
comitant increase in gravitational and surface energies. At a critical value
of magnetization the changes in energies balance and instability onsets.

Here we assume the energy term depends on magnetic permeability of
free space pg, magnetization M, and wave amplitude §. From dimensional
consideration the magnetic term is thus expressed as —ayugM?25% where o
is a proportionality factor, and the negative sign (see Sec. 3.6 of Ref. 3)
corresponds to the reduction in field energy attendant to an increase of
magnetization. Adding the three energy terms and factoring out 62 yields:

o2 )N+ Npmg/4 — apoM? = 0 (12)
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The equality follows from the first governing condition. Differentiation
with respect to A and rearranging yields the result of the second governing
condition in the form:

A=2m,/— (13)
9pPpm

This is the expression for spacing between the peaks, the same as given

by Eq. (11). Note that if A were introduced along with or in place of ¢,

Eq. (13) would contain a dependence of A on §. This would be wrong

because 0 is of arbitrary size. Substituting for A into the previous equation

yields the relationship for the intensity of magnetization required for onset
to occur.

/L()]\4c2 _71'
V9pmo

Comparison with Eq. (9) shows that m/a = 2(1 +1p)/7p.

It is of interest to note that the onset of the normal-field instability of a
ferrofluid bears analogy to the hexagonal patterns seen by direct observation
in the transition of type II superconductors.?”

In an incisive study, Gailitis?® using an energy method to investigate
nonlinear aspects of the patterning showed that the instability is subcritical,
i.e. onset could occur at a lower value of applied field provided the distur-
bance is sufficiently large, while at the critical point the onset is ‘hard’,
i.e. the surface deformation onsets as a jump rather than in a continuous

(14)

manner. In addition, the prediction was made that the pattern, which on-
sets as an hexagonal array, can transform to a square array at higher applied
magnetic field, and that both transitions exhibit hysteresis. Some doubt
remained, however, as the analyses are restricted to small values of the
relative permeability. Subsequently, however, numerical analysis®® using
the Galerkin finite element method confirmed the subcritical character of
the instability and correctly predicted experimentally measured heights of
the peaks, while conditions for the transition from hexagons to squares was
studied by B. Abou et al.*? The sketch of Fig. 9 illustrates the predictions
of Gailitis.

7.1.2. More recent work

Interesting work has focused on the question of the shape and size of the
peaks under various conditions. The most successful experimental results
are obtained using the attenuation of X-rays directed vertically through
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Surface deflection
amplitude

Magnetic field, H

Fig. 9. Schematic illustration of transformations in the normal-field instability accord-
ing to Gailitis®® Field intensities from 1 to 2 are in the subcritical range; 2 is the onset
field predicted by linear analysis; 2 to 3 represents the ‘hard’ transition to the hexagonal
array of peaks; 4 to 5 depicts transition to a square array. Two regions of hysteresis can
be seen on the curves. In decreasing field, 8 is known as the turning point. Adapted
from Ref. 3.

the pool of ferrofluid.?* In Fig. 8, which displays the usual array of peaks
over the entire surface, each color indicates a layer thickness of 1 mm. This
technique was applied*! to study the surface shape generated by a local
perturbation in the first subcritical hysteretic regime of the instability. This
is the regime identified as 1-2-3-8-1 in Fig. 9. The perturbation is generated

|

Fig. 10. Nine ‘solitons’ (solitary structures), each generated by a transient, local pulse
of magnetic field applied in the subcritical range 1-2 of Fig. 8. Peaks along rim of the
container are an artifact due to the curved surface of the meniscus. The containing vessel
is 12cm in diameter and the liquid depth is 3mm. Adapted from Ref. 41.



24 D. Andelman and R. E. Rosensweig

on a flat area of the fluid surface using a pulse of field from a small air coil
placed below the center of the vessel. A single pulse produced a single peak
of the hysteretic regime, and additional pulses generate additional peaks. A
remarkable fact is that the peaks remain present after the pulse field is re-
moved. The peaks are termed ‘solitons’ by these authors (although solitons
are generally understood to refer to nonlinear traveling waves that can pass
through others with no loss of form). These soliton peaks self-organize into
molecule-like clusters of 2, 3, 4, 5, 6 and more peaks in symmetric arrays.
Figure 10 illustrates a pattern of 9 solitons.

Figure 11 illustrates the distribution of magnetic field and cusped shape
of a peak in an hexagonal array in the normal field instability as determined
by a numerical computation. The concentration of field and attendant
increase in normal stress difference across the interface is mainly responsible
for the formation of the peaks.

i
|
|
1

Fig. 11. Finite element computation of ferrofluid peak shape in the range 3-4 of Fig. 9
using p/po = 30. Adapted from Ref. 42.

A simple example of parametric stabilization is the inverted pendulum
whose unstable upright position can be sustained by vertically vibrating its
point of suspension. In fluid dynamics a most impressive example is the
inhibition of Rayleigh-Taylor instability in which a horizontal fluid layer is
stabilized above another one of smaller density by vertically vibrating their
container.*3 Petrelis et al** experimentally demonstrated the parametric
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stabilization of the normal -field instability of a ferrofluid using vertical
vibrations of the fluid container. The measurements were in good agreement
with an analytical model.

7.1.3. Labyrinthine instability in polarized fluids

Labyrinthine instability of a ferrofluid shown previously in Fig. 1(c) is shown
again in Fig. 12(a) alongside its dielectric dual in Fig. 12(b). The ferrofluid
is contained between closely spaced horizontal glass plates (Hele-Shaw cell)
together with an immiscible nonmagnetic fluid that preferentially wets the
glass allowing a clear view of the pattern. A magnetic field is applied nor-
mal to the cell faces producing a pattern of stripes. The system is governed
by the interaction between magnetic dipolar and interfacial energies.* Be-
cause thinner stripes have a fixed extent between the cell faces they possess
a smaller demagnetizing field, resulting in a higher magnetization and a
further reduction in magnetic energy. Concomitantly, the thinner stripes
present a larger interfacial area and, hence, a larger interfacial energy which
limits formation of ever thinner stripes.

AT\ =

IR

(a) Ferrofluid, H,=0.035 tesla. ~ (b) Dielectric fluids, E,= 16 kV/cm

&)

Fig. 12. (a) Magnetic field applied to ferrofluid, and (b) electric field applied to dielectric
oil yield labyrinthine patterning. Photos are 7 cm square. Adapted from Ref. 4.

Dielectric fluids are polarizable just as ferrofluids are magnetizable, and
their response to applied electric fields provided free charge is absent is
analogous mathematically and physically to the response and patterning of
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the ferrofluids. Although the high intensity of the requisite applied electric
field tends to be difficult to achieve, a successful implementation is shown in
Fig. 12(b) using lubricating oil (dark) paired with castor oil (transparent)
in a specially insulated Hele-Shaw cell. Applied electric field of frequency
500 Hz insured the absence of free charge while the insulation insured sim-
ilarity of field boundary conditions at the interface between the fluids and
the electrodes.

It should be noted that just as the magnetic garnet stripes in Fig. 1(a)
are analogous to the ferrofluid stripes in Fig. 12(a), the stripe domains of
the dipolar Langmuir monolayer shown in Fig. 3(a) are closely analogous
to the dielectric labyrinth seen in Fig. 12(b). As implied previously, the
magnetic systems are dual to the electric systems.

Figure 13 illustrates stages of the onset of a related phenomenon when
only a small amount of ferrofluid (a drop) is put into the cell. Numerical
analysis has been successful in producing realistic simulations. In one ap-
proach the dipolar energy of the system is formulated as a function of its
boundary.*® Another approach writes the free energy in terms of particle
concentration expressed as a Landau expansion similar to Eq. (1), and com-
bines these terms with a formulation expressing the surface energy.?” The
latter study predicts a further transformation of the labyrinthine pattern
into a bubble array when a rotating in-plane magnetic field is superposed
on the steady, perpendicular magnetic field.

(a) Circular drop (b) Elliptical (c) Dumbbell (d) Multiply bifurcated

Fig. 13. Experimental transition of a circular cylindrical drop of ferrofluid in response
to increasing magnetic field. Adapted from Ref. 45.

In a vertically oriented cell the two fluids form one layer over the other
due to their difference in mass density, with the ferrofluid on the bottom
when it is the denser. The flat interface between the fluids undergoes tran-
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sition that, in addition, depends on gravitational energy.?3®> A linearized
theory predicts the onset condition?® and the same authors present experi-
mental photographs of the early onset terming the behavior ‘comb’ instabil-
ity. The highly convoluted labyrinthine patterns in a vertical cell in higher
applied fields are reported in Ref. 35.

Analysis using energy minimization predicts the width and spacing of
stripes based on the demagnetizing field of dipoles assuming uniform mag-
netic surface charge on the stripe boundaries.* In equilibrium the net force
on a whole magnetized body is given by

/ 1o(M - VH) dV (15)
\%4

which transforms by vector identities to

/vaodV + fpSHO as (16)
\% S

where p, = poM - 1 is surface density of equivalent magnetic poles and
Py = —poV - M is their volume density, 1 is the unit normal vector facing
outward from the surface.

A model stripe system is depicted in Fig. 14. Two glass plates with
a spacing t in the z-direction bound an immiscible mixture of a ferrofluid
and another, nonmagnetic fluid. In the model the two fluids are assumed to
form a periodic pattern of infinitely long and straight stripes. The ferrofluid
stripes have a width wy in the z-direction, while the nonmagnetic ones are
of width w;. The total energy per cycle is a sum of magnetic and fluid
interfacial energies, U = U, + U,, where the interfacial energy U, = 20t
depends on the interfacial tension o and the magnetic energy is given by

o xHEtwy

1
== MHydV =
U 2“0/V 0 2 1+ xD

(17)
Thus, the energy per unit length along the interfacial direction is given by
U/(wy + wy).

The problem reduces to calculating the magnetization M = yH =
xHo/(1 + xD) inside the magnetic stripes of finite cross-section, where
X is susceptibility and D = (Ho — H)/M is the demagnetization coefficient.
In this system with putative spatially uniform magnetization the volume
density of poles disappears and only surface poles remain. The demagne-
tization field of the surface poles is then computed from integration of the
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Fig. 14. The labyrinth (see Fig. 1(c)), modeled as a periodic system of infinitely long
and parallel stripes in the z-direction: alternating between ferrofluid stripes with per-
meability u, magnetization M and width wy, and nonmagnetic fluid stripes of width w;
and permeability pp. The system has a thickness ¢ in the z-direction which coincides
with the direction of the applied field Hp. The interfacial tension between the two fluids
is 0.

Coulomb expression for an infinitely long stripe, —M sinfdz/27s where
s = /a2 4 (t/2)? is distance from the pole, x is the in-plane distance
coordinate, and 6 is angle subtended between s and the x coordinate (see
Fig. 14).

The integration generates an infinite series of terms due to contributions
from opposite poles of all the stripes. Minimization of the total energy
per unit length yields the governing expression for normalized stripe width
W = wf/t.

X2N30 oD 2

TroEow wE " (18)

and the magnetic Bond number, Np, = uoHZt/20 is the ratio of magne-
tostatic energy to interfacial energy Computation shows that stripe width
decreases with increasing applied magnetic field Hy and susceptibility x.

The analysis above a priori assumes the existence of stripes and then
computes their spacing. This procedure may be compared with that of
sections 4 and 5, where the analysis aims at predicting both the onset and
the spacing of stripe formation.
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Experiments in which wall spacing and applied field were systematically
varied yielded stripe thicknesses in reasonable agreement with theory over a
three decade range of the magnetic Bond number. Labyrinthine patterning
in dielectric fluids was demonstrated experimentally as well.*

For the system of Fig. 13, the superposition of an in-plane rotating mag-
netic field with the perpendicular time-steady normal field yields intricate
and varied patterns of which some rotate. Different patterns are formed
depending on which field is applied first.??

Finally, we note that ferrofluid in a Hele-Shaw cell exhibits a liquid froth
phase similar in appearance to soap bubbles confined between closely spaced
walls when subjected to oscillatory magnetic field oriented perpendicular
to the layer.*®

7.1.4. Applications

The normal-field instability sets a limit on certain applications where it is
desired that the ferrofluid maintains a smooth surface. An illustrative ex-
ample is the use of ferrofluid to produce inexpensive and versatile mirrors
for astronomical optics and other uses.* The application has been in-
tensely studied and found to be feasible. A reflective colloidal film of silver
particles is spread on a ferrofluid and forms a mirror surface. The sur-
face can be shaped by the application of a magnetic field to yield adaptive
mirrors. Local regions of the surface can be shaped in real time by ap-
plication of magnetic fields to yield adaptive mirrors that compensate for
atmospheric disturbances of refractive index that, otherwise, cause ‘twin-
kling’ of stars and reduction of the resolution of images. The shape can be
rapidly varied in time with surface vertical displacements (‘strokes’) rang-
ing from nanometers to several millimeters. Magnetization of the ferrofluid
must be kept within limits to avoid formation of peaks.

Beneficial use of peak formation is studied in a novel approach®® to
electrospinning of polymer nanofibers. A two-layered system is employed
with the lower layer being a ferromagnetic suspension and the upper layer
a polymer solution. Vertical peaks perturb the interfaces so that when,
in addition, an electrical voltage is applied, the perturbations of the free
surface are drawn out as in ordinary electrospinning. As the desired result
the production rate of fiber is higher.

Electrostatic forces can be used to disrupt fluid interfaces for the pro-
duction of droplets. Ferrofluid furnishes a convenient medium for the study
of such electrostatic atomization as free charge is absent allowing study of
the dipolar force effects in isolation.
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Magnetizable elastic materials (ferrogels) can be produced when, e.g. a
water—base ferrofluid is used to swell a chemically cross-linked polymer.>!
The magnetic nanoparticles attach to the flexible network of polymer chains
by adhesive forces. The ferrogels can be used for switches, sensors, micro-
machines, biomimetric transducers, and controlled drug delivery systems
that are remotely actuated with magnetic fields.’> The normal field in-
stability of ferrofluids has been extended®? to describe the deformation of

these ferrogels.

7.2. Phase transitions in ferrofiuids

A phase transition of the gas-liquid type has been observed by a number
of investigators in sterically stabilized ferrofluid.’* ®® On applying an ex-
ternal magnetic field of critical intensity to the thin layer of the ferrofluid,
highly elongated droplets of a concentrated phase of ferromagnetic colloid
are formed having a clearly formed interface separating the drops from a
surrounding dilute ferrofluid phase, see Fig. 15. When the applied field
is removed, the elongated drops are unstable under interfacial tension and
break up into smaller spherical drops that diffuse into the surroundings.
The instability can also be initiated by adding a less compatible solvent to
the ferrofluid. Ionically stabilized ferrofluids undergo this phase separation
when electrolyte concentration is altered.?®

Figure 16 shows the coexistence curve determined for this magnetic
fluid at various dilutions. Below the curve the ferrofluid is spatially homo-
geneous, and above it exists the two-phase region where droplets of con-
centrated ferrofluid are in equilibrium with a surrounding phase of lower
concentration. As previously mentioned, ionically stabilized ferrofluids can
also exhibit phase separation, by applying magnetic field or, see Fig. 17, by
changing the electrolyte concentration.

A thermodynamic analysis of Cebers derives the free energy of a mag-
netic fluid per particle, f,, for sterically stabilized ferrofluids in the following

form:>9

sinh 1
fp:fO'f'k'BTln%—kBTln (blng f) +§nm2/\L2(§) (19)

where fy is a constant of integration, kg7 is the thermal energy, n the
number density of magnetic particles, vy the coated volume of a particle,
and A = 1/3 is the Lorentz cavity constant. The Langevin function is



Modulated Phases in Nature 31

Fig. 15. (a) Droplets in a thin layer with field oriented normal to the layer of a kerosene-
based sterically stabilized ferrofluid. (b) Elongated droplets induced by a 12.7kA m~!
magnetic field oriented tangential to the layer. (c) Breakup into spherical droplets ~0.8s
after removal of the field permits estimation of interfacial tension ~ 8.1 x 10~* mNm~!
based on viscous dominated instability as in Ref. 57; the droplets subsequently diffuse
into the surrounding continuous phase. Part (b) and (c) are adapted from Ref. 56. Part
(a) not previously published, is taken from a video recording.

defined as L(¢) = coth(§) — ¢! and depends on a dimensionless variable ¢

mH
= — 20
£= o (20)
m = povMy is the magnetic moment of a particle, where v is the volume
of the magnetic core of a particle, My the domain magnetization, and H is

the applied external field. The chemical potential per particle is obtained
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Fig. 16. Experimental spinodal data for a kerosene—based sterically—stabilized ferrofluid
having mean particle size 7.4nm. Adapted from Ref. 56.

from the free energy per unit volume n fp:

_onf,

21
on T.H (21)

Prediction is made of the spinodal and binodal curves on a plot of mag-
netic field versus concentration. The binodal curve defines the coexistence
curves and corresponds to a pair of points having a common tangent on a
line osculating the free-energy curve

H(TLl,T,H) :M(nQaT7H) (22)

nl[fp(nlaTvH) _:u] :nQ[fP(n/QvTaH)_:u] (23)

The spinodal curve corresponds to a pair of inflection points of the free

energy where
(8_‘) —0 (24)
on HT



Modulated Phases in Nature 33

= L

£

o 1 [

.S

8 L

= .75¢

(]

Q

g

o 5l L]

o]

=

8

= 25} °

<

8|
0 L L i L 1 1 XL L L L
(4] 2 4 6 8 10 20 30

Particle volume concentration [%]

Fig. 17. Experimental phase diagram of an ionic ferrofluid. The initial uniform volume
fraction of the particles is 8%. Note the change in horizontal scale at high values.
Adapted from Ref. 58.

Subscripts 1 and 2 denote the dilute and concentrated coexisting phases,
respectively. In the zone between the spinodal and the binodal curves the
ferrofluid is metastable.

Some of the theoretical coexistence curves of the Cebers theory are
qualitatively similar to the experimental curve of Fig. 16. That is, the
coexistence curves are concave upward and above the curves the homoge-
neous solution separates into a concentrated and a dilute phase. At higher
values of the ratio of particle-particle interaction to thermal-energy, phase
separation at zero applied field is predicted. The theory also predicts that
the concentrated phase is spontaneously magnetized in the absence of an
external H field, though this is thought to be an extraneous prediction
due to the use of mean-field theory. Thus, the effective field H, acting to
magnetize a particle of the ferrofluid is specified as the Lorentz relationship
H, = H + M/3 where H is the Maxwell field in the medium. A simple
example shows the peril of this mean-field assumption. Assuming a linear
medium, defining effective susceptibility x. = M/H,, usual susceptibility
X = M/H, and solving for y yields

_ X
X_g_Xe

(25)

This relationship predicts spontaneous magnetization when x=3 but
the behavior is not seen experimentally. The lattice-gas model of Sano and
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Doi% yields coexistence curves that are qualitatively the same as those of
the thermodynamic treatment of Cebers. The van der Waals interaction is
specified as a constant value at particle contact. Interestingly, the Lorentz
field condition is an outcome of the model, and not an initial assumption.

t61 using two models for the fluid entropy yields

A more recent treatmen
similar results to those of Cebers,?® and Sano and Doi.%°

Two other models predict an enhancement of field-induced magnetiza-
tion but are free of spontaneous magnetization. One is based on the mean—
spherical approximation,? while the other uses a perturbation treatment.®?

A recent Monte-Carlo treatment explicitly produces the phase diagram
of a ferrofluid,®* see Fig. 18. The authors concluded that dipole-dipole and
steric interactions alone can induce phase separation, and that additional

attractive potentials need not be introduced.

Magnetic field [dimensionless]

0.01 0.1 1 10 100

Volume fraction of particles [%]

Fig. 18. Calculated phase diagram of a ferrofluid. (1) Perturbation theory from Ref. 63;
(2) Mean—spherical model from Ref. 62; The symbols (o) and (x) are from Monte—Carlo
simulations of Ref. 64.

We would like to return to the issue of chaining of ferromagnetic par-
ticles that was discussed in the beginning of Sec. 7. Chaining of monodis-
perse magnetite particles in a 2D film is evident in the experimental im-
ages of Klokkenburg et al.%° obtained by cryogenic transmission electron
microscopy. However, the particles have magnetic cores of 16 nm in one
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sample and 20 nm in another, hence will strongly chain under the deGennes
and Pincus theory.3! The long chains have little thermal motion and hence
sediment readily, especially in a strong magnetic gradient field, thus are not
useful in ferrofluids.

In another work, Tlusty and Safran treated phase separation of
suspended dipolar particles in terms of the energy and entropy of chain
free-ends and topological defects, yielding chain branching rather than the
two-particle interactions of the aforementioned models. Their analysis is
restricted to absence of an applied magnetic field and suggests that one
phase consists of branched chains and the other of free chains. A zero-field
phase-separated ferrofluid can be produced by adding a poor solvent. Such
a preparation is used in Ref. 67 of Zhu et al.

In conclusion, the importance of these studies, aside from their inherent
interest, extends possibly to the understanding of the interactions of dipolar
molecules. Such species include, for example, molecules such as hydrogen
fluoride and even water.

7.3. Modulation of embedded objects

Modulation of embedded objects in a ferrofluid has multiple interests: as a
model for two dimensional melting of solids; for producing periodic struc-
tures of large molecules for analysis by scattering of waves; for self-organized
manufacturing of microscopic arrays, etc.

To a first approximation, when a spherical nonmagnetic particle is dis-
persed in a magnetized ferrofluid the void produced by the particle pos-
sesses an effective magnetic moment, m, equal in size but opposite in di-
rection to the magnetic moment of the displaced fluid, i.e. m = —poVxH
where V' is volume of the sphere, x is the effective volume susceptibility
of the ferrofluid, and H is the magnetic field. For relatively low fields
(noH < 0.01Tesla), x is approximately constant and m increases linearly
with H. The interaction energy between two spheres with a center-to-center
separation distance 74 is given by the dipolar relationship
m2(1 — 3cos? 0)

U =
4 pors

(26)
0 is the angle between the line connecting the centers of the spheres and
the direction of the field. A thermodynamic system is obtained by using
sufficiently small spheres (of diameter d < 2 um) having Brownian motion.
The controlling parameter determining structural modulation is the ratio
between the dipolar energy and the thermal energy. From Eq. (26), using
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the magnitude of U with 6§ = 0, r4 = d, and ignoring a constant factor

Dipolar energy  m?/puod? (27)
Thermal energy  kgT

7.3.1. Phase change model and alignment of particles

A monolayer of equal size nonmagnetic spheres immersed in a thin layer of
magnetic fluid yields an intriguing model exhibiting phase change proper-
ties of melting.®® This analog model utilizes micrometer-size polystyrene
spheres that exhibit Brownian motion and can be viewed under a micro-
scope as depicted in Fig. 19(a). Figure 19(b) shows that crystalline ordering
of the spheres results from the application of a magnetic field oriented per-
pendicular to the layer. Each sphere is a hole in the magnetic fluid and acts
as a magnetic dipole of reverse polarity repelled from its neighbors. Varying
the field in this system changes the value of m and, hence, that of the ratio
in Eq. (27), and can be considered as an adjustment of temperature in a
molecular system. Thus, for example, melting or return to randomness is
observed if the field is reduced. The system has been suggested for testing
theories of two-dimensional melting via the vortex unbinding mechanism.2’
Shown in Fig. 19(c) is the chain formation that results from a tangential
orientation of the field. In this configuration the spheres attract each other.

Ordering of dilute suspensions of macromolecules is attainable in mag-
netized ferrofluids for assemblies that are not amenable to conventional
alignment techniques. Using this technique to obtain neutron-diffraction
patterns permits study of the internal structure of macromolecules such as
the tobacco mosaic virus (TMV) and tobacco rattle virus (TRV).% TMV
is a hollow cylindrical assembly of length 300 nm, external diameter 18 nm,
and internal diameter 4 nm. Similarly, TRV is 23nm in diameter, 5 nm
in internal diameter, and shorter than TRV. TMV and TRV both align
when dispersed in a ferrofluid and subjected to a modest level of magnetic
field. The ability of the method to work with low concentrations makes
the method of particular interest for aligning biological materials such as
chromatin which are not easily obtainable in quantity.

7.3.2. Normal and inverse magnetorheological fluids

Magnetorheological (MR) fluids are suspensions of magnetizable particles
typically in the size range 2 to 10 um in a nonmagnetic oil matrix, refer
to Fig. 7(b) and (d). The particles are multi-domain and only produce a
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Fig. 19. (a) A side view of a single layer of nonmagnetic, micrometer-size spheres im-
mersed in ferrofluid. (b) The layer organizes into a hexagonal lattice when field is oriented
normal to the layer, and (c) into chains when field is tangential to the layer. A uniform
volumetric magnetization is equivalent to a distribution of poles on the surface of the
spheres. These poles confer strong diamagnetic character to the spheres. Adapted from
Ref. 68.

net magnetization when a magnetizing field is applied. When subjected to
a magnetic field the particles form chains resulting in the appearance of a
yield stress and a large increase in viscosity. The technology dates back
to the 194057 with a surge of scientific interest in the 1990s due to the
availability of inexpensive computer control of applied field in real time,
and significant commercialization has been realized in damping of vehicle
shock absorbers,”t and production of complex optical surfaces, and other
grinding and polishing applications.”

The suspension of nonmagnetic particles of 2 to 10 micrometer size in a
matrix of ferrofluid yields an inverse magnetorheological fluid (IMR) hav-
ing properties of yield stress and controllable increase of viscosity.”> Due
to the absence of particle-particle contact-magnetization that is present in
ordinary MR fluids the dependence of yield stress on particle concentra-
tion in an IMR predicted from a model of asymmetric stress shows good
agreement compared to data.”™
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Interest in magneto-optical effects in inverse MR fluids is found in
Ref. 75.

7.3.3. Magnetic trapping of light

This section deals with the system shown in Fig. 7(e), a suspension of
MR particles in ferrofluid as the carrier. Mehta and co-workers’® ob-
served that upon application of an external magnetic field on a dispersion of
micrometer-sized magnetic spheres stably dispersed in ferrofluid, through
which monochromatic, coherent light was passing, the light gets trapped
inside the suspension for critical values of applied field. The photons re-
main trapped while the external magnetic field is acting. When the field is
removed, photons are emitted from the medium with the same frequency
as the incident light, but with lower intensity.

As long ago as 1958, trapping of light or ‘localization’ was predicted in
strongly scattering disordered media.””™® The prediction received exper-
imental confirmation first in the microwave and then in the visible using
either disordered media or partially ordered structures such as liquid crys-
tals. An interesting and potentially useful aspect of the new work is that
one can tune the dielectric contrast of the micrometer-size carriers with
respect to the ferrofluid by varying the applied magnetic field. A complex
phenomenon is observed when the light beam is first switched off, and then
with a delay, the applied magnetic field is switched off. After a total time
delay of a second and a half, a flash of light appears both in the forward
and backward directions,
pared to nanosecond delays achieved in other materials. The simplicity

see Fig. 20. This is spectacularly long com-

of the phenomenon is of interest in photonics in optical memories, small
threshold micro-lasers, fast optical switches, optical transistors, and other
components that many believe will supercede conventional electronics.

It is known that the micrometer-sized magnetic spheres form elongated
chain-like structures under the influence of the external magnetic field,
a true spatially modulated phase. The micrometer-size particles scatter
light by the Mie mechanism, and the (much smaller) ferrofluid particles
are Rayleigh scatterers.®0 That is, Mie theory applies to the scattering of
electromagnetic radiation by particles that are similar or larger than the
wavelength of light, while Rayleigh scattering applies to particles that are
much smaller than the wavelength of light. It is surmised that cavities are
formed within the medium in which the light is trapped. When the field is
removed the chains break up, somehow releasing the light.
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(b)

Fig. 20. (a) Diffraction pattern of red light passes through the fluid with no external
magnetic field applied. (b) The pattern is stopped by a particular magnetic field strength.
(c) Photons appear again when the magnet is switched off. Adapted from Ref. 76.

This phenomenon is very surprising as even the best fiber optics dissi-
pate transmitted light in time periods on the order of a millisecond, and the
particle suspension is expected to be more lossy. The phenomenon has not
been independently verified yet, its mechanism is uncertain and no theory
or model has appeared in the literature. Hence its status is provisional.

7.3.4. Modulation of a nanoparticle cloud

The micrometer—size metallic particles of an MR fluid tend to settle under
gravity. The settling can be alleviated with the addition of an additive to
form a gel network that is strong enough to suspend the particles, yet easy
enough to yield to an applied shear stress. Another means has been re-
ported based on a bimodal suspension of 2 ym iron particles in a matrix of
magnetite ferrofluid having particles in the usual nanometer size range.?!
This is another illustration of the morphology shown in Fig. 7(e). The
mechanism preventing the sedimentation appears to be related to the pres-
ence of a diffuse cloud of the magnetite particles surrounding each particle
of iron, see Fig. 21. Presumably the cloud forms because of dipole-dipole
magnetic attraction due either to remanent or induced dipoles of the iron
particles and their interaction with the permanent dipole moments of the
ferrofluid particles.

A model of nanoparticle cloud distribution under the influence of van
der Waals forces treated as a variational problem is found in Ref. 82, and
the same methodology should be useful in treating the magnetic prob-
lem. The model also predicts a repulsion between the larger particles when
their associated clouds overlap, a mechanism that would help to alleviate
sedimentation.
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Tum

Fig. 21. Transmission electron microscopy of bimodal particle mixture showing a diffuse
cloud of magnetite nanoparticles surrounding micrometer—size iron particles. Adapted
from Ref. 81.

7.3.5. Magnetically stabilized fluidized bed (MSB)

This section concerns particulate systems of the type depicted in Fig. 7(f).

Gas fluidized beds of particulates are industrially important as are liquid
fluidized beds. In nature, quicksand is an example of the latter. When the
particles are magnetizable and a magnetic field is applied, new modulational
behavior arises, as will be discussed. If system conditions produce strong
chaining, the desirable features of the MSBs can be lost and so must be
avoided. Thus, the study of chaining can be valuable for defining the useful
limits of operation. That useful MSBs are free of chaining is documented
in a study®® wherein the bed was encased in polymer, sections taken and
polished, and examined under a microscope.

As the velocity of a gas flowing upward through a bed of particles is in-
creased [see Fig. 7(f)], a point is reached where the bed becomes unweighted
and is said to be fluidized. Any excess gas collects into bubbles having a
sharp interface that are buoyant and rise, stirring the contents of the bed
and back mixing the solids. These fluidized beds have industrial impor-
tance in processing petroleum vapors and chemicals where it is desired to
achieve good contacting of vapors with solids while the back mixing main-
tains a constant temperature throughout. In other applications it would be
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desirable to prevent the formation of the bubbles, e.g. to create a moving
bed contactor with continuous input and output of the solids.?*

A stability analysis treating the bed as a continuum and determining the
time evolution of a voidage wave passing through shows that if the particles
are magnetizable and a uniform magnetic field applied, the formation of
the bubbles can be totally prevented over a wide range of flow rates.8> The
prediction is well confirmed by laboratory tests. Flow rates in excess of
minimum fluidization velocity expand the bed. Here the boundary between
stably and unstably fluidized regimes is similar to a coexistence curve. The
operating regimes of the bed are depicted in the diagram of Fig. 22, which
mirrors the appearance of a phase diagram of a molecular system. However,
in this case the particles are typically in the sub-millimeter to millimeter
size range and Brownian motion is negligible.

An inverse composite, refer to Fig. 7(c), using one millimeter, hollow
glass spheres, fluidized by upflow of a ferrofluid also exhibits magnetic

“m T T 1
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Fig. 22. Predicted phase diagram of a magnetically stabilized fluidized bed (MSB). The
unfluidized regime is the analog of the solid state, stably fluidized the liquid state, and
unstably fluidized the gaseous state. Thus, velocity plays the role of temperature, and
magnetization the role of pressure. In the stably fluidized state an object less dense than
the expanded bed floats, and surface waves can propagate across the free interface at
the top of the bed. u denotes superficial velocity, um, minimum fluidization velocity, My
particle magnetization, and p, particle mass density. M) is a function of the applied,
modulating field H; when the field is removed M; = 0 and the stably fluidized regime
disappears. Adapted from Ref. 86.
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stabilization in an applied magnetic field. As a variant of the magnet-
ically stabilized fluidized bed (MSB), the stabilization also prevents bed
instability that usually results in back mixing, bypassing of the fluidizing
fluid and chaotic flow.3” Quantitative agreement of the experimental co-
existence curve with the theory is close compared to that for the ordinary
MSB.®" This is believed due to the strong local polarization that occurs at
the contact region of a pair of highly permeable magnetic particles. The
resultant attractive force between such particles confers a Bingham-type
rheology to the bed which is not modeled in the theory. This complication
is absent in the inverse beds.

7.3.6. Other related phenomena

A number of other multiphase ferrofluid systems are reviewed by Cabuil
and Neveu.®® These include magnetic lamellar phases consisting of a peri-
odic packing of alternate water and ferrofluid layers, mixture of ferrofluid
with liquid crystalline carrier, magnetic vesicles, and magnetic emulsions.
Modulating the alignment of a nematic liquid crystal by doping it with a
small amount of ferrofluid, in principle, can be accomplished using just a
weak magnetic field on the order of 1072 tesla as was first suggested in
the classic paper of Brochard and de Gennes.®® Recent work explores the
synthesis of ferrofluids amenable to the doping.”®

Ferroelectric analogs to ferrofluids conceptually employ a particle such
as barium titanate that is permanently electrically polarized, and would re-
spond to electric fields in the manner that ferrofluids respond to magnetic
fields. However, attempt to produce such a dispersion have been unsuc-
cessful. It is thought that the association of free charge neutralizes the
polarity of the dispersed particles, a process that cannot occur in ferroflu-
ids as magnetic monopoles are not found in nature. In contrast, there is
much interest for technological applications of electrorheological (ER) flu-
ids.”! In these systems larger particles are dispersed in a good insulator
fluid. The polarization is not inherent to the particles but is induced by an
external electric field and arises from the substantial dielectric difference
between the particles and the carrier fluid.

8. Block Co-Polymers

For our last example, we depart from magnetic colloids and granular mag-
netic systems to review the appearance of modulated phases in block
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copolymers (BCP). These are polymeric systems in which each polymer
chain is composed of several homogeneous blocks. Block copolymers ex-
hibit a fascinating variety of self-assembled nanoscale structures with var-
ious types of chain organization. We focus only on the simplest, linear
A-B di-block chain architecture, in which a homogeneous and long polymer
chain of type A is covalently bonded with a B chain.'?!%92795 Composite
materials made by mixing two or more different types of polymers are often
incompatible and undergo phase separation. Such macrophase separation
is hindered in BCP systems due to the chain connectivity.

By properly choosing the polymer blocks, it is possible to design novel
composite materials made of BCP chains with desired mechanical, optical,
electrical and thermodynamical properties.'® For example, by joining to-
gether a stiff (rod-like) block with a flexible (coil) block, one can obtain
a material that is rigid, but not brittle. Moreover, the interplay between
flexibility and toughness can be controlled by temperature. More recently,
BCPs are being explored in applications such as photonic band—gap mate-
rials, dielectric mirrors, templates for nano-fabrications and in other opto-
electronic devices.?:97

Liquid melts of block copolymers or BCP-solvent liquid mixtures form
spatially modulated phases in some temperature range. As an example
we show in Fig. 23 the multitude of modulated phase in the well-studied
polystyrene-polyisoprene (PS-PI) block copolymer system.”® The two im-
portant parameters that determine the phase diagram of the figure are
the mole fraction of one of the two components, f4, and the product of
two parameters, Nx,,, where N = N4 + Np is the BCP chain degree of
polymerization (total number of monomers), and x,, ~ 7! is the Flory
constant. The latter is a dimensionless parameter representing the ratio
between the interaction energy to the thermal energy kpT', and quantifies
the relative interaction between the A and B monomers. Typical values of
X are small compare to unity (about x,, ~ 0.1 for styrene-isoprene).

At high temperatures (low value of Nx, ) the BCP melt is in a disor-
dered liquid state in which the different chains show no particular organiza-
tion. As the temperature is reduced below some critical value (Nx, ~ 10.5
in Fig. 23), the partially incompatibility between the A and B blocks causes
a micro-phase separation into one of several modulated phases. These so-
called meso-phases have spatial modulation in the 10 — 100 nm range and
can have several symmetries. Figure 23 shows the lamellar (LAM), hexag-
onal (HEX), body centered cubic (of group symmetry Im3m) and bicon-
tinuous gyroid (of group symmetry Ia3d) phases, as well as a perforated
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Fig. 23. Nx,p versus fp1 phase diagram for PI-PS di-block copolymers, where fpy is
the mole fraction of the isoprene block. The dash-dot curve is the mean-field prediction
for the instability of the disordered phase. Solid curves are experimental ones and have
been drawn to delineate the different phases observed but might not correspond to precise
phase boundaries. Five different ordered microstructures (shown schematically) have
been observed for this chemical system. Adapted from Ref. 98.

lamellar phase (HPL) that is believed to be a long-lived metastable state,
but not a true, thermodynamic stable phase.

8.1. Modulated periodicity in BCP

How can we understand the self-assembly and stability of various BCP
modulated phases with definite periodicity? While sophisticated theo-
ries?3:99-106 qyite successfully reproduce complex phase diagrams such as
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Fig. 23, we present here a qualitative and heuristic explanation.”? Con-
sider a symmetric di-block copolymer (fa = Na/N = 0.5) whose structure
is that of a lamellar stack as depicted in Fig. 24. The uni-directional period-
icity d is taken as parameter and its value will be determined later. We also
assume that the two blocks have the same monomer size, a. If the A and
B chains were not connected, the coarsening that usually occurs during
phase separation would result in a macro-phase separation (theoretically
with d — 00). However, as the BCP periodicity d increases, the A-B chains
start to stretch and lose entropy. The competition between coarsening and
chain entropy results in a preferred domain size d; this is a characteristic of
all BCP systems. For a lamellar phase with f4 = 0.5, the free energy per
copolymer chain can be written as a sum of two terms

3(d/2)?
fchain = kBT% +o¥ (28>

The first term expresses the entropy cost of stretching an ideal chain (similar
to a Gaussian random walk) of N monomers to span half of the lamellar
period, d/2, from its unperturbed size =aN /2 The second term is the
interfacial energy per chain where o ~ Xi{f is the surface tension (in units of
energy per area), and X is the area per chain at the A/B interface. Because
we consider a di-block polymer melt (i.e. with no solvent), the system is

assumed to be incompressible: the volume occupied by each chain is fixed,

Fig. 24. Schematic representation of a symmetric lamellar phase of di-BCP (f4 = 0.5).
The periodicity dg is twice the thickness of each of the A and B lamellae.
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Vehain = Na® = Xd /2, where a® is the volume of one monomer. Substituting
the incompressibility condition, ¥ ~ d~!, in Eq. (28), the chain free—energy
is minimized with respect to the lamellar thickness d whose optimal value
is

2\ 1/3
do ~ 1.39 (%) aN/3 o MO N2 (29)

where we used the simple scaling dependence of ¢ on x,,. Hence, from a
simple free—energy minimization we find that the lamellae have a preferred
periodicity dy ~ N?/3 that scales as the two-thirds power of the BCP
molecular weight; this should be compared with the unperturbed size ~
N'/2. Hence, this means that the BCP chains in a lamellar phase are
highly stretched due to their partial incompatibility. The prediction of novel
structures using a simple free—energy minimization subject to structural
and composition constraints is an essential element behind the more refined
theories? and is characteristic of all BCP systems.

8.2. Orientation of anisotropic phases by an electric field

As noted previously, block copolymers form heterogeneous composite ma-
terials. Since most polymers are non-conducting dielectrics, a modulated
phase of BCP is a heterogeneous dielectric, with spatially varying dielec-
tric constant that depends on the dielectric constants of the two blocks,
g4 and eg. When an anisotropic BCP phase (such as a lamellar stack or
an hexagonal arrangement of cylinders) is placed in a strong enough ex-
ternal electric field , F, the most apparent effect is an orientation of the
BCP domains in the direction of the external field.'"''7 The term in
the free energy accounting for this effect is proportional to (¢4 — ep)2E2.
In coarse grained models of BCP melts, only the local relative A/B con-
centration is retained. It is represented by a continuous composition vari-
able, ¢(r), that varies between zero (pure B) and one (pure A). The di-
electric constant can be taken as a linear interpolation of the local com-
position ¢: e(r) = ¢(r)ea + (1 — &(r))ep, and its spatial average is
(€) = faca+(1— fa)ep. In the weak segregation limit (x,, = Xx.), the elec-
trostatic energy per unit volume was shown by Amundson and Helfand'0®
to have the form

_ 2 . 2
el v 4 e (30)
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where the sum is taken over all Fourier modes: ¢(r) = >, ¢qcos(q - r).
Minimizing the sum of the electrostatic energy Eq. (30) and the non-
electrostatic BCP free energy produces an orientation transition'®” shown
in Fig. 25. At large enough F field, there is a first—order transition to a
lamellar phase that is oriented in the direction parallel to the E field (the
y axis in the figure). The modulations seen in Fig. 25(b) are typical of the
weak segregation limit and disappear for larger F fields. In other works,

such electric-field orientation was also reported for cylindrical phases.!17-118
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Fig. 25. Calculated contour plots of a symmetric BCP lamellar phase between two
planar electrodes and under external electric field. The electrode surfaces are at y =
+2dp, and the field is in the y direction. The B monomers (colored black) are attracted to
both surfaces. (a) For E—field slightly smaller than the critical field, E = 0.98E., the film
exhibits a perfect parallel ordering. (b) For E-field just above the threshold, E = 1.02F,,
the film morphology is a superposition of parallel and perpendicular lamellae. Adapted
from Ref. 107.

2,

4

8.3. Phase transitions induced by electric fields

It is well known that a drop of ferrofluid placed in a strong magnetic field
elongates into a prolate ellipsoid and then, via a first-order phase transition,
sharply transforms into a needle-like drop.?

This transition also occurs for charged or dipolar liquid drops. Quite
recently a similar phenomenon was observed and modeled in bulk BCP sys-
tems.1197122 The starting point is a cubic (bcc) phase of isolated spherical
drops rich in one of the blocks (say A), embedded in a background of the
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other component (B). As can be seen in Fig. 26, this situation occurs for
asymmetric BCP (f4 # 0.5). When such a cubic phase of spheres (bcc)
is placed in an external E field, each of the spheres elongates in the same
(111) direction of the F field [Fig. 26 (a)]. As the value of the E field
increases, above a critical value E,, the distorted cubic phase undergoes a
first-order phase transition to an hexagonal phase of cylinders pointing also
along the same E-field direction, Fig. 26 (b).
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Fig. 26. Contour plots of a BCP phase in an electric field with f4 = 0.37 and Nx, 5 =
12. At zero E field, the stable phase is a cubic phase (bcc) (not drawn). (a) For
E = 0.98E,, just 2% below the critical field, and oriented along the (111) direction of
the lattice, each of the spheres deforms into a prolate ellipsoid and the becc phase changes
continuously into a phase with an R3m space group symmetry. (c) For E = 1.02E,, just
2% above the critical field, the system undergoes a first-order phase transition into an
hexagonal array of cylinders, also pointing along the E—field direction. Adapted from

Ref. 120.

Using two different computational techniques, the full phase diagram
in the parameter space of fa, x,5 and E can be calculated with semi-
quantitative agreement between the two methods. The resulting phase dia-
gram for a fixed value of f4 = 0.3 is shown in Fig. 27. The distorted cubic
phase has an R3m group symmetry, and undergoes a phase transition to an
hexagonal phase (hex) or a completely disorder phase (dis) depending on
the initial value of the Flory constant, x . Although the full phase diagram
has not yet been measured, some of the observations agree with the model
presented here for the PS-PMMA (polystyrene-polymethylmethacrylate)
system.''® We end this section by mentioning that mobile ionic impuri-
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hex -

X%,

Fig. 27. Phase diagram of block copolymers in an electric field, in the plane defined by
the Flory constant x , and the normalized electric field Ey, for fa = 0.3. The distorted
bce phase, denoted by its space group symmetry as R3m, is bounded by the hexagonal
(hex) and disordered (dis) phases and terminates at a triple point where all three phases
coexist. The solid line is the prediction of an analytical one-mode approximation, whereas
the dashed lines are obtained by a more accurate, self-consistent numerical study. The
axes are scaled by (x¢,Et), which are the values of x,, and E‘o at the triple point.
Adapted from Ref. 121.

ties can have an important effect on the phase transitions and alignment of
modulated BCP phases, and is an active field of current investigations!2%:123

9. Conclusions

This review considered modulated phases in a broad context encompassing
scales ranging from the nano- to the macro-scale in materials as diverse
as solid state metallics, inorganics and organics. Modulations in engineer-
ing systems such as fluidized beds, magnetorheological fluids, and block
copolymers are also discussed. In equilibrated systems, the structure that
develops is often due to a competition between the various energies asso-
ciated with the structure and yields interesting visual patterning. Many
of these patterns can be understood using an energy minimization that re-
lies on Ginzburg-Landau type free energy expansions which preserve the
system symmetry or simple geometric considerations. In addition, some
dissipative structures are considered as well as certain solid state devices
whose structure is fabricated by pattering. The modulating methods are
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complementary to each other with analysis of the dissipative structures re-
quiring a mechanistic approach rather than an energy minimization. Some
of the modulated phases are associated with significant technical applica-
tions, while others are related to biomaterials and biological systems.
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