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Abstract. We propose a model describing liquid-solid phase coexistence in mixed lipid membranes by
including explicitly the occurrence of a rippled phase. For a single component membrane, we employ a
previous model in which the membrane thickness is used as an order parameter. As function of temperature,
this model properly accounts for the phase behavior of the three possible membrane phases: solid, liquid
and the rippled phase. Our primary aim is to explore extensions of this model to binary lipid mixtures
by considering the composition dependence of important model parameters. The obtained phase diagrams
show various liquid, solid and rippled phase coexistence regions, and are in quantitative agreement with
the experimental ones for some specific lipid mixtures.

PACS. 87.16.D- Membranes, bilayers, and vesicles – 64.75.-g Phase equilibria

1 Introduction

In recent years, domain formation in biomembranes and
artificial membranes has attracted great attention in con-
nection to the so-called “raft formation” in biological cell
membranes [1]. It is believed that the appearance of such
domains (rafts) in membranes plays an important role for
various cell functions [2,3]. Beside their interest in biocel-
lular processes, raft formation has a fundamental phys-
ical interest, because it offers a special example of two-
dimensional phase separations coupled to internal and ex-
ternal membrane degrees of freedoms [4]. Using fluores-
cence microscopy or X-ray diffraction techniques, the lat-
eral phase separation between different liquid phases, or
between the solid and liquid phases has been observed for
ternary-component vesicles consisting of saturated lipid,
unsaturated lipid, and cholesterol [5–9]. Although the bi-
ological significance of rafts is not yet fully understood, it
serves as our primary motivation to explore, from a phys-
ical point of view, phase transitions, domains and phase
coexistence in multi-component lipid membranes.

Lateral phase separation in membranes occurs even
for the simpler case of binary lipid mixtures without any
added cholesterol. The coexistence is between liquid-like
(Lα) and solid-like (Lβ′ called “gel”) phases, and it can
be visualized using techniques such as two-photon fluores-
cence microscopy [10]. For example, in a DPPC/DPPE
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lipid mixture, the solid domains exhibit morphologies
such as hexagonal, dumbbell or dendritic shapes [10].
For DPPC/DLPC lipid vesicle, the solid domains appear
to be stripe-like and are monodispersed in their domain
width [11]. Shapes of solid domains found on spherical
fluid vesicles has been also addressed theoretically [12].
By assuming the additivity of stretching and line ener-
gies, the model predicts a phase diagram including cap,
ring and ribbon phase domains on a spherical surface.

Although visualization of domains embedded in fluid
membranes has become possible only recently, the phase
diagram of various binary lipid mixtures in bilayer mem-
branes has been known for some time [13,14]. In a pre-
vious model investigated by some of us [15,16], a cou-
pling between composition and internal membrane struc-
ture was proposed and the resulting phase diagram was
calculated. It includes a coexistence region between Lα

and Lβ′ phases in agreement with experiments on specific
lipid mixtures. However, for some lipids, such as DMPC
or DPPC, another distinct solid-like phase is known to oc-
cur and is called the “rippled” or Pβ′ phase. The unique
feature of this phase is that the membrane shape is spa-
tially modulated while the lipid hydrocarbon tails are
ordered. The specific phase diagrams of DMPC/DPPS,
DPPC/DPPS [17], or DPPC/DPPE [18] mixtures have
been explored in experiments, and show the three phases
(Lα, Lβ′ , Pβ′) together with the coexistence regions
between them. However, these phase diagrams have not
yet been considered theoretically.
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The main objective of the present paper is to provide
a simple model that describes the liquid-solid coexistence
in binary lipid mixtures while considering the possibility
of an intermediate rippled phase. Our starting point is a
model introduced by Goldstein and Leibler (GL) that ac-
counts for the succession of phase transitions as applied
to single-component lipid membranes [19,20]. In the GL
model, the membrane thickness is used as a scalar order
parameter. We combined some of the ideas presented in
the GL model with our own previous model for binary
(or even ternary) lipid mixtures [15,16]. For binary-lipid
mixtures, the model parameters are taken to be depen-
dent on the relative lipid composition, and resulting in
several types of phase diagrams that are in quantitative
agreement with experiments on specific lipid mixtures.

In the next section, we first review the GL model de-
scribing the phase transitions in a single-component lipid
membrane. The corresponding mean-field phase diagram
is obtained in terms of the temperature and membrane
elastic constants. In Section 3, we propose an extension of
the GL model for a two-component lipid membrane, and
calculate the binary phase diagrams. Some discussions and
comparison to other models are discussed in Section 4.

2 Single-component lipid system

In a single-component lipid bilayer, one typically observes
a discontinuous first-order phase transition from the Lα

to the Lβ′ phase as the temperature is decreased. This
is called the “main transition” and is associated with or-
dering of the hydrocarbon tails of the lipid molecules. In
the Lα phase, the hydrocarbon chains are disordered (and
the phase is liquid-like), while they order by stretching
and tilting in the Lβ′ (solid-like) phase. Several theoreti-
cal models have been proposed in the past to describe the
main transition in isolated membranes [21,22].

In other single-component lipid systems, however, a
rippled (Pβ′) phase appears between the Lα and Lβ′

phases for stacked bilayer membranes [23–25]. This phase
is more peculiar and many studies have been devoted to
better understand its modulation wavelength and ampli-
tude [26]. For a stack of lipid bilayers in water (a lamel-
lar phase), the phase diagram as a function of relative
humidity and temperature was reported [27,28]. Several
attempts have been made to describe the rippled phase
theoretically such as those based on a molecular level de-
scription [29,30], or Monte Carlo simulations [31]. In con-
tinuum theories of the rippled phase, different quantities
have been suggested for the order parameter. Examples
are the membrane thickness [19,32] or the configuration
of the hydrocarbon chains (ratio of the trans bonds in the
chains) [33]. In both cases the order parameter is scalar.
More recently, a Ginzburg-Landau theory was proposed by
Chen, Lubensky, and MacKintosh (CLM) who employed a
vectorial order parameter representing the tilt of the lipid
molecules [34,35].

We further discuss the CLM model in Section 4 be-
low, but our own starting point is based on a model pro-
posed by Goldstein and Leibler (GL) for single-component

lipid membranes [19,20]. To describe the main transition
involving chain ordering and stiffening, GL introduced a
dimensionless scalar order parameter of the membrane,
m(r):

m(r) =
δ(r) − δ0

δ0
. (1)

This parameter depends on the actual membrane thick-
ness δ(r), and on the constant membrane thickness δ0 of
the Lα phase. The two-dimensional lateral position within
the bilayer plane is denoted by r. Notice that m encapsu-
lates changes that may occur in several degrees of freedom,
including, for example, the conformations of the hydro-
carbon chains, molecular tilt and positional ordering. In
the present paper, the bilayer nature of the membrane is
not taken into account and the bilayer thickness is simply
taken as a sum of the two monolayer thicknesses. The role
of the bilayer structure in the formation of rippled phases
was explicitly considered in previous models [36,37]. Since
the shape or height variable of the membrane is ignored in
the present treatment, we note that our model can be bet-
ter applied to supported bilayer membranes. In fact many
of the recent experiments mentioned before are for vesi-
cles, and the shape variable is an important factor even
in the limit of large vesicles. An external degree of free-
dom or shape deformation of phase-separated membranes
is explicitly considered such as in reference [38].

For simplicity, we assume that the rippled phase is
spatially modulated only in the x-direction, and ignore
two-dimensional rippled phases such as the square lattice
phase [34,35] or the hexagonal phase [39,40]. For an iso-
lated lipid bilayer membrane, the stretching free energy
per lipid molecule is [19]
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A very similar free energy was proposed by Marder et

al. [32]. The first three terms are the Landau expansion
in powers of the order parameter m. Only a2, the second-
order term coefficient, has an explicit temperature depen-
dence: a2 = a′

2(T−T ∗) with T ∗ being a reference tempera-
ture. (It actually is the critical temperature in the absence
of the cubic term.) Because the Lβ′ → Lα phase transi-
tion is known to be first-order, a3 is taken to be negative,
whereas a4 is always positive to ensure stability of this free
energy expansion. The next two terms are related to the
lowest-order gradients of m. (Note that the x-coordinate
is rescaled in units of a molecular length scale ℓ so that
x → x/ℓ is dimensionless.) These gradient terms repre-
sent elastic out-of-plane undulations of the membrane and
their coefficients are the elastic constants C and D, respec-
tively. The coefficient C can be either positive or negative,
but D is always positive in order to ensure stability of the
expansion. The physical origin of a negative C value can
be related to the coupling between the conformation of
the chains and the curvature of the lipid/water interface,
or to interactions between the polar head-groups of the
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lipids and water [19]. This point will be further discussed
later in Section 4. In the absence of spatial gradient terms
in equation (2) and if m(x) is constant in space, the main
transition temperature Tm is calculated from the condi-
tions fst = 0 and dfst/dm = 0. It is related to T ∗ by

Tm = T ∗ +
2a2

3

9a′

2a4
. (3)

With nonzero a3, a first-order melting transition at Tm

preempts the critical point at T ∗.
When C > 0, the equilibrium phase is always homoge-

neous in space; either as a Lβ′ or Lα phase. On the other
hand, for C < 0, the rippled phase with a characteristic
wave vector q∗ = (−C/2D)1/2 (in unit of ℓ−1) may dom-
inate over the two other phases. (It should be noted that
C < 0 is only a necessary condition to have the rippled
phase as we will discuss below.) To obtain the mean-field
phase diagram, we employ the single-mode approximation
in which the rippled phase is described by the most dom-
inant wave vector q∗, only. This approximation is valid
near the phase transition point where the segregation ten-
dency between the two lipids is weak enough. The order
parameter m can be written as [32]

m = m0 + m1 cos(q∗x), (4)

where m0 = 〈m〉 is the spatial average of m, and m1 is
the amplitude of the single q∗-mode of the rippled phase
taken to lie arbitrarily in the x-direction.

By substituting equation (4) into equation (2) and tak-
ing the spatial average over one period, we obtain
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The two homogeneous liquid and solid phases, Lα and Lβ′ ,
respectively, are characterized by m1 = 0; while m0 = 0 in
the disordered liquid Lα phase, and is non-zero in the solid
Lβ′ phase. Among the three phases, only the Pβ′ phase is
characterized by a modulating amplitude, m1 �= 0.

The mean-field phase diagram is obtained by minimiz-
ing equation (5) with respect to both m0 and m1, and com-
paring the relative stability of the three relevant phases. In
Figure 1, we present an example of such a phase diagram,
as a function of the (negative) effective elastic constant C
and temperature T plotted in degrees Celsius. The param-
eter C can be a function of relative humidity (fraction of
water content in the lamellar phase) as discussed below.
The phase diagram is calculated for a choice of system
parameters which reproduce the main transition temper-
ature of DMPC at Tm = 38 ◦C: a′

2 = 2.4 × 10−21 J K−1,
a3 = −1.1 × 10−18 J, a4 = 2.2 × 10−18 J, T ∗ = −13 ◦C
(260K), and D = 2.0 × 10−18 J. These values (except
D > 0 whose value is less important) are taken from
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Fig. 1. Mean-field phase diagram of a single-component lipid
membrane as a function of the (negative) elastic constant C

and temperature T (in degrees Celsius). The liquid (Lα), solid
(Lβ′) and rippled (Pβ′) phases are separated from one another
by first-order phase transition lines which meet at a triple point
(marked by a full circle): Ctr = −3.33 × 10−19 J, Ttr = 38 ◦C.
The parameters used to calculate this phase diagram are given
in the text.

reference [20]. By inserting the above Landau coefficients
into equation (3), it can be readily checked that the main
transition temperature of DMPC Tm = 38 ◦C (Fig. 1) is
obtained.

In Figure 1, three first-order phase transition lines
separate the three phases and meet at a triple point,
Ctr = −3.33 × 10−19 J. Due to the first-order nature of
the Lβ′ → Lα phase transition, it can be argued, on
general grounds, that the triple point Ctr has to be lo-
cated at non-zero values of C. For small magnitude of C,
|C| < |Ctr|, the horizontal first-order phase transition line
occurs at T = Tm = 38 ◦C and is independent of C. An
increase in temperature (as long as |C| < |Ctr|) will melt
the solid phase Lβ′ directly into the liquid phase Lα at
Tm. But for negative and large enough magnitude of C,
|C| > |Ctr|, any increase in temperature will cause a se-
quence of phase transitions: first the solid phase Lβ′ melts
into the Pβ′ phase, and only then, upon further increase
of the temperature, the Pβ′ phase will make a phase tran-
sition into the liquid phase Lα. It is also apparent from
the figure that the region of the Pβ′ phase expands at the
expense of the uniform liquid and solid phases as |C| in-
creases. This means that the phase transitions Lβ′ → Pβ′

and Pβ′ → Lα (at constant C) occur at larger temperature
deviations from Tm as |C| increases.

The phase diagram of Figure 1 essentially reproduces
all the experimental facts observed for single-component
lipid membranes. It qualitatively agrees with the observed
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phase diagram of a lamellar phase of DMPC, when the
negative elastic constant C is taken to be proportional to
the relative humidity [27,28]. Although the exact depen-
dence of the elastic constant C on humidity is not known,
the former can possibly be reduced by increasing hydra-
tion. For another lipid, DPPC, the Pβ′ phase is found
experimentally to occur at temperatures around 37 ◦C (in
Ref. [18] the precise temperatures for the Lβ′ → Pβ′ and
Pβ′ → Lα phase transitions have not been fully reported),
while the rippled phase is not observed for a stack of
DPPE lipid bilayers. Such a difference in the lipid phase
behavior can be qualitatively attributed to different values
of the elastic constant C.

3 Two-component lipid mixtures

In this section, we extend the above single-component
model to membranes consisting of a binary lipid mixture.
We employ a similar approach as was used in our previ-
ous study [15,16], and consider the coupling of the melt-
ing phase transition with a lateral phase separation in the
mixed membrane.

A binary mixed membrane is modeled as an incom-
pressible A/B mixture of φ mole fraction of lipid A and
(1 − φ) fraction of lipid B. For simplicity, we assume the
same area per molecule for both species and ignore any
lipid exchange with the surrounding solvent. In general,
the two lipids will have different main transition tempera-
tures originating from different molecular parameters such
as chain length, degree of saturation and hydrophilic head
group.

The total free energy per lipid, ftot = fst + fmix, com-
prises: i) the chain stretching free energy fst given by equa-
tion (2), and ii) the free energy of mixing, fmix. The latter
energy per lipid molecule is the sum of the mixing entropy
and enthalpy. It can be written within the Bragg-Williams
(mean-field) approximation as

fmix = kBT [φ log φ+(1−φ) log(1−φ)]+
1

2
Jφ(1−φ), (6)

where kB is the Boltzmann constant, and J > 0 is an
attractive interaction parameter between the lipids that
enhances lipid-lipid demixing.

For a binary mixture the free energy fst is assumed
to have the same functional dependence on the effective
elastic constant C and the reference temperature T ∗. Al-
though these two parameters depend on the lipid compo-
sition φ, the precise dependence cannot be calculated from
such a phenomenological approach. Alternatively, we pro-
ceed by further assuming the simplest linear interpolation
between the two pure lipid limiting values:

C(φ) = φCA + (1 − φ)CB, (7)

T ∗(φ) = φT ∗

A + (1 − φ)T ∗

B, (8)

where CA and CB are the elastic constants, and T ∗

A and
T ∗

B are the reference temperatures of lipid A and B,
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Fig. 2. Calculated mean-field phase diagram of a binary
lipid mixture as a function of their relative composition φ

and temperature T . The parameter values are chosen to fit
DPPC/DPPE mixtures (φ = 0 represents pure DPPC and is
denoted by a subscript “B”): CA = −2.0 × 10−19 J, CB =
−5.2 × 10−19 J, T ∗

A = 9 ◦C, T ∗

B = −15 ◦C, and J = 1.45 ×

10−20 J. All other parameter values and definitions of the dif-
ferent phases are the same as in Figure 1. The critical point
is indicated by a full circle and occurs at Tc = 21.3 ◦C. The
horizontal dashed line indicates the three-phase coexistence at
the triple point, Ttr = 42.0 ◦C.

respectively. The other elastic constant D, as well as a3

and a4 in equation (2) are assumed to be the same for the
two lipids because the important properties of the lipids
are mostly reflected in the choice of their C and T ∗ pa-
rameter values. As for all other model parameters, we use
hereafter the same values listed in the previous section.

The total free energy ftot = fst + fmix as a function
of m and φ is now readily available by substituting equa-
tions (7) and (8) into equation (2). There is an explicit
coupling between the two order parameters, m and φ orig-
inating from the free energy fst = fst(m,φ). Note that the
first term in equation (2) and equation (8) lead to a cou-
pling term which scales as φm2. Another less interesting
term is φ2m which simply renormalizes the interaction
parameter J of fmix. After minimizing ftot with respect
to m0 and m1, the two-phase coexistence region in the
(T, φ)-plane is calculated by using the common tangent
construction to account for the constraint value of the rel-
ative concentration φ.

By properly choosing the model parameters, we at-
tempt to reproduce the binary phase diagram of several
lipid mixtures, the first being that of DPPC/DPPE [18]
shown in Figure 2. Since a pure DPPE membrane does not
show experimentally the rippled phase, its elastic constant
is chosen as CA = −2.0×10−19 J. Namely, below the triple
point Ctr (Fig. 1). The DPPE reference temperature T ∗

A is
calculated from equation (3) with the same values for the
Landau coefficients as before, by fitting its main transition
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temperature to the observed one of Tm = 60 ◦C. On the
other hand, the elastic constant of DPPC is chosen as
CB = −5.2 × 10−19 J (above Ctr) so that the Pβ′ phase
appears between the Lβ′ and Lα phases. The reference
temperature of DPPC is set as T ∗

B = −15 ◦C, correspond-
ing, from equation (3), to a Lβ′ → Lα transition tem-
perature Tm = 36 ◦C. This temperature is not available
from experiments but lies in-between the experimentally
observed Lβ′ → Pβ′ phase transition temperature at 32 ◦C
and the Pβ′ → Lα one at 40 ◦C.

All the above parameter values are used to calcu-
late the binary phase diagram fitting the DPPC/DPPE
mixture. The relative composition φ is chosen such that
φ = 0 corresponds to pure DPPC, while φ = 1 to pure
DPPE. In addition, the interaction parameter is set as
J = 1.45 × 10−20 J. When the temperature is relatively
low, there is a coexistence region between two Lβ′ phases

(denoted by L
(1)
β′ +L

(2)
β′ ). This low-temperature coexistence

terminates at a critical temperature, above which there is
only one Lβ′ phase for the entire range of composition φ.
It should be noted, however, that the appearance of the
critical point between the two “solid” phases is an arti-
fact of the model. As the temperature is further increased,
the Pβ′ phase appears close to the pure DPPC axis. It is
bound by a coexistence region with the Lβ′ phases as well
as with another (much smaller in its extent) coexistence
region with the Lα phase. This latter region is very small
on the scale of the figure and collapses almost into a line.
These two coexistence regions terminate at a triple point
temperature Ttr at which all the three phases coexist. For
even higher temperature, T > Ttr, the rippled phase dis-
appears and the only coexistence region is between the Lα

and Lβ′ phases.

The calculated phase diagram is in quantitative agree-
ment with the experimental one for DPPC/DPPE mix-
tures (e.g., Fig. 7 of Ref. [18]). Even the coexistence be-
tween the two solid phases is alluded to in reference [18]. A
similar type of phase diagram was obtained for mixtures of
DMPC/DPPS and DPPC/DPPS [17]. In these lipid mix-
tures, both DMPC and DPPC exhibit the rippled phase,
while pure DPPS undergoes a direct transition from the
Lβ′ to Lα phases similar to DPPE.

An even stronger lipid-lipid segregation can be mod-
eled by increasing the value of the lipid interaction pa-
rameter to J = 1.85 × 10−20 J, while keeping all other
parameter values unchanged. In the resulting phase dia-
gram of Figure 3, the lower coexistence region between the
two Lβ′ phases penetrates the other coexistence regions.
Such a phase diagram resembles that of DEPC/DPPE
lipid mixtures [13]. This combination of lipids have a
strong segregation tendency because both head and tail
moieties are different. In the calculated phase diagram,
there are three triple points indicated by the horizontal
dashed lines. The rippled phase can now coexist with ei-

ther of the Lβ′ (regions Pβ′ + L
(1)
β′ or Pβ′ + L

(2)
β′ in the

figure) as well as with the Lα phase (Pβ′ + L
(1)
α ). There is

also a two-phase coexistence region between the two liquid

phases (L
(1)
α +L

(2)
α ). The three-phase coexistence between
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Fig. 3. Calculated mean-field phase diagram of a binary lipid
mixture as a function of their relative composition φ and tem-
perature T . The parameters are the same as in Figure 2 except
J = 1.85×10−20 J. The critical point is located at 62.1 ◦C, and
three triple points occur at 35.6, 41.3, and 56.3 ◦C, respectively.
This choice of model parameters is in agreement with experi-
mental phase diagram of DEPC/DPPE mixture where φ = 0
represents pure DEPC.

the two Lα phases and the Lβ′ , and the existence of the
critical point have been indeed observed for DEPC/DPPE
lipid mixtures [13].

In Figures 4 and 5 we calculate the phase diagrams
in situations where each of the two pure lipids exhibit a
rippled phase between their corresponding Lα and Lβ′

phases. Hence, we choose the magnitudes of the elas-
tic constant to be larger than |Ctr| of Figure 1: CA =
−5.5 × 10−19 J and CB = −6.5 × 10−19 J. The choices of
the reference temperatures T ∗

A and T ∗

B, as well as all other
parameters, is the same as in Figures 2 and 3. The interac-
tion parameter is taken as J = 1.45× 10−20 J in Figure 4,
and have a somewhat higher value, J = 1.85 × 10−20 J,
in Figure 5. In the phase diagram of Figure 4, one region
of the rippled phase extends throughout the entire range
of the lipid composition. Above and below this region,
the rippled phase coexists with the Lβ′ and Lα phases.
At low temperatures, another coexistence region can be
seen between the two Lβ′ phases. For a larger interaction
parameter J (Fig. 5), these coexistence regions merge to
form a large two-phase region, and there are four triple
points. Here we see a new coexistence between Lα and

L
(2)
β′ phases which does not exist in Figure 4. Although

such more complex phase diagrams have not been yet re-
ported in experiments, we expect that they can be found
in the future by properly choosing the lipid mixtures. One
possible choice of lipids that may give rise to such a phase
behavior is the DPPC/DMPC mixture. Both lipids exhibit
the rippled phase between their Lβ′ and Lα phases.
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Fig. 4. Mean-field phase diagram of a binary mixture of two
lipids as a function of the relative composition φ and temper-
ature T . All parameters are the same as in Figure 2 except
CA = −5.5×10−19 J and CB = −6.5×10−19 J. The lipid inter-
action parameter is set to be J = 1.45 × 10−20 J. The critical
point is located at 21.3 ◦C as in Figure 2.

4 Summary and discussion

In this paper we proposed a model describing the liquid-
solid coexistence region in membranes composed of a
binary-lipid mixture. We addressed in particular the pos-
sible existence of a rippled phase between the liquid and
solid ones, and its effect on the global phase diagrams.
In order to incorporate the possibility of a rippled phase,
we use a model previously proposed for single-component
membranes by Goldstein and Leibler (GL) [19,20]. Their
main purpose was to present a model describing the ly-
otropic lamellar phases of lipid bilayers as stacks of in-

teracting membranes. Here we have shown explicitly that
the GL lipid stretching energy of an isolated membrane ex-
hibits the sequential phase transitions Lβ′ → Pβ′ → Lα by
increasing the temperature. We further extend the single-
component model and apply it to binary lipid mixtures
assuming that the elastic parameter C as well as the ref-
erence temperature T ∗ depend linearly on the composi-
tion of one of the lipids. The calculated phase diagrams
are in quantitative agreement with the experimental ones
for specific lipid mixtures. We have also predicted other
types of phase diagrams, which have yet to be checked
experimentally for other lipid mixtures.

Several points merit further discussion. In Section 2,
we choose the relative membrane thickness as the scalar
order parameter to describe the membrane phase transi-
tions [19,20]. In another model proposed by Chen, Luben-
sky and MacKintosh (CLM), a two-dimensional molecu-
lar tilt was used as a vector order parameter [34,35]. In
their model, a coupling mechanism between the membrane
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Fig. 5. Mean-field phase diagram of a binary mixture of two
lipids as a function of the relative composition φ and temper-
ature T . All parameters are the same as in Figure 4 except
J = 1.85 × 10−20 J. The critical point is located at 62.1 ◦C as
in Figure 3, and four triple points occur at 30.8, 47.1, 52.2, and
60.0 ◦C, respectively.

curvature and the gradient in molecular tilt was consid-
ered. As a result, various types of rippled phases with
different inplane symmetries have been predicted.

In spite of the success in predicting, e.g., the square
lattice phase that was found in the experiments [41], the
CLM model suffers from some deficiencies which makes it
inappropriate to be used in our study. Within the CLM
model, the Lβ′ → Pβ′ phase transition cannot be induced
only by changing the temperature, while keeping all other
system parameters fixed. In other words, the phase bound-
aries in the CLM model is parallel to the temperature
axis (see, for example, Fig. 9 in Ref. [35]). This result
is essentially due to the vector nature of the CLM order
parameter [42]. Unfortunately, such a phase behavior is
not in accord with the experimental phase diagrams [27,
28], where the Lβ′–Pβ′ phase boundary depends on tem-
perature. This is the main reason why we have used a
scalar-order parameter giving us the phase diagram as in
Figure 1.

The second problem is that the CLM model predicts
a second-order phase transition between the Lα and Lβ′

phases. However, the main transition is known to be first-
order according to various experimental investigations [19,
20], as was previously mentioned in reference [41]. A pos-
sible way out would be to include the 6th-order term of
the tilting vector in the CLM Landau expansion, but this
lies beyond the scope of the present work.

The two problems mentioned above do not exist in the
GL model. However, since the choice of a single scalar as
the order parameter is a major simplification, many de-
grees of freedom of the lipid molecules are not properly
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taken into account. For example, one cannot distinguish
between the similar Lβ′ and Lβ phases because the scalar-
order parameter m cannot model the molecular tilt char-
acteristic of the Lβ phase. With this choice of order pa-
rameter, one can only distinguish between a dilute and a
condensed phase. Because the membrane thickness does
not account for the different symmetries of the Lα, Lβ′ ,
and Pβ′ phases, m cannot represent any crystalline order,
and the solid phase is not properly described here. Hence
the appearance of the critical points between the two Lβ′

phases in Figures 2 and 4 is an artifact of our model.
Although this problem is remedied in the CLM model,
the GL model captures the essential features of the struc-
tural transitions in lipid membranes in the presence of the
rippled phase. Using the latter model is sufficient to re-
produce even quantitatively some of the global features of
the phase diagrams of binary lipid mixtures, in agreement
with experiments.

In equation (2) we assumed for simplicity that the rip-
pled phase is modulated spatially only in the x-direction.
In general, one can consider the full (x, y)-inplane modula-
tions as treated in the CLM model [34,35]. This can be ac-
complished by including in equation (2) additional gradi-
ent terms in the y-direction. The resulting phase diagram
will be more complex because there can be more than one
rippled phase. Although a two-dimensional square lattice
phase has been identified for a single-component DTPC
lipid [41], it has not yet been found in binary lipid mix-
tures. We also note that the one-dimensional modulation
of the order parameter expressed by equation (4) is sim-

ilar to the P
(2)
β′ phase in CLM, with the main difference

that we include a non-zero average term m0. The physical
interpretation of the order parameter in the two models
differs as is explained above.

Finally, we discuss why the elastic coefficient C can
take negative values in equation (2) to get the Pβ′ phase
at equilibrium. In Section 2, we have mentioned that the
coupling between the conformation of the chains and the
curvature of the membrane may be a possible reason [19].
In general, if there exists a coupling between an additional
elastic degree of freedom and the gradient of the order
parameter, the elastic constant C will be reduced. This
situation can be expressed by including the following two
additional terms in the free energy:

fel =
1

2
Bρ2 − γρ

(

dm

dx

)

. (9)

Here ρ represents some elastic degree of freedom, B is
another positive elastic constant, and γ is a coupling con-
stant. For example, ρ can be taken as the curvature of the
lipid/water interface, and B is the bending rigidity of the
membrane. In the second term, ρ is linearly coupled to
the gradient of m which induces a spontaneous value of ρ.
Minimizing fel of equation (9) with respect to ρ, we get

ρ =
γ

B

(

dm

dx

)

. (10)

This means that the equilibrium value of ρ is proportional
to the gradient of m. By substituting this equation back

into equation (9), the effective elastic constant becomes

C → C − γ2/B, (11)

in equation (2). Hence C is reduced by γ2/B and can
reach negative values when the coupling constant γ is large
enough (or when the elastic constant B is small enough).
Although to suggest specific molecular mechanism to ac-
count for this added elastic degree of freedom goes beyond
the scope of the present paper, such a mechanism would, in
principle, explain the negative value of the effective elastic
constant, C.
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