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We study the contribution of polyelectrolytes in solution to the bending moduli of charged

membranes. Using the Helfrich free energy, and within the mean-field theory, we calculate the

dependence of the bending moduli on the electrostatics and short-range interactions between the

membrane and the polyelectrolyte chains. The most significant effect is seen for strong

short-range interactions and low amounts of added salt where a substantial increase in the

bending moduli of order 1 kBT is obtained. For short-range repulsive membranes, the

polyelectrolyte contribution to the bending moduli is small, of the order the 0.1 kBT up to at most

1 kBT. For weak short-range attractions, the increase in membrane rigidity is smaller and of less

significance. It may even become negative for a large enough amount of added salt. Our numerical

results are obtained by solving the adsorption problem in spherical and cylindrical geometries. In

some cases, the bending moduli are shown to follow simple scaling laws.

1. Introduction

The study of interactions between charged and flexible

membranes and polyelectrolytes (PEs) in solution has gener-

ated a lot of interest in recent years, partly motivated by the

importance of such interactions in biology. Understanding

the interaction between charged macromolecules such as

DNA, RNA and various proteins and biological cell mem-

branes (modelled as charged and flexible interfaces) sheds

light on many important cellular processes. Besides its

biological significance, the adsorption of PEs onto charged

membranes raises interesting questions about the interplay

between short-range and electrostatic (long range) interactions

in these multi-component charged systems. Recent works

include numerical and analytical calculations1–11 and scaling

arguments.1,4,5,12,13

In our previous work,14 three regimes have been found for

polyelectrolyte adsorption. (i) When the short-range interac-

tion between the membrane and the PE chains is repulsive,

the surface charge is low and the ionic strength of the solution

is high, the polymers deplete from the charged membrane.

(ii) For higher surface charges, or lower ionic strength, the

polyelectrolytes adsorb on the charged membrane and screen

the surface charges. (iii) When the short-range interactions

between the membrane and the PE chains are attractive, the

PE chains adsorb on the membrane, and the adsorbed layer

carries a higher charge than that of the bare membrane.

In this situation, the polyelectrolytes over-compensate the

bare surface—a phenomenon of practical importance in

the build-up of multilayers of alternating cation and anion

polyelectrolytes.15

The flexibility of fluid surfaces and membranes has been

studied in various cases, and it depends on the lipid

composition, tail length and molecular tilt. In the case of

charged and flexible membranes immersed in a pure ionic

solution (no macromolecules),16–27 the electrostatic contribu-

tion was found to increase the membrane rigidity and the

addition of salt to decrease it. In a different set of studies, the

adsorption of neutral polymers on membranes has been

investigated theoretically28–34 and in experiments.35–38 It was

found that the addition of polymers reduces the membrane

rigidity. In all those cases, the contribution of the solution to

the bending rigidity was found to be of the order of 0.1–1 kBT,

which is low in comparison to the intrinsic monolayer bending

rigidity of approximately 10 kBT. We note that in special cases,

by adding a co-surfactant (alcohol) the membrane bending

rigidity can be brought down to values of roughly 1 kBT.39

In the present work, we study the combined system of

charged chains interacting with oppositely charged and flexible

membranes. Our study is similar in spirit to that done for

DNA–lipid systems,40,41 where the DNA was modelled as a

rigid and charged rod. The main difference is that our charged

macromolecules are flexible. The above-mentioned three

regimes dictate a different contribution to the membrane

rigidity and stability. For short-range repulsive membranes,

the membrane rigidifies due to its charges, while its rigidity

decreases with the increase of the polyelectrolyte charge.

For weak short-range interactions, the contribution to the

membrane rigidity decreases and may become slightly nega-

tive, while for strong short-range attractions the membrane

becomes rigid again. In most cases, the magnitude of the

contribution to the bending rigidity is of the same order of

magnitude as that of neutral polymers or pure salt solutions,

namely 0.1 kBT up to 1 kBT. However, we show in this

paper that for strong enough short-range attractions a more

significant contribution, of order kBT or higher can be

obtained.
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2. Mean field equations

2.1 Free-energy formulation

Consider a bulk aqueous solution containing poly-

electrolyte (PE) chains, along with their counter ions and

added salt. A curved and charged membrane is placed

at the origin |r| = 0. In order to extract the membrane

elastic moduli, we take the membrane shape to be either

spherical or cylindrical, with radius R. The free energy

for the combined system has been formulated before,1

and can be written as a sum of four contributions Ftot =

Fpol + Fions + Fel + Fint.

The polymer free energy, Fpol, is:

Fpol~

ð
V

dr
a2

6
+wj j2 zS wð Þ{S wbð Þzm w2{w2

b

� �� �
(1)

where a is the monomer size, w2
b is the monomer bulk

concentration, w2 is the local monomer concentration. The

free energy is given in terms of kBT, and the integration is

carried out over the entire volume outside the sphere/cylinder,

|r| . R. The first term in eqn (1) accounts for the chain

elasticity. The second and third terms account for the excluded

volume interactions in the solution and in the bulk,

respectively:
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� �
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where v is the excluded volume coefficient. For w2 % a23

the above expression can be expanded to the well known
1

2
v w2{w2

b

� �2

, which is commonly used for the excluded volume

interaction.

The small ion contribution to the entropy is:

Fions~
X
i~+

ð
V

dr ci log
ci xð Þ

ci
b

{ci xð Þzci
b

" #
(4)

where c¡ and c¡
b are the local and bulk concentrations of the

¡ small ions, respectively. The third contribution to the free

energy, the electrostatic free-energy, is:

Fel~

ð
V

dr cz{c{zf w2
� �

f{

1

8plB

ð
V

dr +fj j2 z

ð
rj j~R

dAsf

(5)

where f ; ey/kBT is the renormalized electrostatic potential,

f is the fraction of charged monomers and lB ; e2/ekBT

is the Bjerrum length. The first integral accounts for the

interactions between the positive ions, negative small ions

and the monomer charges with the electrostatic potential.

The second integral accounts for the self-energy of the

electrostatic field and the third to the interaction between

the surface charge and the electrostatic potential. Note that

the third integral is taken only over the charged body surface,

|r| = R.

The last part of the free energy is the short-range interaction

of the PE chains with the membrane:

Fint~{
a2

6d

ð
rj j~R

dA w2
s (6)

where ws ; w(|r|=R) is the monomer concentration on the

surface. This term stands for a general short-range interaction,

where the interaction strength is determined by the phenom-

enological constant d21, which has dimensions of inverse

length.

Minimization of the total free energy Ftot = Fpol + Fions +

Fel + Fint yields the following mean-field equations, expressed

in terms of a dimensionless variable g ; w/wb:

+2f = l{2
D sinh f + k2

m (ef 2 g2) 2 4plBsd(|r| 2 R) (7)

a2

6
+2g~L gð Þg{f fg{

a2

6d
d rj j{Rð Þg (8)

where lD = (8plBcsalt)
21/2 is the Debye–Hückel length scale for

the screening of the electrostatic potential in the presence of

added salt and k{1
m = (4plBw2

bf)21/2 is the corresponding length

for the potential decay due to counterions. Note that the actual

decay of the electrostatic potential is determined by a

combination of salt, counter ions and polymer screening

effects. The excluded volume interaction is taken into account

using the function:

L(g) = log(1 2 w2
ba3) 2 log(1 2 w2

ba3g2) +

(v 2 a3) w2
b(g2 2 1)

(9)

which represents the full excluded volume interaction.

The solution of eqn (7) and (8) requires four boundary

conditions. Two of the boundary conditions are taken far from

the membrane, where the monomer concentration and

electrostatic potential retrieve their bulk values g(|r| A ‘) A
1 and f(|r| A ‘) A 0. The other two boundary conditions

account for the interaction with the charged membrane, and

can be obtained by integrating eqn (7) and (8) from |r| = R to a

small distance from the membrane, yielding:

n̂n:+fj rj j~R ~{4plBs (10)

n̂n:+gj rj j~R ~{d{1gs (11)

Eqn (10) is the usual electrostatic boundary condition for a

given surface charge density, while eqn (11) is the Cahn–de

Gennes boundary condition,42 which is often used for

calculating polymer profiles.29–31

For large R, the total free-energy can be expanded around

its flat surface value in the following way:44

Ftot~

ð
rj j~R

dA f0z
1

2
dk c1zc2{

2

R0

� �2

zdkGc1c2

" #
(12)

where Ftot is the total free energy (in units of kBT), f0 is the free

energy per unit area of a solution in contact with a planar

surface (R A ‘) that has the same system parameters, and c1,

c2 are the radii of curvature for the membrane. For spherical

surfaces the radii of curvature are c1 = c2 = 1/R, while for a
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cylindrical surface c1 = 1/R, c2 = 0. The parameters dk and dkG

are the contributions of the PE (and salt) solution to the mean

and Gaussian curvature moduli of the membrane, respectively,

in units of kBT. Namely, k = k0 + dk and kG = k0
G + dkG include

the intrinsic values as well as the contributions coming from the

solution. Throughout this paper we will consider only the changes

in the elastic moduli k, kG with respect to their bare values.

An increase in the mean curvature modulus dk increases the

membrane rigidity, while an increase in the Gaussian modulus

dkG makes saddle points on the membrane more favorable.

The parameter R0 is the radius of spontaneous curvature for

the membrane, which is dependent on the exact chemical com-

position of the membrane. For a positive R0, the membrane

bends towards the external solution, while for negative R0 it

bends away from the solution. In the case of a bilayer mem-

brane, where the same solution is in contact with both leaflets

of the membrane, the spontaneous curvature vanishes due to

symmetry. In this paper, we do not calculate the spontaneous

curvature but rather focus on the changes to the bending

moduli dk and dkG.

2.2. Numerical procedure

Eqn (7–11) are solved numerically for the cases of a charged

sphere and a charged cylinder. The numerical procedure

follows the relaxation scheme,43 as was described in previous

publications.4,5 For each solution, we calculate the total free

energy per unit area for the cases of a spherical membrane fS

and a cylindrical membrane fC. The contributions of the

polyelectrolyte solution to the mean and Gaussian curvatures

are then calculated by expanding fC, fS to second order in 1/R:

fS~f0z
AS

R
z

BS

R2
(13)

fC~f0z
AC

R
z

BC

R2
(14)

The contributions of the solution to the curvature moduli

are given by:

dk = 2BC (15)

dkG = BS 2 4BC (16)

A surface is stable under long wave bending fluctuations

only when k . 0, and against spontaneous vesiculation

(topological change) when 2k + kG . 0.24 In the following we

show that the contribution of the PE solution to the stability of

a charged surface depends on the amount of added salt and

has a non-monotonic dependence on the short-range interac-

tions between the membrane and the polyelectrolyte.

3. Results

We find large contributions, of the order of 1 kBT, to the

surface bending moduli for the case of strong short-range

attractive surfaces. For weaker short-range interactions and

for repulsive surfaces, the contribution is smaller, of the order

of 0.1–1 kBT. We discuss first the strong repulsive and strong

attractive surface limits, and then turn to the intermediate

case, where the contribution to the bending rigidity is less

significant. We present analogies and scaling calculations to

explain the different regimes.

3.1. Strong short-range attractive membranes

In previous publications,5,6 the adsorbed amount of PEs as

well as the layer width were studied in detail for short-range

attractive surfaces. The adsorbed PE charge was shown to

exceed significantly the bare surface charge for strong short-

range interactions, and to exceed it mildly for weak short-

range interactions. The width of the adsorbed layer, on the

other hand, depends on the shorter of the two adsorption

length scales: (i) d, the length scale for short-range attraction

Fig. 1 The d21 dependence of (a) dk and (b) dkG is presented for low added salt concentration (csalt = 0.1 mM). Other parameters are |s| =

0.001 Å22, a = 5 Å, f = 0.5, v = 50 Å3, w2
b = 1028 Å23, T = 300 K and e = 80. For large d21, we see a significant increase in the magnitude of both dk

and dkG, amounting to several kBT, which is very significant in comparison to normal membrane curvature moduli.
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from eqn (11), and (ii) j:a

	 ffiffiffiffiffiffiffi
vw2

b

q
, the Edwards correlation

length for neutral polymer adsorption. In our model, we use an

almost theta solvent 0 , vw2
b % 1, so we assume that the shorter

length scale is always d % j. The increase in short-range attractive

interactions, in this case, decreases the adsorbed layer width.4,5 The

combined charge of the PE–membrane complex is, therefore,

opposite to the initial surface charge, and its magnitude may be

much higher than the initial membrane charge. This charge is

distributed within a layer of width d close to the surface.

Our focus in this section is on the low salt case. In Fig. 1

we show the dependence of k and kG on the short-range

interaction parameter d21 for low salt conditions. For strong

short-range attractions, namely d , 2 Å, the calculated dk

is positive and increases strongly, reaching values of several

kBT. The dkG is negative, and shows a stronger increase

with d21 than the corresponding dk. The contribution to

the vesiculation stability, 2dk + dkG, in this case can be seen

to be negative for high d21, leading to destabilization of

the surface. For lower (but positive) d21, the contribution

to 2dk + dkG is positive, and thus enhances the membrane

stability.

These results can be explained by the following argument.

When the adsorbed layer width is smaller than the electrostatic

screening length, the membrane–PE complex can be viewed as

a renormalized charged surface, containing both the bare

surface charges and the adsorbed PE charges, in a weak ionic

solution. The renormalized surface interacts with the ionic

solution in the same manner as a bare membrane.16–24 The

strong increase in the surface charge and the lack of small ion

screening (low salt) cause the surface fluctuations to be

strongly unfavorable, making dk positive. This allows sub-

stantial increase in the magnitude of dk, dkG, amounting

to several kBT, which is a significant contribution to the

membrane curvature moduli, as can be seen in Fig. 1. We note

that, as the renormalized surface charge increases, the value of

dk should approach the low salt limit for charged surfaces in

pure ionic solutions (no PE) dk A lD/(2plB) . 7 kBT (see

Fig. 1).24 However, this limit is still higher than our numerical

results for the PE–membrane complex.

The crossover between positive and negative values of

2dk + dkG can also be explained by analogy to ionic solutions.

There are two regimes for 2dk + dkG in pure ionic solutions,24

depending on the surface charge. For weakly charged surfaces

csalt & lB |s|2 (or lD % lGC where lGC ; (2plB |s|)21 is the

Gouy–Chapman length), dk as well as 2dk + dkG are

positive,18,20 while for highly charged surfaces csalt % lB |s|2

we get dk . 0 and 2dk + dkG , 0.21,22 In the case of

polyelectrolyte solutions, for low enough attractive short-

range interactions the renormalized surface charge is low, and

2dk + dkG . 0. For stronger short-range interactions, the

renormalized surface charge increases and 2dk + dkG , 0.

The results in Fig. 1 were presented in the low added salt

case, d % lD. When more salt is added into the solution,

the electrostatic interactions between the polymers become

weaker. In the case of a high amount of added salt, d & lD, the

charges of the adsorbed polymers are screened over smaller

length scales than the adsorbed layer width, and the analogy

to a renormalized charged surface breaks down. We further

discuss this case in section 3.3.

3.2. Short-range repulsive membranes

Without the PE adsorption, the charges on the membrane

increase the membrane rigidity, k, due to the long-range

repulsion between them. For strongly repulsive surfaces, the

adsorption of PE chains to the membrane screens its surface

charges and causes k to decrease. Note that the PE charges do

not fully compensate the membrane bare charges like they do

in the strongly attractive regime, leading to the difference in

the corresponding system behaviors.

There are two regimes for the case of short-range repulsive

membranes: (i) the low-salt regime where the surface charges

are mainly balanced by the adsorbed monomer charges, and

(ii) the high-salt regime where the salt ions screen the surface

charges and the monomers deplete. The bending moduli in

the latter regime are similar to those of a strong ionic solution

with no added PE, as were discussed in detail in other

papers.16–18,20,24

In ref. 4 we addressed the PE adsorption close to a flat

charged surface and showed that the screening length of

the electrostatic potential depends strongly on the amount

of added salt. For low salt conditions, the surface charges

are screened mainly by the adsorbed monomer charges.

In this case4 the free-energy per unit area scales like

fads y |s|5/3 f21/3a2/3l
2=3
B and the screening length scales like

D y a2/3/(flB |s|)1/3. For high amounts of added salt, the

screening is mainly done by small ions and the PE chains

deplete. The transition from depletion to adsorption regimes

occurs when the screening length due to monomer adsorption

becomes similar to that for small ion adsorption, i.e., when

lD y D.

The flat surface results can now be easily extended to curved

surfaces. In the low-salt regime, monomers are adsorbed to the

membrane, and the length scale for the adsorption is D. We

expect the free energy of the curved membrane (per unit area)

to scale like ftot = fadsh(D/R). Expanding ftot to second order in

R21 and comparing to eqn (12) shows that both curvature

moduli scale like:

dk, dkG*fadsD
2*

sj ja2

f
(17)

which is on the order of 0.1–1 kBT for the physiological range

of system parameters.

In Fig. 2 we present the values of dk and dkG as a function

of the surface charge |s|, in the case of strongly repulsive

membranes d21 = 220 Å21 and monomer size of a = 10 Å.

For low amounts of added salt, we find a scaling relation dk,

dkG y |s|b with b . 1.2. Note that the numerically calculated

exponent b . 1.2 is slightly larger than b = 1 derived in

eqn. (17). This discrepancy seems to occur because the high

monomer size used here makes the full excluded volume

interaction substantial. For comparison, we plot the corre-

sponding dk, dkG for the case of a pure ionic solution, namely

when no polyelectrolytes are added to the solution. In this

case, the magnitudes of both dk, dkG are very high. This shows

that the addition of polyelectrolytes into low salt solutions can

cause a strong reduction of the bending moduli, in the order of

several kBT as compared with the pure salt solution. This

reduction can be explained by the fact that the polyelectrolytes
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replace the salt ions in screening the surface charges, thus

allowing greater membrane flexibility.

In the high salt regime, the membrane interacts only with the

small ions, and the polymer chains are depleted. The free

energy in this case is similar to that of a weakly charged surface

in an ionic solution.24 Namely, the screening length is lD

and the free energy per unit area for the case of a flat surface is

fdep y |s|2 lBlD. The curvature moduli are the same as in a

pure ionic solution,16–18,20,24 where:

dk, dkG y fdepl2
D y |s|2 lBl3

D (18)

Note that the depletion condition lD , D implies that the

bending moduli for the high salt (depletion) case are always

lower than for low salt (adsorption) case, despite the depletion

of the polymers. Both dk and dkG in this case are on the order

of 0.01–0.1 kBT for the physiological range of system

parameters, and scale like |s|2.

For both low and high salt regimes, the contribution to the

Gaussian bending modulus dkG is negative, resulting from the

electrostatic repulsion between the membrane constituents.19

The contribution of the PE solution to the vesiculation stabi-

lity 2dk + dkG is always positive, even for very low salt con-

centrations, in contrast to the pure ionic solution results.21–23

The low-salt regime of the ionic solutions, in which the

contribution to 2dk + dkG is negative, is replaced here by the

adsorption regime, in which this contribution is still positive.

3.3. Weak short-range interacting membranes

In Fig. 3 we present an enlargement of Fig. 1 for surfaces

having only a weak short-range interaction with the PE in

solution, d21 y 0. As can be seen, the magnitudes of both dk

and dkG decrease substantially for low |d21|, and may become

negative for high values of added salt. The decrease in the

magnitude of the bending moduli can be attributed to the

strong screening of the surface charges by the adsorbed PEs,

which makes dk smaller. We note that the contribution to dk

and dkG is negligible in comparison to the membrane intrinsic

bending moduli, and probably cannot be observed experimen-

tally. This regime is presented only in order to complete the

d21 dependence picture.

For low and positive d21 and high amounts of added

salt, we find a negative contribution to the mean curvature

modulus due to the polymer adsorption dk , 0, as well as in

2dk + dkG. This surprising result can be explained by analogy

to the neutral polymer case. In past publications29–31 it

was shown that neutral polymer solutions have negative

dk, positive dkG and negative 2dk + dkG. We find here

similar results.

The analogy to neutral polymer adsorption is important and

can be understood in the following way. The high amount of

added salt screens both the surface and the PE charges, so their

effective interaction becomes short-ranged leading the way to

an almost neutral polymer behavior. The increase in dkG

derives from the effective attraction between membrane

constituents, which results from their short-range attraction

to the PE chains. The analogy to neutral polymers requires the

screening length for the electrostatic interactions to be much

smaller than the layer width lD , d. This is satisfied in high

salt and low short-range attraction conditions. For stronger

short-range interactions, the layer width decreases, and the

electrostatic interactions between monomers becomes impor-

tant. In this case, the analogy to neutral polymers breaks

down, and dk, 2dk + dkG start to increase back. For higher

d21, both dk and 2dk + dkG become positive again, marking

the crossover to the strong attraction regime described in

Fig. 2 The dependence of dk (a) and dkG (b) on the surface charge is presented for the case of repulsive membranes. The triangular symbols are

the numerically calculated dk for csalt = 0.1 mM, a = 10 Å, f = 0.5, v = 50 Å3, w2
b = 1028 Å23, T = 300 K and e = 80. The solid line scales as |s|b with

b . 1.2. As can be seen, for low salt concentrations the exponent of the curvature modulus, b . 1.2, is close to the predicted b = 1 derived from

eqn (17). The dashed–dotted line is the numerically calculated dk, dkG for the case of an ionic solution with no polymers, with parameters csalt =

0.1 mM, T = 300 K and e = 80. The addition of polyelectrolytes can, in this case, reduce the curvature moduli significantly.
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section 1 above. This can be seen in Fig. 3, where for high

amounts of added salt, the increase in dk with d21 indeed

begins when lD . d, as expected from the above analysis. It is

also important to note that the magnitude of both dk and dkG

are very small, of the order of 0.01 kBT, and are negligible in

comparison to the intrinsic bending modulus of a membrane,

of order 10 kBT. The decrease shown here cannot account for a

decrease in membrane rigidity that was recently found for

DNA adsorption.45

4. Conclusions

In this paper we show that the interaction between charged

and flexible polymers (PE) and oppositely charged and flexible

membranes depends both on their electrostatic and short-

range interactions. A non-monotonic dependence of the

curvature moduli is obtained as function of the short-range

interaction between the membrane and the PE chains. We find

a significant contribution to the bending moduli, on the order

of several kBT, in the case of strong short-range attraction

between the PE chains and the surface. For weak attractive

interactions, the contribution of the PE solution to the

membrane curvature moduli is small (in units of kBT), and

for repulsive interactions it increases back, and may reach

values of 0.1–1 kBT.

Our work deals only with uniformly-charged membranes. In

biological membranes, however, the membrane is composed of

a mixture of neutral and charged lipids. The lipid molecules

can rearrange and can cluster around oppositely charged PE.46

This, in turn, can have a strong effect on the overall membrane

rigidity. Future works may offer extensions of the present one

by calculating the contributions to the spontaneous radius of

curvature R0, especially in the case of asymmetrical solutions,

or when the membranes are composed of asymmetric inner

and outer leaflets. Other potential directions may include

changes in the effective lipid head group size and water activity

due to the presence of polyelectrolytes.
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b = 1028 Å23, T = 300 K and e = 80. In both plots, the solid line corresponds to dk and the dashed line

to dkG. Three regimes for both curvature moduli are seen. For d21 , 0 we obtain dk . 0 and dkG , 0, for d21 y 0 the sign of both is inverted, and

for d21 & 0 both moduli return to their original sign. The magnitude of both moduli is very small for this parameter range.

This journal is � The Royal Society of Chemistry 2007 Soft Matter, 2007, 3, 644–650 | 649



20 M. Kiometzis and H. Kleinert, Phys. Lett. A, 1989, 140, 520.
21 H. N. W. Lekkerkerker, Physica A, 1989, 159, 319.
22 D. J. Mitchell and B. W. Ninham, Langmuir, 1989, 5, 1121.
23 A. Fodgen, D. J. Mitchell and B. W. Ninham, Langmuir, 1990, 6,

159.
24 D. Andelman, in Handbook of Biological Physics: Structure and

Dynamics of Membranes, vol. 1B, ed. R. Lipowsky and
E. Sackmann, Elsevier Science B. V., Amsterdam, 1995, ch. 12,
p. 603.

25 H. von Berlepsch and R. de Vries, Eur. Phys. J. E, 2000, 1, 141.
26 P. A. Barneveld, D. E. Hesselink, F. A. M. Leermakeers,

J. Lyklema and J. M. H. M. Scheutjens, Langmuir, 1994, 10, 1084.
27 M. M. A. E. Claessens, B. F. van Oort, F. A. M. Leermakers,

F. A. Hoekstra and M. A. Cohen Stuart, Biophys. J., 2004, 87,
3882.

28 P. G. de Gennes, J. Phys. Chem., 1990, 94, 8407.
29 J. Brooks, C. Marques and M. Cates, Europhys. Lett., 1991, 14,

713, (J. Phys. II, 1991, 1, 673).
30 F. Clement and J.-F. Joanny, J. Phys. II, 1997, 7, 973.
31 K. I. Skau and E. M. Blokhuis, Eur. Phys. J. E, 2002, 7, 13.
32 C. Heidgarst and R. Lipowsky, J. Phys. II, 1996, 6, 1465.
33 W. Sung and S. Lee, Europhys. Lett., 2004, 68, 596.

34 M. Breidenich, R. R. Netz and R. Lipowsky, Eur. Phys. J. E, 2001,
5, 403.

35 G. Bouglet, C. Ligoure, A. M. Bellocq, E. Dufourc and G. Mosser,
Phys. Rev. E., 1998, 57, 834.

36 J. Appell, C. Ligoure and G. Porte, J. Stat. Mech.: Theor. Exp.,
2004, P08002.

37 G. Gompper, H. Endo, M. Mihailescu, J. Allgaier,
M. Monkenbusch, D. Richter, B. Jakobs, T. Sottmann and
R. Strey, Europhys. Lett., 2001, 56, 683.

38 M. Maugey and A. M. Bellocq, Langmuir, 2001, 17, 6740.
39 D. Roux and C. R. Safinya, J. Phys., 1988, 49, 307.
40 S. May, D. Harries and A. Ben-Shaul, Biophys. J., 2000, 78, 1681.
41 D. Harries, S. May, W. M. Gelbart and A. Ben-Shaul, Biophys. J.,

1998, 75, 159.
42 P. G. de Gennes, Macromolecules, 1981, 14, 1637.
43 W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,

Numerical Recipes in C: The Art of Scientific Computing,
Cambridge University, Cambridge, 1992, ch. 17, p. 762.

44 W. Helfrich, Z. Naturforsch., Teil C, 1973, 28, 693.
45 A. Frantescu, S. Kakorin, K. Toensing and E. Neumann, Phys.

Chem. Chem. Phys., 2005, 7, 4126.
46 S. Tzlil and A. Ben-Shaul, Biophys. J., 2005, 89, 2972.

650 | Soft Matter, 2007, 3, 644–650 This journal is � The Royal Society of Chemistry 2007


