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We propose a model for the liquid-liquid �L�→L��� phase transition observed in osmotic pressure
measurements of certain charged lamellae-forming amphiphiles. The model free energy combines
mean-field electrostatic and phenomenological nonelectrostatic interactions, while the number of
dissociated counterions is treated as a variable degree of freedom that is determined
self-consistently. The model, therefore, joins two well-known theories: the Poisson-Boltzmann
theory for ionic solutions between charged lamellae and the Langmuir-Frumkin-Davies adsorption
isotherm modified to account for charged adsorbing species. Minimizing the appropriate free energy
for each interlamellar spacing, we find the ionic density profiles and the resulting osmotic pressure.
While in the simple Poisson-Boltzmann theory the osmotic pressure isotherms are always smooth,
we observe a discontinuous liquid-liquid phase transition when the Poisson-Boltzmann theory is
self-consistently augmented by the Langmuir-Frumkin-Davies adsorption. This phase transition
depends on the area per amphiphilic head group, as well as on nonelectrostatic interactions
of the counterions with the lamellae and interactions between counterion-bound and
counterion-dissociated surfactants. Coupling the lateral phase transition in the bilayer plane with
electrostatic interactions in the bulk, our results offer a qualitative explanation for the existence of
the L�→L�� phase transition of didodecyldimethylammonium bromide �DDABr�, but the
transition’s apparent absence for the chloride and the iodide homologs. More quantitative
comparisons with experiment require better understanding of the microscopic basis of the
phenomenological model parameters. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2198534�
I. INTRODUCTION

From naturally occurring phospholipids to synthetic
double-chain surfactants, over a wide range of concentra-
tions, amphiphiles in aqueous solutions self-assemble into
multilamellar phases. The stability of the lamellar stack de-
pends not only on the type of amphiphile, but also on the
competition between several interlamellar interactions.1 At-
tractive van der Waals interactions are balanced by repulsive
interactions. Hydration repulsion usually dominates when the
intervening water layer spacings are small �typically �1 nm�
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or intermediate, while electrostatic and “steric” undulation
interactions usually prevail at intermediate to large spacing,
up to hundreds of nanometers.2–6

Between charged surfactants, the stabilizing repulsion is
typically provided by the strong Coulomb interaction medi-
ated by dissolved counterions and salt.7 These interactions
are particularly strong for lamellar-forming charged surfac-
tants whose counterions fully dissociate into solution. Salt
can attenuate such electrostatic interactions via ionic screen-
ing. For surfactants that form flexible layers, the complicated
yet important coupling between layer elasticity, undulations,
and electrostatic interactions must also be considered.4,8–10

But even when the effects of layer flexibility can be ignored,
electrostatic interactions in multilamellar charged systems

are nontrivial and, in general, difficult to understand because
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of the intimate link between counterion dissociation, ionic
screening, and ion-specific nonelectrostatic interactions.11–13

The determination of the collapse pressure of membrane
stacks by Dubois et al.14 adds a new twist. Synthetic cationic
double-chain surfactant, didodecyldimethylammonium
�DDA+� with bromide as counterion �DDABr�, is used to
form a thermodynamically stable lamellar phase. The system
undergoes a phase transition from a swollen liquidlike �L��
lamellar phase to another, more condensed, liquidlike lamel-
lar phase �L���. This phase transition is induced by externally
applied osmotic pressure; it is seen as a plateau in the os-
motic pressure versus interlamellar spacing isotherms. Mea-
sured by small angle x-ray scattering, the abrupt change in
spacing is typically between 10 and 100 Å. In contrast, for
the same surfactant with the bromide counterion replaced by
chloride, DDACl, there is no evidence of a first-order
transition.14 In fact, the experimental isotherm can be well fit
by the usual Poisson-Boltzmann �PB� theory.4 Further, with
an iodide counterion the stack made of DDAI surfactant re-
mains collapsed and did not swell at all.15 Remarkably, a
discontinuous increase in area per surfactant with no discern-
ible in-plane positional order was experimentally found to
coincide with the collapse in bilayer spacing. Clearly, this
collapse is strongly coupled to a lateral rearrangement in the
bilayer plane, and cannot be solely the result of neutralizing
surfactant head groups by their counterions.

It should perhaps come as no surprise that different ha-
lide counterions interact differently with the charged DDA+

surfactant layers. The number of electrons, hence properties
such as polarizability, vary widely for these ions, and we
expect that ion-membrane interactions will be different too.
By ranking ions according to their efficiency in salting out
proteins from solution, Hofmeister was first to observe—
over a century ago—that different ions partition differently at
aqueous interfaces.16 The Hofmeister ranking is surprisingly
insensitive to the details of the interface.17–19 Often, how-
ever, the preferential interaction follows the size and polar-
izability of the ion; large ions tend to be less repelled from
�or more attracted to� oily interfaces.

It has been proposed that the added van der Waals attrac-
tion of the ions to the higher index of refraction material may
explain the Hofmeister ranking.20–24 Water ordering around
ions at the interface that is structured differently from the
bulk can also discriminate between ions. More polarizable
ions, for example, may be attracted to ordered water mol-
ecules at the interface because of favorable interaction be-
tween dipoles and induced dipoles. Due to their amphiphilic,
liquidlike nature, surfactants present a special and complex
interface to water and salt ions. However, using measure-
ments such as electrophoretic mobility, nuclear magnetic
resonance �NMR�, and buoyancy density matching, a
Hofmeister-like ranking of anions has also emerged for ions
at lipid interfaces.25–27 Also, for single-chain micelle-forming
cationic surfactants, the area per molecule follows the
Hofmeister series, increasing more in the presence of larger
ions.28

As is evident from NMR experiments, different ions
not only associate differently with the amphiphile-water

interface, but their binding may also restructure the interface
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itself.26 Computer simulations indicate that the restructuring
of the amphiphilic head group region should be strongly
influenced by the counterion size.29 Such conformational
changes at the interface are possible sources of nonideal
lipid mixing, because ion binding at the interface may
effectively create two incompatible types of lipids: ion bound
and ion detached. For example, both experiments and simu-
lations of lipid mixtures30–35 show that charged and un-
charged lipids tend to demix so as to minimize the line
tension between the different mismatched lipid species, often
leading to a lipid lateral phase separation in the membrane
plane. Perhaps most compelling are the phase transitions
from lamellar to inverted hexagonal phases of pure
dioleoyl-phosphatidylserine �DOPS� induced by varying pH
that changes the fraction of charged to uncharged ionizable
lipids.36

Can an added nonelectrostatic attraction of ions to the
lipid-water interface explain the observed transition for Br−

ions? The charge regulation model of Ninham and
Parsegian13 indicates that while an added attraction can sig-
nificantly modify pressure isotherms, it cannot account for a
first-order phase transition.

Here, we propose a phenomenological model that ex-
plains the first-order phase transition in terms of an added
coupling between electrostatic and nonelectrostatic specific
interactions at the interface. The model is motivated by the
experimentally observed lamellar-lamellar phase transition in
charged surfactant systems14 and is a relatively simple exten-
sion of the Poisson-Boltzmann theory.

The gist of our model is to consider the possibility that a
fraction of the counterions is not dissociated from the
lamellar-forming cationic DDA+ surfactant, but rather stay
associated with it on the membrane plane to form a neutral
complex. The degree of dissociation is taken as a variational
parameter in our free energy formulation, and is optimized
for each interlamellar distance.13 Further, we consider each
lamella as composed of a binary mixture of neutral �associ-
ated counterions� and charged �dissociated counterions� sur-
factant species. Assuming an effective attractive second-
order virial coefficient between the two species, we find
possible lateral phase separation in the lamellar plane form-
ing neutral-surfactant rich and charged-surfactant rich
phases, much as in the regular solution theory.11,37 Like any
phenomenological model, our model relies on several param-
eters whose exact molecular origin is not well known at
present. However, using reasonable values of these param-
eters, we are able to fit well the experimental data.

Our model couples the Poisson-Boltzmann theory for the
counterions in solution with the Langmuir-Frumkin-Davies
adsorption model that regulates the amount of dissociated
counterions.37–41 It is, therefore, an extension of the charge
regulation model of Ninham and Parsegian.13 The analogous
coupling between surface transitions and bulk interactions
has been analyzed in the context of hydration forces42,43 as

44
well as electrostatic interactions.
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In the model, the differences between monovalent ions
�Cl−, Br−, and I−� are accounted for by using different inter-
action parameters between ions and lipid interface and be-
tween ion-bound and ion-detached lipids. Together with the
repulsive hydration force, known to act strongly at small
separations such as those found in the collapsed phase, these
interaction parameters are sufficient to reproduce the experi-
mental observations. Our main emergent result supports a
lamellar-lamellar phase transition as a function of externally
applied osmotic pressure for ions such as Br−. At small os-
motic pressure and large interlamellar distances, most of the
Br− ions are dissociated, and the isotherm follows the PB
result.40,41 However, for larger pressures and smaller separa-
tions, a large fraction of the Br− ions remains associated,
causing a lateral phase transition. Because of the coupling
between electrostatics and the entropy of ions in the solution,
the lateral phase transition also leads to the discontinuous
jump in interlamellar spacing witnessed in the osmotic pres-
sure isotherm.

We further consider the effect of added salt on the equi-
librium state of the system. The main effect of salt is to
screen electrostatic interactions, to reduce the coupling be-
tween the layers, and thus to diminish the magnitude of the
first-order transition jump.45 Indeed, our model predicts that
for more than a critical amount of salt the phase transition
disappears altogether.

The outline of the paper is as follows: In Sec. II we
present an extension to the usual PB theory, taking into ac-
count the nonelectrostatic degrees of freedom and treating
separately the counterion-only and added-salt cases. In Sec.
III we present our numerically calculated isotherms to show
the possibility of a lamellar-lamellar phase transition. We
then discuss the link with experiments and comment on ion-
specific effects. In Sec. IV we discuss our findings and end in
Sec. V with a short summary and remarks on possible future
directions.

II. EXTENDED POISSON-BOLTZMANN THEORY

A. Model

The lamellar stack is composed of bilayers of double-
chain surfactants such as DDA separated by regions of aque-
ous solution. The charged surfactant hydrophilic head groups
point towards the water region, while the hydrophobic tails
are packed in the inner lamellar region, away from the polar
water environment; for DDABr, the thickness of the hydro-
carbon part of the bilayer is of the order of 24–26 Å. The
lamellar stack can be modeled as a one-dimensional periodic
system. This approximates the lamellar lateral extent as infi-
nite and each lamella as perfectly planar and rigid. We con-
sider only the unit cell of the lamellar stack, as is depicted in
Fig. 1. For convenience, the unit cell width D spans only the
aqueous interlamellar region, while the periodicity of the
lamellar stack includes also the bilayer thickness: D+Dm. All
local quantities depend only on the perpendicular coordinate
z. Because the solubility of single surfactants �like DDA� in
water is extremely low, we assume that all surfactants reside
within the lamellar bilayers. These bilayers are the two

bounding interfaces of the unit cell. Note that the interactions
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between ions are affected close to dielectric boundary dis-
continuities �the membrane plane�, separating the aqueous
region of thickness D and oily region of thickness Dm. These
corrections are not taken into account in the model as they
are more important for uncharged interfaces and also in high
salt condition.46–48

The model system, hence, is composed of two charged
interfaces separated by a distance D. The system is overall
electroneutral; the amount of counterions in the aqueous re-
gion is exactly balanced by the amount of charged surfac-
tants on the two interfaces. Note that because of the insolu-
bility assumption, the ratio between the lamellar bilayer
thickness and D uniquely determines the relative concentra-
tion of surfactant and water.

The midplane of the unit cell, see Fig. 1, is chosen at
z=0, from which the two interfaces bearing equal charge
densities are located at z= ±D /2. Because the system is sym-
metric about the z=0 midplane, it is enough to consider a
unit cell in the range of 0�z�D /2. The counterion concen-
tration �mole per liter� c�z� and the mean-field electrostatic
potential ��z� depend on the perpendicular coordinate z. All
variables calculated at the lamellar surface, z=D /2, will be
denoted by a subscript s �e.g., �s�, while those calculated at
the symmetric midplane, z=0, by a subscript m �e.g., �m�.

Our aim is to calculate the equation of state for this
lamellar symmetry and to express it as a relation between the
thermodynamic variables: interlamellar distance D and
osmotic pressure �. Just as in the van der Waals
phenomenological theory of phase transitions, we search

FIG. 1. A schematic view of the lamellar phase. The unit cell width includes
only the water region, −D /2�z�D /2, and is composed of two charged
surfaces located at z= ±D /2 �each being one leaflet of the surfactant bi-
layer�. The counterions can adsorb on the two surfaces or dissociate into the
intermembrane water region of thickness D.
for thermodynamically stable states or stable branches of the
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free energy. When we find more than one branch, we can
use the Maxwell construction to obtain the coexistence re-
gion.

Minimization of the model free energy with respect to
electrostatic and nonelectrostatic degrees of freedom �see be-
low� will eventually lead to the equation of state, our final
goal. The overall free energy Fv+Fs+Fhyd per unit cell area
is a sum of volume contributions coming from the electrolyte
solution within the cell, including ion �electrostatic� Fv
terms, surface contributions having their origin at the inter-
faces Fs, and hydration interaction Fhyd, dominant at small D
separations.

Because we approximate the hydration interaction as a
separable term, we can independently minimize the electro-
static contribution to the free energy. As we show next, these
interactions already suffice to account for a discontinuous
phase transition, while Fhyd is needed only to account for the
experimentally found pressure at small D. We therefore dis-
cuss only the minimization of Ftot=Fv+Fs below, and return
to present and discuss the added Fhyd when we compare
theory and experiment in the Results section.

Because the system is extensive in the interfacial area,
the ion �electrostatic� volume free energy per unit area Fv is
taken as the appropriate intensive quantity,

Fv = �
0

D/2 �− ec� −
�

8�
����2 + kBTc�ln�c/c0� − 1��dz .

�1�

The first two terms include the standard electrostatic energy,
with ��80 the dielectric constant of water. The last term is
the entropy of mixing in the dilute limit, where c0 is a refer-
ence concentration, T the temperature, and kB the Boltzmann
constant. Because all counterions in the solution originate
from a surfactant molecule, their integrated concentration
�per unit area� must be equal in magnitude and opposite in
sign to the surface charge density,

	 = − e�
0

D/2

c�z�dz . �2�

This is also a charge density condition and can be translated
via Gauss’ law into the electrostatic boundary condition �in
Gaussian units�: � �D /2�=��=4�	 /�, linking the surface
� s
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electric field �s� with the surface charge density 	. Unlike the
usual PB theory where either the surface charge or the sur-
face potential is held fixed, here 	 is a self-adjusting param-
eter which will be determined variationally from minimizing
the total free energy Ftot.

The second part of the total free energy comes from
the surface-free energy contributions of the amphiphiles
residing on the planar bilayers. The surface-free energy
Fs has electrostatic and nonelectrostatic energy terms as
well as a lateral mixing entropy contribution. Expressed in
terms of the surface area fraction 
s=a2	 /e of charged sur-
factants,

a2Fs = e�s
s − �̂
s − 1
2 �̂
s

2

+ kBT�
s ln 
s + �1 − 
s�ln�1 − 
s�� , �3�

where the first term couples between the surface charge and
surface potential. The other terms are the enthalpy and en-
tropy of a two-component liquid mixture: charged surfactant
with area fraction 
s and neutralized, ion-bound surfactants
with area fraction 1−
s. The parameters �̂ and �̂ are phe-
nomenological, respectively, describing the counterion-
surfactant and the surfactant-surfactant interactions at the
surface. As in the charge regulation model,13 here �̂�0
means that there is an added nonelectrostatic attraction �fa-
vorable adsorption free energy� between counterions and the
surface; the more counterions are associated at the surface,
the smaller the amount of remaining charged surfactant.

The parameter �̂ is the most crucial and unique element
in our model. Representing nonideal mixing tendencies in
the bilayer plane as in the regular solution theory, it alone
�together with the usual components of standard PB theory�
is sufficient to account for a coupled transition in the bilayer
plane and in the bulk. As in the Frumkin adsorption
model,37–41 a positive �̂ parameter represents the tendency of
surfactants on the surface to phase separate into domains of
neutral and charged surfactants.

Changing to dimensionless variables, we define
y�z�	e��z� /kBT, ��z�	a3c�z�, �	 �̂ /kBT, and �= �̂ /kBT,
and take for convenience c0a3=1. Then, the total free energy
is written as a functional of the variables y�z� and ��z� and a
function of 
s, and includes the conservation condition,
Eq. �2�, via a Lagrange multiplier 
:
a2

kBT
Ftot�y,�;
s� =

a2

kBT
Fv +

a2

kBT
Fs − 
�
s −

1

a
�

0

D/2

��z�dz�
=

1

a
�

0

D/2 �− y�z���z� −
a3

8�lB
�y��2 + ��ln � − 1��dz

+ ys
s − �
s −
1

2
�
s

2 + 
s ln 
s + �1 − 
s�ln�1 − 
s� − 
�
s −
1

a
�

0

D/2

��z�dz� . �4�
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



224702-5 Ion induced lamellar-lamellar phase transition J. Chem. Phys. 124, 224702 �2006�
Next, we minimize Ftot with respect to the surface vari-
able 
s, and the two continuous fields ��z� and y�z�:
dFtot /d
s=�Ftot /���z�=�Ftot /�y�z�=0, corresponding to
three coupled equations of state,


s

1 − 
s
= exp�
 + � + �
s − ys� , �5�

��z� = exp�− 
 + y�z�� , �6�

y��z� =
4�e2

�kBTa3��z� =
4�lB

a3 ��z� . �7�

The free energy Ftot is also a function of surface potential ys

and of the interlamellar spacing D. The differentiation with
respect to D gives the osmotic pressure �to be discussed in
Sec. II B�, while the variation with respect to ys gives the
usual electrostatic boundary condition:

y��D/2� = ys� =
4�
s

a2 , �8�

where lB=e2 / ��kBT� is the Bjerrum length, equal to about
7 Å at room temperature for aqueous solutions ��=80�. The
Lagrange multiplier 
 acts as a chemical potential, but with
the important difference that it is related not to the bulk
reservoir concentration, but rather to the concentration at the
midplane �m. For a single counterion type, we can choose,
without loss of generality, the potential at the midplane to be
zero, ym=e�m /kBT=0 and then from Eqs. �6� and �7�,

��z� = �mey�z�,

�m = e−
, �9�

y��z� =
4�lB

a3 �mey�z�.

Not surprisingly, we recover the Poisson-Boltzmann Eq. �9�
connecting the electrostatic potential y�z� with the counterion
concentration ��z� in the solution. This can be expected
since the nonelectrostatic contributions enter only via the
surface interactions expressed in Eq. �5�.

Rewriting Eq. �5� we arrive at an expression similar to
the Langmuir-Frumkin-Davies adsorption isotherm,39


s =
1

1 + �me−�−�
s+ys
, �10�

with the following modifications: The concentration �m at
the midplane replaces the bulk concentration �because of the
constraint of overall charge neutrality�, and the surface inter-
action energy in the exponent contains the electrostatic part
ys.

13 The simpler Langmuir isotherm is recovered in the limit
of noncharged surfaces, ys=0, and no surface interaction,
�=0,


s =
1

1 + �me−� . �11�

Here, there is a unique relation between �m and 
s, while in
the general case of nonzero ys and �, the generalized

Langmuir-Frumkin-Davies equation offers a transcendental
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relation between 
s, �m, and ys with the possibility of more
than one solution.

The solution of the PB Eq. �9� for two symmetric
charged surfaces separated by a distance D, each having a
surface charge density of 	, has a well-known analytic
form,4,13,49

y�z� = − ln�cos2�Kz�� , �12�

where the constant K is determined from the electrostatic
boundary condition y��D /2�=ys�=4�lB
s /a2, Eq. �8�, as

KD tan�KD/2� =
2�lB

a2 
sD . �13�

We can now express ys and �m as function of a single di-
mensionless variable u	KD /2:

ys = − ln�cos2�u�� ,


s =
C1

D
u tan�u� , �14�

�m =
C2

D2u2,

with the constants C1 and C2 obtained as

C1 =
a2

�lB
,

�15�

C2 =
2a3

�lB
= 2aC1.

The solution of the above equations, together with the ad-
sorption isotherm Eq. �10�, completely determines the coun-
terion density profile and the mean electrostatic potential via
the solution K=K�D ,� ,��.

B. Equation of state and the L�\L�� phase transition

We now solve the basic set of equations derived in the
previous section. Substituting �m, 
s, and ys into the
Langmuir-Frumkin-Davies isotherm, Eq. �10�, we get an
equation for u,

D

C1u tan�u�
= 1 +

C2

cos2�u�

 u

D
�2

exp
− � − �
C1

D
u tan�u�� .

�16�

Obviously, for each imposed distance D, we can extract
u=KD /2 from Eq. �16�. Once u is known, it can be substi-
tuted into Eq. �14�, wherefrom 
s, �m, and ys follow.
Their values completely determine the potential profile
��z�=kBTy�z� /e and counterion profile c�z�=��z� /a3.

If there is only one solution for u, the system has one
stable state. Multiple u solutions indicate the possibility of
coexistence between several phases, as well as transitions
between them. Each phase corresponds to a separate branch

of the free energy with its own dependence on D. If all
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solutions of Eq. �6� are nonzero, then we can have a first-
order transition between two stable phases.

The free energy as a function of D and 
s�D� can be
obtained by substituting the results of minimization back into
Eq. �4� yielding

a2

kBT
Ftot = −

1

2�lB
�4�lB
s −

1

2
�Ka�2D�

+
1

2
�
s

2 + ln�1 − 
s� . �17�

The appropriate isotherm is now obtained by taking the de-
rivative of the free energy with respect to D, giving the os-
motic pressure ��D� as

��D� = −
dFtot

dD
. �18�

As is usual in PB theory,4 the osmotic pressure can also be
calculated from the contact theorem, which relates the os-
motic pressure with the value of the counterion concentration
at the interface. Counterion concentration at the interface
�z=D /2� can be, in turn, connected with the concentration at
the midplane �z=0�, thus yielding an alternative form of the
osmotic pressure as

��D� = kBTcm. �19�

This latter equation has exactly the same form as in the stan-
dard PB theory. The only way that nonelectrostatic terms
of the free energy influence the osmotic pressure is via the
solution of Eq. �16�. Both forms of the osmotic pressure,
Eqs. �18� and �19�, of course yield exactly the same
values.

A typical isotherm ��D� �in pascal units� calculated us-
ing Eqs. �16� and �19� is shown in Fig. 2�a�, and the corre-
sponding surface charge density in Fig. 2�b�. Note that in this
example we do not include contributions from hydration. We
discuss the parameter range in the next section, and choose
the parameters here to be �=−6, a=8 Å, and �=12. The
isotherm clearly exhibits a first-order phase transition from
one free energy branch at large interlamellar separation D to
another at smaller D, and with a coexistence region in be-
tween. For large values of D, D�64 Å, most counterions are

dissociated from surfactants, 
s�1, and the osmotic pressure
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follows the standard PB theory for �almost� fully dissociated
surfactants. For D smaller than 39 Å, 
s�0.1, and the iso-
therm follows another branch, characterized by a much
smaller surface charge of only about 10% of the fully disso-
ciated value. For 39 Å�D�64 Å the system exhibits a co-
existence between two phases. The pressure has a plateau
and 
s changes from one branch to the second.

The plateau in the osmotic pressure between the two
stable solutions on Fig. 2�a� is evaluated using the usual
Maxwell construction. This plateau in ��D� indicates a first-
order phase transition between the solutions corresponding to
two stable branches of the free energy: a condensed one with
D�39 Å and a dilute one with D�64 Å. Although it is hard
to fit the phenomenological parameters �, a, and � to the
DDABr results of Ref. 14, we believe that the mechanism
proposed here and the typical results presented in Fig. 2 are
relevant to the experimental system. More details are given
in Sec. III below, where we show how the phase transition
depends on model parameters.

C. Added-salt case

After demonstrating the possibility of a phase transition
for the counterions only, we generalize the results by cou-
pling the lamellar system to a reservoir of 1:1 monovalent
salt. This generalization is easily achieved within our model.
The main effect of the salt is to diminish or even to eliminate
completely the phase transition.

The main modifications of the model wrought by the
introduction of salt ions are as follows. First we must con-
sider ionic concentration profiles independently for positive
and negative ions: �+�z� and �−�z�. Note that we do not
distinguish between the negative salt counterions and those
dissociated from the surfactant. The free energy is written,
similarly to Eq. �4�, in terms of rescaled variables with the
introduction of two chemical potentials. The first, 
+, is
coupled to the excess amount of coins with respect to the
reservoir, stemming from the integral of �+ in the region
between the two plates. The second, 
−, is coupled with the
excess number of counterions, stemming from the integral of
�− in the region between the two plates with the added con-
tribution of surface charges 1−
s. Thus, the total free energy

FIG. 2. �a� The osmotic pressure � in
units of 105 Pa ��1 atm� and �b� the
area fraction 
s=a2	 /e of surface
charges, as function of interlamellar
spacing D for �=−6, �=12, and
a=8 Å. The Maxwell construction
gives a coexistence between a phase
with D�39 Å and low 
s�0.1, and
another with D�64 Å and 
s�1. In
�b� the two coexisting phases are de-
noted by squares and the dotted-
dashed line shows the tie line in the
coexistence region.
is given by
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a2

kBT
Ftot�y,�;
s� =

a2

kBT
Fv +

a2

kBT
Fs + 
+�1

a
�

0

D/2

��+�z� − �0
+�dz� + 
−�1

a
�

0

D/2

��−�z� − �0
−�dz + �1 − 
s��

=
1

a
�

0

D/2 �− y�z���−�z� − �+�z�� −
a3

8�lB
�y��2 + �−�ln �− − 1� + �+�ln �+ − 1��dz + ys
s − �
s −

1

2
�
s

2

+ 
s ln 
s + �1 − 
s�ln�1 − 
s� + 
+�1

a
�

0

D/2

��+�z� − �0
+�dz� + 
−�1

a
�

0

D/2

��−�z� − �0
−�dz + �1 − 
s�� .

�20�
Taking now the variation of the above free energy with re-
spect to 
s, �±, and y, we get the Euler-Lagrange equations,


s

1 − 
s
= exp�
− + � + �
s − ys� , �21�

�−�z� = exp�− 
− + y�z�� , �22�

�+�z� = exp�− 
+ − y�z�� , �23�

y��z� =
4�e2

�kBTa3 ��−�z� − �+�z�� =
4�lB

a3 ��−�z� − �+�z�� .

�24�

The final variation with respect to ys gives the usual electro-
static boundary condition relating the surface electric field
with the surface charge density: ys�= �4�lB /a2�
s, Eq. �8�.
Requiring that the bulk concentration of co-ions and counte-
rions matches the reservoir concentration �0, where the po-
tential vanishes, y=0, it is easily verified from Eqs. �22�–�24�
that


± = − ln �0, �25�

�±�z� = �0e�y�z�, �26�

y��z� =
8�lB�0

a3 sinh�y�z�� = �D
−2 sinh y , �27�

where

�D = 
8�lB�0

a3 �−1/2

�28�

is the Debye-Hückel screening length. Inserting Eq. �25� into
�21� leads to a Langmuir-Frumkin-Davis isotherm, now of
the following form:


s =
1

1 + �0e−�−�
s+ys
. �29�

This equation resembles Eq. �10�, only that in Eq. �29� the
reservoir concentration �0 takes the place of �m. Moreover,
the value of the potential at the midplane is not fixed,
but rather is determined from �0, as are the concentrations
�m

± =�0 exp��ym�.
The PB equation in the presence of salt, Eq. �27�, de-
pends on the electrostatic boundary conditions and has a
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well-known solution expressed via an elliptic integral.4 The
first integration of the PB equation, Eq. �27�, from the mid-
plane position �z=0� to an arbitrary z gives

y��z� =
1

�D


2 cosh y�z� − 2 cosh ym. �30�

The boundary condition can be inserted in Eq. �30�, yielding

cosh ys = cosh ym +
�lB

a�0

s

2. �31�

A further integration can be written in terms of an elliptic
function,

z

�D
= �

ym

y dw

2 cosh w − 2 cosh ym

, �32�

and the second boundary condition ys=y�z=D /2� can be ex-
pressed as

D

2�D
= �

ym

ys dw

2 cosh w − 2 cosh ym

. �33�

The procedure to solve these equations is similar to the one
used in the previous section. For given D, �0, �, �, and a,
the profiles �±�z� and the surface value 
s are calculated
numerically and inserted into the free energy expression,
Eq. �20�, Ftot��±�z� ;
s ,D�. Taking the derivative of Ftot with
respect to D, or equivalently using the contact theorem as for
the counterion-only system, the osmotic pressure ��D� is
obtained,

��D� = kBT�cm
+ + cm

− − 2c0� =
kBT

a3 ��m
+ + �m

− − 2�0� . �34�

III. RESULTS

To better appreciate the role of ionic species in determin-
ing the phase transition we first present results for
counterions-only and in the absence of hydration interac-
tions. These results will already clearly show the most im-
portant feature of the model, namely, the possible lamellar-
lamellar transition. We then predict the effect of added salt.
Finally, we include the hydration contribution and compare

model results with experiments.
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A. Ion dependent lamellar-lamellar transition

Our model contains three parameters: �, �, and a. For a
we use the linear size of the surfactant head group, typically
in the range of 7–9 Å with cross-sectional area a2. For the
phenomenological constants � and, in particular, for � there
is no direct and accurate experimental measurement. How-
ever, estimates consistent with experimental data �as dis-
cussed in Secs. III C and IV� will be used hereafter. In our
model, positive � presents the possibility of lateral phase
separation. In addition, for ��0, the counterions tend to stay
associated with the charged head group and reduce the sur-
face charge density.

In Fig. 3 we compare the osmotic pressure isotherm
��D� in the case of no added salt, for three � values �and for
a constant �=12 and a=8 Å� with the standard PB isotherm
�short dashes�, for the fully dissociated limiting case, 
s=1.
Formally, full dissociation can be achieved by setting
�→� in our equations. For the two values of �=−5.85 and
−5.95, the isotherms in Fig. 3 show a first-order phase tran-
sition in the range of 10 Å�D�50 Å. The phase transition
is from a dilute and highly charged L� lamellar phase �large
D and 
s�1� to another L�� phase that is more condensed
and less charged �small D and 
s�1�. As � increases, this
phase transition shifts to higher values of � and lower values
of D.

For large D, 
s is very close to one, and the osmotic
pressure isotherm closely follows the PB result; for large D
the solution of our model remains essentially on the PB
branch of the free energy, characterized by 
s�1. For small
values of interlamellar spacing D, the values of osmotic pres-
sure for all three values of � are again very similar, with
small and slowly varying 
s, as in Fig. 2�b�. Here, the system
essentially remains on the associated branch of the free en-
ergy characterized by 
s�1.

The lowest � isotherm �solid line, �=−6.15� shows no
transition. The counterion are almost fully associated in this
case for the entire range of D, leading to a lower value of

FIG. 3. The osmotic pressure isotherm ��D� for three binding strengths:
�=−5.85 �dotted dashes�, −5.95 �dashed line�, and −6.15 �solid line�. The
other parameters are for nonideal mixing �=12 and lateral separation
a=8 Å. The �=−5.85 and −5.95 lines show a phase transition, while
�=−6.15 does not show one. For comparison, the usual PB isotherm with

s=1 �short dashes� is also shown.
pressure for all D’s. Note that all three osmotic pressure iso-

Downloaded 10 Jun 2006 to 132.64.1.37. Redistribution subject to A
therms as well as the PB one have the same limiting behavior
for D→�. This is quite accurately described by the Lang-
muir form of the osmotic pressure, as applied to the
counterion-only case:4

��D� =
kBT�

2lB

1

D2 , �35�

which does not depend on the value of the surface change �or
equivalently on 
s�.

In Fig. 4 and 5 we show the effects of the variation of
linear size a and lateral interaction �, respectively. We have
chosen the parameter range to show isotherms without a
phase transition �small a or �� as well as those showing the
transition �higher values of a or �� in each of the figures. The
main features are the same as in Fig. 3. The large D region
represents highly dissociated lamellae �strongly charged�,
while the phase transition �when it exists� can be seen for
small D at higher lamellar density. Increasing a moves the
transition point towards higher values of osmotic pressure or
equivalently lower values of D until it eventually disappears.

FIG. 4. The osmotic pressure isotherm ��D� for three values of the surfac-
tant head group separation: a=7.5 Å �short dashes�, 8 Å �dashed line�, and
8.5 Å �solid line�. The other parameters are �=−6 and �=12. A phase
transition is seen for a=8 Å and 8.5 Å, but not for a=7.5 Å.

FIG. 5. The osmotic pressure isotherm ��D� for three � values: �=11
�short dashes�, 12 �dashed line�, and 12.25 �solid line�. The other parameters
are �=−6 and a=8 Å. The phase transition is seen for the two larger values

of �.
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Increasing � has the same effect. Note also that the pressure
at low D is diminished on the increase of a. This effect can
be understood by recalling the relation 	=e
s /a2, so that for
the same 
s, larger a corresponds to smaller surface charge
density 	.

Our results are summarized in Fig. 6 where the �� ,��
parameter space is separated by a solid descending line �c���
into two regions �for fixed a�. The upper region �large � and
large �� corresponds to isotherms with a phase transition
�and is designated as “two phases” on the figure�. Below that
region �small � and small �� the isotherms show no phase
transition �designated as “one phase” on the figure�. The de-
gree of counterion dissociation varies in this region from
very small values to values 
s�0.8 for finite values of � and

FIG. 6. Phase diagram in the �� ,�� plane for a=8 Å. In the region below
the solid line �c���, the system does not exhibit a phase transition �“one
phase”�. The dashed line is the analytical approximation of �*�−2�
+2 ln�2�lB /a�−4. The inset is a blow up of the region around ��−6 and
��12, showing the parameters used in Fig. 3 and 5. Square symbols cor-
respond to isotherms in Fig. 3, while diamonds correspond to those in Fig. 5.
The region lying between the full and dot-dashed lines in the two-phase
region corresponds to transitions in D that are larger than �3 Å.

FIG. 7. Effect of added salt. In �a� and �b� ��D� and 
s�D� are plotted as a
30 mM �dashed line�, and 50 mM �short dashes�. Other parameters are �=−5
entire osmotic pressure isotherm ��D� decreases in magnitude and the phas
highest salt concentration, cb=50 mM, the phase transition has vanishe

�cb=10 mM� and by a circle �cb=30 mM�. The dotted-dashed lines are the corre
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�. The PB result of 
s=1 is reached only asymptotically as
�→�. The line represents the continuous line of the critical
point in the �� ,�� plane. The region between the solid and
dot-dashed lines corresponds to jumps in D at the transition
of more than �3 Å. Above the dot-dashed line, the behavior
at D�3 Å is described by the usual PB solution because the
transition occurs at unphysicaily small D values.

The inset to Fig. 6 corresponds to variations of � and �
shown in Figs. 4 and 5, respectively. As � or � is lowered,
the single-phase region is eventually reached. Figure 6 is
plotted for a=8 Å. As a decreases, the two-phase region
shrinks and the one-phase region expands.

The dashed line in the figure is an analytic calculation
which gives the following approximate form of �*���:

�* � − 2� + 2 ln
2�lB

a
� − 4. �36�

To derive this result we assume that the phase transition oc-
curs at large D. Using the asymptotic large D behavior, we
compare the free energy of 
s�1 with 
s�1 and determine
the transition point as a function of � for given � and a. As
can be seen by comparing the analytic �dashed� line with the
full numerical solution �solid line�, the approximation is
good for small ��0. For ��−3 the assumption of a transi-
tion at large D breaks down and the approximated �* starts to
deviate considerably from the numerically calculated �c���.

B. Added salt: Vanishing of the transition

The effect of added salt was treated in Sec. II C. The salt
is characterized by the Debye-Hückel screening length �D,
and screens electrostatic interactions. As the amount of
added salt increases, �D decreases, and the phase transition
observed in the absence of salt becomes gradually less pro-
nounced until it is finally wiped out completely.45 This is
clearly seen in Fig. 7. In Fig. 7�a�, three osmotic pressure

tion of added salt concentration cb. In �a� and �b�: cb=10 mM �solid line�,
10.19, and a=8 Å. As cb increases, screening becomes more important. The
nsition region diminishes and shifts towards higher D values. Note that for
�b� the coexisting values of the two phases are denoted by a square
func
, �=
e tra

d. In

sponding tie lines.
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isotherms are shown. A plateau �first-order phase transition�
is seen for the two lower amounts of salt, cb=10 and 30 mM,
while the transition disappears for higher amounts of salt,
cb=50 mM.

One can also see how the phase transition is first shifted
towards the high D low � values, and then �for
cb�40 mM� completely disappears. The overall decrease in
��D� as the amount of salt increases is due to the increased
screening, and is present also in the simple PB theory. In Fig.
7�b� the jump in 
s is shown for cb=10 and 30 mM, while it
vanishes for higher amounts of salt, cb=50 mM, in accord
with the isotherm behavior.

It is instructive to follow the change of the transition
pressure �tr as salt is added to the system, which is related to
the difference in volume �V and number of ions �N in the
two phases in a Clausius-Clapeyron-like equation,

d�tr

dcb
=

kBT

cb

�N

�V
. �37�

Remarkably, we find an almost linear dependence of �tr in
the whole range of cb, starting with the transition pressure at
no added salt and leading eventually to the loss of transition
for sufficiently high salt concentrations, cb�40 mM, see
Fig. 8. In Eq. �37�, d�tr /dcb corresponds to an added work of
2 kBT due to the exclusion of ions acting on the volume
change at the transition.

It is also interesting to follow the change in �tr with
temperature. Experimentally, both an increase of �tr with T
�at lower T� and a decrease �at higher T� have been
observed.14 In contrast, if we assume that � and � are inde-
pendent of T in the model, we find that �tr monotonically,
almost linearly, increases with T. This suggests that in a
more refined model, the parameters � and � should be taken
as functions of the temperature rather than simple constants.
For example, if we assume that ��T� and ��T� vary as 1/T,
while the ratio � /� is kept constant, we find that �tr de-

FIG. 8. Effect of added salt on the transition pressure. �tr�cb� is plotted as a
function of added salt concentration cb. Other parameters as in Fig. 7. The
dependence of the transition pressure on the salt concentration in the region
where the transition exists is linear, with a slope of 7.9�10−21 J.
creases monotonically with T.
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C. Relating to DDABr/DDACl osmotic pressure
experiments

The experimentally observed difference between
DDABr and DDACl for the different halides can easily be
rationalized within our model by different values of � and/or
�, for the different ions. This is indeed reasonable since ex-
periments show that larger halide ions have an added affinity
even for neutral lipids.25–28 The tendency of ions to prefer-
entially partition into the hydrocarbon-water interface is
most often reported in terms of an effective binding interac-
tion that acts in addition to the repulsive electrostatic force,
expected for ions interacting with low dielectric material.
These differences in binding affinity would translate into a
different value of � within our model. In these terms, experi-
ments show that ��� is larger for bromide by one to four kBT
more than for chloride, and iodide is at least an order of
magnitude larger than those.25–28

Importantly, these values for � compound many differ-
ent energetic contributions. More specifically, � includes
contributions from ion hydration and solvation forces and the
interaction of the ion with water structured differently at the
lipid-water interface, as well as interactions with the low
dielectric hydrocarbon. With our model assumptions, we can
now try to fit the experimental data in Ref. 14 using the same
�small� amount of added salt as in the experiment, i.e.,
cb=0.5 mM. The fits to the DDABr and DDACl lamellar
systems are shown in Fig. 9. We will first address the fit to
the simpler case of DDACl that does not show in experi-
ments a liquid-liquid coexistence, and then discuss DDABr,
where the liquid-liquid coexistence is clearly discerned. The
DDACl data were fitted in Fig. 9�a� using �=−3.4,
�=14.75, and a=8 Å. The DDACl data points, represented
by squares, are reproduced from Ref. 14. The value chosen
for � is higher, yet close to �c��� �see Fig. 6�.

In comparing the experiments, it is important to realize
that for small spacings, interactions of nonelectrostatic origin
tend to dominate the osmotic equilibrium.3,5,14,50,51 Even for
highly charged systems, hydration interactions acting at very
short range, practically independent of the charging equilib-
rium at the surface, that invariably dominate at separations
of D�10 Å are certainly among the most important to con-
sider. Therefore, we add the hydration interaction Fhyd as an
idealized separable term to the overall interaction
energy: Ftot+Fhyd=Fv+Fs+Fhyd. In conformity with hydra-
tion interactions between lipids52 and between other
macromolecules,50 we use the phenomenological form of an
exponential interaction with a salt-independent decay length
�hyd,

53

Fhyd = �0�hyd exp�− D/�hyd� . �38�

To account for the hydration interaction, we fit with
�0=2.37�108 Pa and �hyd=1.51 Å. These values are simi-
lar to those found from fits to experimental interlamellar
spacings of lipids.14,50,54

Note that our extended PB model predicts a transition at
these values of � and �. However, this phase transition oc-
curs at very small interlamellar separations of D�3 Å, indi-

cating that only at such low D values are the ions associated
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�small 
s�. For higher D values, the ions dissociate and the
model follows the regular PB osmotic pressure. Values of
D�3 Å are well below the validity limit of the model; for
such low D’s the computed osmotic pressure isotherm cannot
be considered realistic. For higher D, the surface charge den-
sity 
s is almost one and the system exhibits the usual
Poisson-Boltzmann isotherm, with screened electrostatic in-
teractions at large D. We remark that the fit in the high
D region is very good, and, surprisingly, also persists to
small D �although there are very few data points below
D=30–40 Å�.

The DDABr was fitted in Fig. 9�a� using a different
�=−7.4 but the same �=14.75 and a=8 Å, as well as the

FIG. 9. Fit to the experimental osmotic pressure isotherm ��D� of Ref. 14
on a log-log scale. The diamonds and squares are the data points for DDABr
and DDACl, respectively, reproduced from Ref. 14. In �a� the solid line is
the best fit of the model to the phase transition seen for DDABr with
�=−7.4, �=14.75, and a=8 Å. The fit also includes a hydration contribu-
tion �parameters for the form of �hyd=�0 exp�−D /�hyd�, with typical values
of �0=2.37�108 Pa and �hyd=1.51 Å�. This contribution is particularly
important at the low D region of the DDABr isotherm. A small amount of
salt is added in the fit as in the experiment �cb=0.5 mM�. The dot-dashed
line is the fit to the DDACl �no transition�. All parameters here are the same,
except �=−3.4 �one-phase region of Fig. 6�. In �b� the same model fits,
showing only the electrostatic contributions to the force, Fv+Fs, that are
responsible for the apparent phase transition. The fit to both data sets is
good. However, the steep increase in pressure of the DDABr seen in the low
D range �D�10 Å� cannot be reproduced with these forces alone.
same hydration interaction. The value of � was picked near
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�c so that the transition would occur at a value of D in the
range of 10–40 Å. In this range our model is still valid and
nicely reproduces a coexistence between the two liquid
lamellar phases L� and L��.

To better appreciate the role of hydration, Fig. 9�b�
shows the model fits that exclude the hydration contribution
to the free energy. At smaller separations, D�10 Å, the fit
deviates considerably from the experimental osmotic pres-
sure isotherm. While electrostatic forces can account for the
transition point itself, they can definitely not by themselves
reproduce the sharp rise in the osmotic pressure in the undis-
sociated branch following the phase transition, compare
Fig. 9�a�.

Juxtaposing Figs. 9�a� and 9�b�, it is evident that adding
the hydration contribution affects mainly the undissociated
branch at small intersurface separations, since at large spac-
ings electrostatic PB contributions completely overwhelm
the much shorter ranged hydration. The hydration interaction
mainly affects the small D region of both DDACl and
DDABr. In fact, while the magnitude of hydration forces
may not differ greatly from other �electrostatic� acting
forces, the rate of force decay �slope� at such low spacings
indicates that hydration is always acting. One can observe
this in the context of lipids51 as well as DNA.55 Fits to both
DDACl and DDABr should, therefore, contain hydration
contributions to the free energy.

Importantly, as can be realized from Fig. 6, there are
different ways to cross the transition line �c��� to witness the
liquid-liquid coexistence. Another possible choice of param-
eters could thus assume the variation in � instead of �. For
example, the data can be equally well fit if we fix �=−7.4
and fit the DDABr data with �=14.75, and the DDACl with
�=18.

Finally, we address the iodide analog, DDAI, that in ex-
periments appears not to form a swollen liquid phase, re-
maining in the condensed liquid lamellar phase for the whole
range of osmotic pressure values.15 In the language of our
model DDAI has either large ��� or � values; it never enters
the PB branch but instead remains in the undissociated
branch for all spacings D. This corresponds to the “one-
phase” region of Fig. 6. Indeed, ��� for iodide could be esti-
mated as yet larger than in the case of DDABr, probably by
up to an order of magnitude.25,28 The system is confined to
remain on the undissociated branch for this counterion: The
repulsion due to electrostatic interactions and entropy of
counterions is not strong enough to combat the �van der
Waals� attractions. These attractions that are strong enough
to hold the system in the secondary free energy minimum
effectively prevent the swelling observed for the other two
counterions. We could thus establish a ranking in the model’s
parameter space, where DDACl, DDABr, and DDAI would
make a monotonic Hofmeister-like series either in the values
of ��� or �. The third parameter a is not changed in the fit
because it is taken as the size of the same DDA+ head

group.
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IV. DISCUSSION

The model presented in this paper combines electrostatic
and nonelectrostatic interactions between charged surfactant
bilayers. The nonelectrostatic part of the interactions is ac-
counted for using two phenomenological parameters charac-
terizing the strength of the counterion-amphiphile interaction
� and lateral amphiphile-amphiphile interactions � on the
charged dissociable surface. By choosing � to be negative,
corresponding to favorable adsorption energy, and � to be
positive, corresponding to a net attractive interactions be-
tween like species, promoting lateral segregation between
the dissociated and nondissociated surfactants on the surface,
we are able to qualitatively explain the experimentally ob-
served L�→L�� lamellar-lamellar phase transition.

A. Origin of phase transition

An abundance of experimental verification25–28 indicates
that the different halides interact differently with lipids, forc-
ing us to recognize the existence of nonelectrostatic interac-
tions at work. In our model, this preferential interaction is
represented by �. By reducing the effective layer charge den-
sity, a favorable preferential interaction of ions to the inter-
face acts to lower the pressure at any given spacing D. How-
ever, � alone cannot account for the abrupt jump in D
associated with a first-order phase transition. In fact, in the
absence of �, pressure isotherms for any value of � are
smooth �no phase transition�.

Our model offers a natural extension of the PB theory
with the Langmuir-Frumkin-Davies adsorption theory as ap-
plied to simple counterions. The large difference in the be-
havior of the halide ions is modeled by the parameters �, �,
and a. The interaction parameters � and � necessarily in-
volve contributions from changes in hydration, solvation,
and desolvation, of lipid head groups and their counterions.
The model, therefore, underscores the important role of wa-
ter structuring around ions devolved in the bulk versus at the
interface.

The salient feature of our model is the first-order transi-
tion in the osmotic pressure isotherm from an almost com-
pletely dissociated state �highly charged and swollen, PB
branch� at large interlayer separations, to an almost neutral,
weakly dissociated, state approaching bilayer contact �con-
densed, undissociated branch�. The existence of this transi-
tion depends on the values of both phenomenological param-
eters, but it is present over an extended region of phase
space. The PB branch of the osmotic pressure isotherm is not
much different from the standard PB theory with complete
dissociation, both with or without added salt. On the other
hand, the undissociated branch is characterized by a large
attenuation in the magnitude of the osmotic pressure for a
given interlamellar spacing, being about two orders of mag-
nitude smaller then in the PB case.

In our model the L�→L�� transition in the interlamellar
spacing is coupled to a lateral first-order phase transition of
the 
s order parameter. This is a direct consequence of the
coupling between interlamellar electrostatic degrees of free-
dom �mean electrostatic potential and mean ion density� and

the surface nonelectrostatic degrees of freedom as quantified
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by the phenomenological parameters � and �. The ensuing
liquid-liquid lamellar phase transition is thus not only from
one state of the lamellae where a larger fraction of the am-
phiphiles is charged to another state where they are less
charged, but also from a state where the interlamellar forces
are by and large electrostatic in nature, to a state where they
are dominated by hydration. While in many experimental
systems this transition is smooth and gradual, it is quite pro-
nounced and discontinuous in the system studied here and in
Ref. 14.

B. Relating model parameters and molecular
interactions

We propose that nonideal mixing between counterion-
associated and dissociated surfactants can be responsible for
an in-plane transition, which, in turn, is coupled to the bulk
transition. This proposed nonideality is represented in our
model by �, as is sometimes used to report on lipids showing
phase transitions following changes in pH.30 While at present
direct experimental verification and estimates for the proper
� values are lacking, we propose that conformational
changes of lipid head groups, ions and water structuring in-
duced by the adsorbing ion, together with an added van der
Waals interaction between neutralized surfactant complexes
can lead to significant demixing.

Furthermore, because larger ions are expected to perturb
the lipid-water interface to a greater extent, it is reasonable to
expect that the value of � will follow a similar ranking to the
binding of ions to the interface, represented by �. We note
that the � values needed to observe a phase transition, typi-
cally �10kBT, are quite high. These high values are needed
to overcome the electrostatic repulsion between like-charged
lipids in this unscreened, highly charged system. The source
of this lipid demixing energy �our � parameter� could be
associated with the mismatch of head-group–head-group in-
teractions, such as hydrogen bonding between neutral lipids,
water-structuring forces, or nonelectrostatic ion-mediated in-
teractions between lipids across two apposed bilayers for
small interlamellar separations. In particular, strong attrac-
tive interactions between highly correlated, ion-adsorbed
membranes could account for the strong effective attraction
between bilayers. This interaction can implicitly be ac-
counted for through �.

The parameter a2 models the area per head group on the
membrane plane. It is a function of several molecular inter-
actions and, in principle, can be determined variationally. In
Ref. 14 the area/head group was found to vary in a nontrivial
fashion, from a larger value in the condensed lamellae to a
smaller one in the dilute lamellae. The forces determining the
area per surfactant are as yet unknown. Therefore, in the
model we have not allowed for changes in area per surfac-
tant, but note that it is not inconsistent to assume that the
area per head group differs for the neutral versus charged
surfactant. The expansion of lipid area upon condensation,
contrary to what is typically observed in phase transitions of
lipids, could be evidence for direct attraction between Br−

ions and the lipid hydrocarbon core, as suggested previously
by Kunz et al.17 This point deserves further investigation.

Interestingly, however, as seen in Fig. 4, the model predicts
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that lipids with larger area per head group can show a larger
transition gap, as was found experimentally in the case of
GM-3 ganglioside with weakly adsorbing counterions.56

Another point that merits further investigation is the de-
pendence of the isotherms on temperature. Both ��T� and
��T� are complex functions of the temperature, with specific
dependence that cannot be obtained from our model. A
change in temperature affects the values of ��T� and ��T�
and can change the plateau pressure values, as was measured
and reported in Fig. 9 of Ref. 14. A better understanding of
��T� and ��T� may offer an explanation to the nonmonotonic
behavior of the plateau pressure as function of temperature.14

Finally we point out that the lack of direct experimental
evidence at this time, particularly for �, limits out predictions
to be mainly qualitative. More specifically, we can offer only
a qualitative explanation for the strong difference in the be-
havior for different counterions, namely, no transition, tran-
sition, and no stable swollen lamellar phase for the DDACl,
DDABr, and DDAI amphiphilic systems, respectively.
Therefore, the fit to the data points shown on Fig. 8 should
be regarded as a tentative explanation of the mechanism be-
hind the observed phase transition. For example, we cannot
establish whether the main difference in ionic interactions
with the surface is properly characterized by the value of �
as opposed to �.

V. CONCLUDING REMARKS

Previously, phase transitions in DDABr lamellar systems
have been theoretically attributed to either an ion-dependent
van der Waals attraction between layers,6,57 or to a strong-
coupling effect between adsorbed ions, expected for surfaces
with high charge density.58 Here, we have shown that it is
possible to account for the phase transition assuming a non-
electrostatic interaction between ion-dissociated and ion-
bound surfactants. We suggest that this interaction is ion spe-
cific and, hence, we offer an explanation for the different
behaviors seen for the three halide counterions.

The large phenomenological parameters we have found
in our own fits of the data �see Fig. 9� as well as the large
energetic terms assumed in the other approaches,6,57,58 all
indicate that substantial attraction necessarily acts to over-
come the electrostatic repulsion between surfactants. The
molecular origin of this large energy has yet to be deter-
mined, and further experimental verification of the different
phenomenological parameters is required. It is clear, how-
ever, that interactions specific to the ionic species determine
the emergent behavior. Therefore, we do not think that mod-
els accounting for electrostatic interactions alone �as in Ref.
58� can explain the qualitatively different behaviors seen for
the different halides that are all monovalent. Also of interest
is whether the lateral phase transition underlying the swell-
ing transition and its dynamical evolution from one lamellar
state to the other can be observed directly in experiments.

We hope that in follow-up studies, a more microscopic
approach will be able to shed light on the origin of the phase
transition in these charged lamellar systems and how they

relate to specific molecular details.
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