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1 Introduction

It is hard to overestimate the importance of electrostatic interactions associated with
charged objects in soft and biological matter. In aqueous environment, typical to many
of these systems, charges tend to dissociate and affect a wealth of functional, structural
and dynamical properties. Without attempting to enumerate an exhaustive list, we men-
tion a few examples. Polymers are flexible and elongated one-dimensional objects (see,
e.g. , chapters by Warren, Podgornik, Mackintosh, Bensimon). In aqueous solutions they
often carry charges, like the naturally occurring DNA or synthetic polyelectrolytes such
as polystyrene sulfonate. The charges on the polymer chain and the counter-ions in solu-
tions have an important effect on the rigidity of such chains and on inter- and intra-chain
interactions leading to interesting phenomena of aggregation and condensation, as is seen
most often in presence of multivalent counter-ions. The process describing how polyelec-
trolytes chains migrate in external electric fields is called electrophoresis and is another
important phenomena with many applications. Other charged structures are biological
cell membranes (see, e.g. , chapters by Kozlov and Olmsted). These soft and fluctuating
two-dimensional objects are naturally built out of mixtures of charged and non-charged
phospholipids. Finally, we mention globular proteins with charge groups on their sur-
face (chapter by Elber), self-assembly micelles made of charged amphiphiles (chapter by
Olmsted) and charged colloidal particles (chapter by Frenkel) where the charges play a
role in the stabilization of colloidal suspensions.
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When will the electrostatic interactions influence the structural properties of soft ma-
terials? For soft materials the thermal energy kBT is comparable to the typical energy
associated with deformations and structural degrees of freedom. Another way of saying
the same is to introduce a length for which the thermal energy is equal to the Coulombic
energy between two unit charges. This is the so-called Bjerrum length

lB =
e2

εkBT
, (1)

which is equal to about 7Å for room temperature, T = 300 K and for dielectric constant
of water ε = 80. An important concept introduced by Debye and Hückel (1923) is the
screening of the electrostatic interaction between two charges by the presence of all other
cations and anions in the solution. This will be further discussed below.

In this chapter we will briefly review some of the most fundamental concepts related
to electrostatic interactions in soft and biological matter. As this is a vast topic, we will
restrict the discussion only to static properties of systems in thermodynamic equilibrium
excluding the interesting phenomena of dynamical fluctuations and dynamical responses
to external fields. Most of the discussion will be restricted to a mean-field approximation
of the electric double-layer problem and the solutions of the classical Poisson-Boltzmann
equation. Various effects of fluctuations and correlations will only be briefly mentioned
toward the end of the present chapter. An excellent reference for the electric double
layer is the classical book of Verwey and Overbeek (1948) which explains the DLVO
(Deryagin-Landau-Verwey-Overbeek) theory for stabilization of charged colloidal sys-
tems. More recent treatments can be found in many books on colloidal science and in-
terfacial phenomena. For example, Evans and Wennerstöm (1994), Israelachvili (1992),
and in a review by the present author Andelman (1995). The topic of polyelectrolytes is
briefly treated in most polymer books (e.g., De Gennes (1979)), while the classical (and
somewhat outdated) book is by Oosawa (1971). For a more recent review on charged
polymers, see Netz and Andelman (2003) and references therein.

2 The Poisson Boltzmann Theory

We will now present the derivation of the Poisson-Boltzmann (PB) theory for ionic so-
lutions. As a mean-field theory, the PB theory relies on the following assumptions: i)
the only interactions to be considered are Coulombic interactions between charged bod-
ies. ii) Permanent and induced dipole-dipole interactions are neglected. iii) The charges
are taken as point-like objects neglecting any finite size effect and any short-range non-
electrostatic interactions. iv) The aqueous solution is modelled as a continuous media
with a dielectric constant ε. For water, the dielectric constant is taken to be ε = 80. v)
The electrostatic potential φ(r) that each ion sees is a continuous function which depends
in a mean-field way on all the other ions. The charge density profile of all ions ρ(r) is
also a mean-field continuous function of the position r.

It is possible to derive the PB equation starting from a field theory and to obtain the
PB equation as a first-order term in a systematic expansion Borukhov et al (1998, 2000),
Netz and Orland (2000), Burak et al (2004a). We will use here a simpler and more
heuristic approach. Consider an ionic solution with two ionic species having positive
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and negative charge densities (per unit volume) of ρ+ and ρ−, respectively. The total
charge density at each point is ρ = ρ+ + ρ−. Defining n± as the number density (per
unit volume) of the two species, then ρ±(r) = ez±n±(r), where z+ > 0 is the valency
of the cations and z− < 0 of the anions.

The ions are assumed to be mobile and in thermodynamic equilibrium. They will
adjust to the presence of some fixed electrostatic boundary conditions, which can be
either a constant surface potential (Dirichlet boundary condition) or a constant surface
charge density (Neumann boundary condition). At any point r, the relation between the
potential φ and the charge density ρ is given in terms of the Poisson equation:

∇∇∇2φ = −4π

ε
ρ(r) = −4πe

ε
[z+n+(r) + z−n−(r)] . (2)

Note that cgs (Gaussian) electrostatic units are used throughout this chapter. However,
by using dimensionless energy units and expressing all lengths in terms of the Bjerrum
length lB and the Debye-Hückel screening length (introduced below), the results can be
made independent of any specific system of units. Using the above equation one can
deduce the electrostatic potential for a given ionic distribution. However, in the liquid
solution the ions are mobile and will adjust their position according to the local potential
they feel. As each ionic species is in thermodynamic equilibrium, its corresponding
density has a Boltzmann distribution

n± = n0
±e−ez±φ/kBT , (3)

where n0
i is the reference density of ith species (i = ±) taken at zero potential, φ → 0.

Substituting eq. (3) into eq. (2), we get the Poisson-Boltzmann (PB) equation for the
potential φ:

∇∇∇2φ(r) = −
∑

i=±

4πen0
i zi

ε
e−eziφ(r)/kBT . (4)

Alternatively, the PB equation (4) can be derived by requiring that the electrochemical
potential µ± for the two ionic species is a constant throughout the system

µ± = ez±φ + kBT ln(n±) = constant . (5)

The PB equation is a very useful analytical approximation with many applications.
Because the equation is non-linear, it has closed-form analytical solutions only for a lim-
ited number of simple charged boundary conditions. On the other hand, by solving it
numerically or within some further approximations or limits, we can obtain the ionic
profiles as well as the free energy of complex structures. For example, the free energy
change of a charged globular protein approaching an oppositely charged lipid membrane.
As any approximation, the PB theory has its limits of validity but in physiological condi-
tions (electrolyte strength of about 0.1 M), it describes rather well the ionic distributions
as long as the surfaces are not too highly charged. The PB theory produces good re-
sults for monovalent ions but misses some important features associated with multivalent
counter-ions.

Throughout this chapter we present results for the following two limiting cases:
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• The first is the counter-ion only case, where there is only one species of ions in
solution neutralizing the charged surface: n0

− = 0 and n0
+ = n0. Then, the PB

equation reads

∇∇∇2φ = −4πen0z+

ε
e−ez+φ/kBT . (6)

• The second is the added electrolyte (added salt) case where the system is placed
in contact with an infinite reservoir of electrolyte. For simplicity, we treat only the
symmetric monovalent electrolyte (e.g. , Na+ Cl−): z± = ±1 and n0

+ = n0
− = n0.

Here

∇∇∇2φ =
8πen0

ε
sinh

eφ

kBT
. (7)

We remark that it is rather straightforward to extend the above PB results to any
multivalent ionic system, z− : z+.

The linearized PB equation: Debye-Hückel theory

In the case of low electrostatic potentials a very useful approximation can be used. In
this case the PB equation (4) can be linearized (as long as |φ| < 25mV) resulting in the
famous Debye-Hückel (DH) theory.

∇∇∇2φ ' 8πe2n0

εkBT
φ(r) = λ−2

D φ(r) , (8)

The new parameter λD introduced above has units of length and is known as the Debye-
Hückel screening length

λD =
√

εkBT

8πe2n0
= (8πlBn0)

−1/2 ∼ n
−1/2
0 . (9)

The screening length varies from about 3Å in a strong ionic strength of 1 M of NaCl
to about 1µm in pure water where the ionic strength of the dissociating OH− and H+

ions is 10−7 M. A useful formula to remember is that for n0 measured in molar units, λD

in Angstroms is given by

λD =
3.05[Å]√

n0[M]
. (10)

The DH treatment gives a simple description to the many-body interactions between
ions. It simply states that the interaction between any given pair of ions at distance
r = |r| will decay exponentially due to the screening by all other cations and anions
surrounding the ionic pair. Broadly speaking, this screened potential within the DH
theory varies like r−1 exp (−r/λD). To a first approximation, one can say that for r ≤
λD the Coulombic interaction (∼ r−1) is only slightly screened, while for r > λD it is
strongly (exponentially) screened.

In the remaining of this chapter we will consider the PB equation in various simple
geometries. We will first discuss solutions of the PB equation in planar geometries and
then mention with less details solutions in cylindrical and spherical geometries.
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3 PB equation in planar geometry

3.1 A single charged surface

Counter-ion only

One of the simpler analytical solutions of the PB equation was formulated almost a cen-
tury ago by Gouy (1910, 1917) and Chapman (1913). The problem they addressed is
the profile of a cloud of counter-ions forming a diffusive electric double-layer close to a
planar surface having a fixed surface charge density, σ. Without loss of generality, the
surface charges are taken as anions (σ < 0) and the counter-ions as monovalent cations
(z+ = 1) having a density profile n(z) = n+(z). The system geometry is depicted on
Fig. 1. The charged surface is at z = 0 and the counter-ions occupy the positive half
plane, z > 0. As the z = 0 charged surface is infinite, the system is translationally
invariant in the perpendicular x, y directions and the PB equation reduces to an ordinary
differential equation

φ′′(z) = −4πen0

ε
e−eφ/kBT , (11)

with the boundary condition

dφ

dz

∣∣∣∣
z=0

= −4π

ε
σ > 0 . (12)

z

σ < 0

(a)
Figure 1. Schematic illustration of the electric double layer problem for the counter-
ion only case. A negative surface with surface charge density σ is placed at z = 0,
while its counter-ions are released in the solution. The surface is in�nite in the (x, y)
plane. Counter-ions are attracted to the surface and create a density pro�le, n(z).

Equation (11) is a second-order differential equation. Using the boundary condition
(12) it can be integrated analytically, yielding the following potential and ionic profile

φ(z) =
2kBT

e
ln(z + b) + φ0 ,

(13)



6 David Andelman

n(z) =
1

2πlB

1
(z + b)2

,

where φ0 is a reference potential and the length b is called the Gouy-Chapman length

b =
εkBT

2πe|σ| =
e

2π|σ|lB ∼ σ−1 . (14)

Whereas the Bjerrum length is a measure of the electrostatic interactions in units of
kBT and is constant of about 7Å for aqueous solutions at room temperature, the Gouy-
Chapman length is inversely proportional to σ, the surface charge density. For strongly
charged surfaces, b is only a few Angstroms. Although the entire profile is diffusive
as it decays algebraically, a simple meaning of b is that counter-ions accumulated in
the layer of thickness b close to the surface have an integrated charge (per unit area) of
1
2 |σ|, balancing half of the surface charge. Note also that the potential has a logarithmic
divergence as z → ∞. This is associated with the infinite extent of the charged surface
at z = 0. On the other hand, the electric field: E = −∇∇∇φ decays to zero as it should for
z →∞. On Fig. 2 we present the potential and ionic profile for a surface density of σ =
−e/250 Å. The figure shows clearly the build-up of the diffusive layer of counter-ions
attracted to the negatively charged surface, reaching a limiting value of n+(0) = 1.16 M.
The Gouy-Chapman length is here b ' 5.71 Å.

We discuss next the case where the charged surface is placed in contact with a elec-
trolyte bath. Here the potential will decay to zero far away from the surface, even for
charged surfaces of infinite extent, because of the screening by the bulk electrolyte reser-
voir.
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Figure 2. The electric double layer for a single charged surface in contact with
an aqueous solution of monovalent cations. The charged surface is at z = 0 with
σ = −e/250Å2. (a) Potential pro�le φ as function of the distance from the surface,
z. The zero of the potential is taken at the surface. (b) Density pro�le of the counter-
ions, n+ as function of the distance z. The value at the surface is n+(0) = 1.16M
and the Gouy-Chapman length is b ' 5.71Å.
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Added electrolyte

We look now at another case of experimental interest where the charged surface at z = 0
is placed in contact with an electrolyte bath. On the surface, the same boundary condition
(12) holds. For simplicity, we will consider a monovalent electrolyte z± = ±1. In the
bulk, far away from the surface (z → ∞), we know that n±(∞) = n0 where n0 is the
electrolyte bulk concentration.

The PB equation (7) can be integrated for this model system, yielding an analytical
solution for the potential and ionic densities,

φ(z) = −2kBT

e
ln

1 + γe−z/λD

1− γe−z/λD
,

n± = n0

(
1± γe−z/λD

1∓ γe−z/λD

)2

, (15)

where the parameter γ is the positive root of a quadratic equation,

γ = − b

λD
+

√(
b

λD

)2

+ 1 , (16)

and the surface potential φs = φ(0) is related to γ by eq. (15)

φs = −4kBT

e
arctanh(γ) . (17)

Once the potential profile is known, the two ionic profiles can be simply calculated
from the Boltzmann distribution: n±(z) = n0 exp(∓eφ(z)/kBT ) as is depicted on
Fig. 3. The negatively charged surface attracts the counter-ions and repels the co-ions.
The ratio b/λD is inversely proportional to the surface density. For small surface charge
and/or high electrolyte strength, b/λD is large, yielding γ ' λD/2b, and

φ(z) ' φse−z/λD ' −2kBT

e

λD

b
e−z/λD , (18)

which coincides with the DH (linearized) limit of the PB equation (8). Note the difference
between the counter-ion case where the potential diverges logarithmically, eq. (13), and
the electrolyte-added case, eq. (15), where the potential decays to zero. In the limit
of weak surface potential (or weak surface charge) the potential decays exponentially,
eq. (18), with the Debye-Hückel screening length, λD, as its characteristic length. Within
the PB treatment, eq. (15) is the exact solution for any amount of electrolyte and surface
charges. It interpolates between these two limits.

The Grahame equation & the Contact theorem

The PB equation can be integrated once and leads to a relation, known as the Grahame
equation, and also as the Contact theorem, Grahame (1947), Israelachvili (1992). This is
a relation between the surface charge density σ and the limiting value of the ionic density
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Figure 3. The electric double layer for a single charged surface in contact with a 1:1
monovalent electrolyte reservoir of concentration n0 = 0.1M. The charged surface
is at z = 0 with σ = −e/25Å2. This σ is ten times larger than the value used in
Fig. 2. (a) Potential pro�le φ as function of distance from the surface, z. The value
of the surface potential is φs ' −182.7mV. (b) Density pro�le of the counter-ions,
n+ (solid line) and co-ions n− (dashed line) are plotted as function of the distance
z. The value at the surface is n+(0) ' 116.6M (for the co-ions pro�le to be visible,
the diagram is cut at 1.5M).

profile at the boundary, n±(z=0).

σ2 =
εkBT

2π
[n+(0) + n−(0)− 2n0] ' εkBT

2π
[n+(0)− 2n0] ,

and (19)

σ2 =
εkBT

π
n0

[
cosh

eφs

kBT
− 1

]
,

For large φs, n+(0)/n−(0) = exp(2e|φs|/kBT ) À 1, and n−(0) is neglected in the
above equation.

For example, for a surface charge density of one electronic charge per 25 Å2 (as in
Fig. 3) and an ionic strength of n0 = 0.1 M, the limiting value of the counter-ion density
at the surface is n+(0) ' 116.6 M.

3.2 Modified Poisson-Boltzmann equation

As we saw in the preceding section, the density of the accumulated counter-ions at the
surface can reach very high, sometimes unrealistic values. A simple modification of the
PB equation allows a remedy of this problem. In its modified form the only other added
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ingredient is the entropy of the solvent in addition to that of the ions. This is especially
of importance when the counter-ions have a large size and/or are multivalent.

In the case of a 1:1 electrolyte the PB equation with the solute entropy modification
results in the following equations for the profile densities and potential, Borukhov et al
(1997)

n±(z) =
n0e∓eφ/kBT

1− ϕ0 + ϕ0 cosh(eφ/kBT )
, (20)

∇∇∇2φ = −4πe

ε
(n+ − n−) =

8πen0

ε

sinh(eφ/kBT )
1− ϕ0 + ϕ0 cosh(eφ/kBT )

, (21)

where ϕ0 = 2a3n0 is the volume fraction of the ions at bulk electrolyte concentration
n0, and a is taken as the molecular size of both the solute and solvent. It is easy to
see from eq. (20), that the counter-ions have a Fermi-Dirac like distribution. For small
potentials, eφ/kBT ¿ 1, the distribution reduces to the usual Boltzmann one, while for
high potential, e.g. , close to a highly charged surface the counter-ion density saturates at
close packing densities of 1/a3. This is very useful for multivalent counter-ions, where
the regular PB theory gives unreasonable high values of ionic densities close to charged
interfaces. As an example we show in Fig. 4 the modified and the regular PB profiles for
a 1:1 electrolyte. Large ion size, a = 8 Å is chosen to emphasize the saturation effect
in the modified PB profile close to the charged surface. Note that the modified PB has
a lower limiting value, n+(0), as well as a saturated accumulated layer of counter-ions
close to the surface.

It is also easy to derive the modified Grahame equation relating the surface charge
density σ with the counter-ion density at the surface. Neglecting the contribution of the
co-ions at the surface, n−(0) ¿ 1, the Grahame equation, Borukhov et al (1997), reads

σ2 ' εkBT

2π

1
a3

ln
1− 2a3n0

1− a3n+(0)
. (22)

Similarly, the surface charge density can be related with the surface potential φs by re-
lating n+(0) to φs from eq. (20). Note that in the limit of small a, by expanding the
logarithm in eq. (22), the Grahame equation (19) for the regular PB case is recovered.

3.3 Two planar surfaces

The PB equation can be solved for two planar surfaces. We will restrict ourselves to the
case of two equally charged surfaces, located at z = ±d/2, each having a charge density
σ < 0 as is depicted on Fig. 5. Generalizations to non-equal surface charges exist as
well, Parsegian and Gingell (1972). For planar and infinite surfaces, the PB equation
reduces to an ordinary differential equation depending only on the coordinate z. We will
consider separately the counter-ion only and added-electrolyte cases.

It is instructive to write down the electrostatic free energy for the two-surface prob-
lem. It comprises of the electrostatic energy and the entropy of the ions in solution
(without considering the modifications of Sec. 3.2).

F = U − TS =
∫

f d3r = Area ·
∫

f dz ,
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Figure 4. Comparison of the modi�ed PB pro�le (MPB � solid line) having a = 8Å,
with the regular PB one (PB � dash-dotted line). The surface charge density is
σ = −e/25Å2 and the 1:1 electrolyte ionic strength is n0 = 0.75M. Note that while
the PB value at the surface is n+(0) ' 117.7M, the modi�ed PB density saturates
at n+(0) ' 3.24M.

f =
ε

8π
(∇∇∇φ)2

+ kBT

(
n+(r) ln

n+(r)
n0

+ n−(r) ln
n−(r)

n0
− [n+(r) + n−(r)− 2n0]

)
.(23)

From the free energy per unit area F/Area, we can calculate the osmotic pressure by
taking a variation with respect to the inter-surface spacing d, while keeping the tempera-
ture and species chemical potentials fixed,

Π = − 1
Area

δF
δd

∣∣∣∣
T,µ

. (24)

For the symmetric case of two equally charged surfaces, the profiles are symmetric
about the mid-plane located at z = 0, yielding there a zero electric field, E = 0. By
taking the full variation of the free energy, eq. (23), it can be shown that the pressure is
simply equal to the excess of osmotic pressure calculated at the mid-plane with respect
to the bulk electrolyte solution

Π
kBT

=
∑

i

[
ni(z=0)− n0

i

]
. (25)

The osmotic pressure can be calculated at any point in the solution. Although the expres-
sion is different, its value agrees with the above expression calculated at the mid-plane.
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(b)
Figure 5. Schematic illustration of the two-surface system. The charged and planar
surfaces are located at z = ±d/2, and separated by a distance d. The surface charge
is taken to be negative and is neutralized by the ions in solution. In the symmetric
case, σ1 and σ2 are equal to the same value σ. For counter-ion only case, the two-
surface charge is neutralized by the counter-ions. When electrolyte is added, the
system is couple with an electrolyte reservoir of density n0

± = n0.

3.3.1 Counter-ions only

For a symmetric two-plate system, it is enough to consider the interval [0, d/2] because
of the z ↔ −z symmetry. The boundary conditions are dφ/dz|z=d/2 = (4π/ε)σ and
dφ/dz|z=0 = 0. Let us call n(z) = n+(z) and denote by nm and φm the values of the
density and potential at the mid-plane, respectively. For these boundary conditions, the
PB equation can now be solved analytically.

φ(z) =
kBT

e
ln(cos2 Kz) < 0 ,

(26)

n(z) = nme−eφ(z)/kBT =
nm

cos2 Kz
,

where the new length in the problem 1/K is related to nm by

K2 =
2πe2

εkBT
nm . (27)

Using the boundary condition at z = d/2 we get a transcendental relation for K

Kd tan(Kd/2) = − 2πeσ

εkBT
d =

d

b
, (28)

where b is the Gouy-Chapman length defined in eq. (14). A typical counter-ion profile is
shown in Fig. 6a for σ = −e/750 Å2 and d = 40 Å.

The osmotic pressure [eq. (25)] calculated in the counter-ion only case is

Π(d)
kBT

=
εkBT

2πe2
K2 =

1
2πlB

K2 . (29)
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Because K depends on other system parameters we discuss now separately two limits,
depending on how strong the surface charge is.

Weak surface charges

For d/b ¿ 1, the surface charge is weak. From eq. (27), (Kd)2 ' 2d/b ¿ 1. The
pressure then is

Π(d)
kBT

' −1
d

2σ

e
=

1
πlBb

1
d

. (30)

This regime is called the ideal gas regime as is apparent from the above pressure expres-
sion. The density (per unit volume) of the counter-ions is almost constant between the
two plates and is equal to 2|σ|/(ed). The main contribution to the pressure comes from
the ideal-gas like pressure of the cloud of counter-ions. Note that this regime occurs only
for small separations, d < b. For weakly charged surfaces, b is relatively large and this
regime can be seen for separations in the range of a few Angstroms or more.

Strong surface charges

Here, from eq. (27), d/b À 1 and Kd → π. The leading order term in the pressure is
then

Π(d)
kBT

' π

2lB

1
d2

=
πεkBT

2e2

1
d2

. (31)

It is interesting to note that the above pressure equation is independent of the surface
charge density and is closely related to the Langmuir equation, as is discussed in Is-
raelachvili (1992). But one should recall that this equation holds for counter-ions only.
As soon as one adds electrolyte, the pressure expression changes as is shown in the next
section.

3.3.2 Added electrolyte

The PB equation is now considered for an electrolyte solution between two charged sur-
faces, restricting ourselves to a 1:1 symmetric and monovalent electrolyte, eq. (7). How-
ever, here the exact solution can only be expressed in terms of an elliptic integral. Let
us define a dimensionless potential η ≡ −eφ/kBT so that η > 0 for σ < 0. At the
mid-plane ηm ≡ η(z = 0) and on the charged surface ηs ≡ η(d/2). The PB equation
and boundary conditions are now written in terms of η

d2η

dz2
= λ−2

D sinh η , (32)

dη

dz

∣∣∣∣
z=d/2

=
2
b

and
dη

dz

∣∣∣∣
z=0

= 0 . (33)

First integration from the mid-plane position (z = 0) to an arbitrary z gives

λD
dη

dz
=

√
2 cosh η(z)− 2 cosh ηm . (34)
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Figure 6. Ion density pro�les between two identical charged surfaces with σ =
−e/750Å2 each, at separation d = 40Å located at z = ±20Å. In (a) the n+(z)
pro�le is plotted from eqs. (26)-(28) for the counter-ion only case, while in (b) n+

and n− (solid and dashed lines, respectively) are plotted for 1:1 electrolyte with
n0 = 0.1M. See eqs. (35)-(37). As b ' 17.2Å, and λD ' 9.75Å, we are in between
the Intermediate and DH regions of Fig. 7 where d > b > λD.

A further definite integration gives an elliptic integral

z

λD
=

∫ η

ηm

dη′√
2 cosh η′ − 2 cosh ηm

. (35)

The boundary condition (33) can be inserted in eq. (34) yielding

cosh ηs = cosh ηm +
2λ2

D

b2
, (36)

while the second boundary condition at z = d/2 is expressed as

d

2λD
=

∫ ηs

ηm

dη√
2 cosh η − 2 cosh ηm

. (37)

The last three equations (35)-(37) completely determine the potential η(z) and the
two species density profiles, n±(z) = n0 exp(±η(z)) and their mid-plane values n±m =
n0 exp(±ηm), as function of the three system parameters: the inter-surface spacing d,
the surface charge density σ (or equivalently b), and the electrolyte bulk ionic strength
n0 (or equivalently λD). An example of the counter-ion and co-ion profiles is shown in
Fig. 6b. Note that in the figure, the three lengths are chosen such that d > b > λD,
placing us in between the DH and Intermediate regions of Fig. 7.

Once the profiles are calculated, the pressure has a simple dependence on the mid-
plane properties.

Π(d)
kBT

= n+
m + n−m − 2n0 = 2n0 (cosh ηm − 1) . (38)
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We end the treatment of the 1:1 electrolyte solution between two identically charged
surfaces by giving several limiting expressions for the pressure. The exact form can
be obtained from the numerical solution of eqs. (35)-(37) as outlined above. Figure 7
summarizes the four different regimes in the (λD/d, b/d) plane. More details about
these limiting expressions can be found in Andelman (1995).

0 1
0

1

λD/d

b

d

Int. GC

DH IG

(ii)

(i)

Figure 7. Schematic representation of the various limits of the PB equation for two
�at and equally charged surfaces at separation d. The diagram is plotted in terms of
two dimensionless ratios: b/d and λD/d, where b, d and λD are the Gouy-Chapman
length, the inter-surface spacing and the Debye-Hückel length, respectively. The
four regions discussed in the text are: the Ideal-Gas (IG), the Gouy-Chapman (GC),
Intermediate (Int.) and the Debye-Hückel (DH) regions. They are separated by 3
straight lines: b = λD, b/d = 1, λD/d = 1 and a parabolic one b/d = (λD/d)2. The
DH region is further divided into two sub-regimes: (i) large d and (ii) small d spacing.

Ideal-gas region

In the limit of b/d À 1 and (λD/d)2 À b/d, the pressure reduces to the expression
obtained for the counter-ion only case in the limit of small surface charge, eq. (30). The
validity of this Ideal-gas region is for low electrolyte ionic strength and small surface
charge.

Π(d)
kBT

' −1
d

2σ

e
=

1
πlBb

1
d

. (39)

Gouy-Chapman region

In the region defined by λD/d À 1 and b/d ¿ 1 where the electrolyte strength is still
weak, but for large surface charge density, the expression for the pressure coincides with
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the other limit, eq. (31). This region is called the Gouy-Chapman region

Π(d)
kBT

' πεkBT

2e2

1
d2

=
π

2lB

1
d2

. (40)

Intermediate region

Within the limits of validity λD/d ¿ 1 and b ¿ λD, in the Intermediate region, the
surface potential is rather large ηs ≥ 1 and γ = tanh(ηs/4) ≈ 1. The PB equa-
tion cannot be linearized. On the other hand, the mid-plane potential is small ηm =
8γ exp(−d/2λD) ¿ 1, and the coupling between the two surfaces is weak.

Π(d)
kBT

= n0η
2
m ' 8

πlBλ2
D

e−d/λD . (41)

Debye-Hückel region

The last region is the DH region where the PB equation can be linearized. This region can
further be divided into two limits. For large d denoted as case (i) in Fig. 7, λD/d ¿ 1 and
b À λD, and for small d denoted as case (ii) in Fig. 7, λD/d À 1 and (λD/d)2 ¿ b/d.

The pressure of the linearized DH equation in both limits is given by

Π(d)
kBT

' 1
2πlBb2

1
sinh2(d/2λD)

, (42)

which reduces in the large d separation, d À λD, case (i), to the well-known result

Π(d)
kBT

' 2
πlBb2

e−d/λD , (43)

and for small d, d ¿ λD, case (ii), to

Π(d)
kBT

' 2
πlB

λ2
D

b2d2
. (44)

4 Poisson-Boltzmann equation in cylindrical coordinates

The PB equation can be solved in cylindrical geometry to model the accumulation of
charges around rod-like and charged objects such as rigid polyelectrolytes or elongated
colloidal particles. In several situations analytical solutions exist, while in others one
needs to rely on numerical solutions and approximations.

In the case where we have a solution of rod-like molecules (or cylindrical colloidal
particle) we can construct a cell model. The model is composed of two concentric cylin-
ders with an ionic solution in between them (neglecting any finite size of the cylinder
caps). See Fig. 8. The inner cylinder models a charged and elongated particle, while the
outer cylinder defines the boundary of the specific volume per charged (cylindrical) par-
ticle in case of a multi-particle solution. Because of the cylindrical symmetry it is clear
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a

R

Figure 8. Schematic illustration of the two-cylinder problem. The aqueous solution
is bounded between two concentric cylinders. The inner one at r = a is negatively
charged, σ < 0. On the outer cylinder, r = R, the electric �eld vanishes as the entire
cell is electrically neutral.

that the potential φ(r, θ, ϕ) depends only on the coordinate r, measured from the major
axis of the cylinder at the origin. The inner cylinder of radius a has a surface charge den-
sity (per unit area) σ < 0. Alternatively, we can define on the inner cylinder the charge
line density ρ (number of charges per unit length)

ρ ≡ 2πa|σ/e| . (45)

The outer cylinder of radius R defines the total volume of the aqueous solution per
charged object (cylinder). From the cylindrical symmetry and the requirement to have
charge neutrality within the cell of radius R, the electric field has to vanish at r = R.
The boundary conditions then are

dφ

dr

∣∣∣∣
r=a

= −4π

ε
σ =

2e

ε

ρ

a
,

(46)
dφ

dr

∣∣∣∣
r=R

= 0

4.1 The linearized PB equation: Debye-Hückel theory

We discuss the PB equation in the linear DH limit. As in Sec. 2, the linear DH gives:

∇∇∇2φ =
d2φ

dr2
+

1
r

dφ

dr
= λ−2

D φ(r) , (47)

This equation is the modified Helmholtz equation in cylindrical coordinates and has an
analytical solution satisfying the boundary conditions (46):

eφ

kBT
= − 2

bκD

K0(κDr)I1(κDR) + I0(κDr)K1(κDR)
K1(κDa)I1(κDR)− I1(κDa)K1(κDR)

, (48)
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where κD ≡ λ−1
D is the inverse of the Debye-Hückel screening length, b the Gouy-

Chapman length as in eqs. (9) and (11), and the functions In and Kn are the nth order
modified Bessel functions of the first and second kind, respectively.

The limit when the outer cylinder radius goes to infinity, R → ∞, corresponds to
the infinite dilution limit of one charged object (cylinder) embedded in an aqueous ionic
solution. Then eq. (48) reduces to

eφ

kBT
= − 2

bκD

K0(κDr)
K1(κDa)

. (49)

The above expression decays exponentially to zero for κDr À 1

φ ∼ 1√
r

e−κDr . (50)

4.2 The non-linear PB solution: counter-ion only and Manning con-
densation

The non-linear PB equation in cylindrical geometry has an analytical solution for the
counter-ion only case, Fuoss et al (1951). We note that rather recently a additional an-
alytical solution has been derived for the added-electrolyte case in a certain limit, Tracy
and Widom (1997). This is the limit of infinite dilution (R → ∞) and vanishing inner
cylinder radius, κDa → 0. However, we will restrict ourselves to the counter-ion only
case and discuss the interesting phenomena of counter-ion condensation in the infinite
dilution limit, known as the Manning condensation, Manning (1969), Oosawa (1971), Le
Bret and Zimm (1984). This condensation phenomenon cannot be obtained within the
linearized DH regime.

Let us consider again the PB equation for two concentric cylinders, but this time with
counter-ions only. The PB equation and the boundary conditions at r = a and r = R is
written for the dimensionless potential η = −eφ/kBT

d2η

dr2
+

1
r

dη

dr
= 4πlBn0eη , (51)

and
dη

dr

∣∣∣∣
r=a

= 4πlB
σ

e
= −2lBρ

a
and

dη

dr

∣∣∣∣
r=R

= 0 . (52)

It is possible to map exactly the two-cylinder problem into the simpler two-plate problem
discussed earlier in Sec. 3.3.1, Burak (2004b). This mapping is an alternative way of
looking at the original two-cylinder solution derived by Fuoss et al (1951) and detailed
in Oosawa (1971).

First we change the distance variable r into u

u = ln
r

a
, (53)

yielding the PB equation
d2η

du2
= 4πñ0eη+2u , (54)
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with a renormalized charge density ñ0 defined as

ñ0 = lBa2n0 . (55)

Making another change of variables for the potential

ψ = −η − 2u , (56)

we obtain an exact mapping of the original cylindrical problem into an equivalent PB for
two planar surfaces:

d2ψ

du2
= −4πñ0e−ψ = −4πñ(ψ) , (57)

with two boundary conditions

dψ

du

∣∣∣∣
u=0

= 2(lBρ− 1) and
dψ

du

∣∣∣∣
u=d

= −2 . (58)

The mapping is done between the PB equation solved in cylindrical geometry for two
concentric cylinders, and the PB equation solved in planar geometry for the counter-ions
only case having two planar but non-identical charged surfaces. One surface at u = 0 has
a surface charge density of (1− lBρ)/2πlB. This charge can be positive or negative. The
second surface at d = ln(R/a) has a negative surface charge density of −1/(2πlB). The
mapping between the two-cylinder problem and the two-plane problem is summarized in
the Table below.

Before we detail the solution of the two concentric cylinder, let us introduce the
concept of the Manning condensation. It can be easily understood from this mapping by
thinking of the analog planar case in the large d separation. For lBρ < 1, the surface
at u = 0 has the same sign as the counter-ions, while the surface at u = d is attractive.
When d → ∞ the counter-ions will be repelled from the u = 0 surface and will “run
away" to infinity, gaining both entropy and electrostatic attraction with the other surface.
However, for lBρ > 1 the u = 0 surface is attractive for the counter-ions. When the other
surface is taken to infinity, d → ∞, some of the counter-ions will stay behind balancing
entropy and electrostatic attraction, in such a way that the effective charge is always ρ∗ =
1/lB. This is the Manning condensation. It states that in infinite dilution (one charged
cylinder) and without added salt, the effective charge density of the polyelectrolyte chain
never exceeds 1e per lB ' 7 Å.

We now mention the solution for the two concentric cylinders representing a finite
concentration of charge rod-like molecules in the solution. Returning to the mapping in-
troduced above, the charges on the two planar surfaces are not identical. The parameter
1− lBρ is the charge density on the surface at u = 0, and it can be positive (lBρ < 1) or
negative (lBρ > 1). The non-linear case of no-added electrolyte for two concentric cylin-
ders was solve by Fuoss et al (1951). Here we use the mapping to the planar geometry
to get the same results within a different method. The charge density profile expressed in
the cylindrical geometry is

n(r) =
1

2πlBr2
×





B2
[
sinh(B ln r

R − arctanhB)
]−2

ρ < ρ∗

(ln(r/R) + 1)−2
ρ = ρ∗

B2
[
sin(B ln r

R − arctanB)
]−2

ρ > ρ∗

, (59)
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distance potential ref. density inner b.c. outer b.c.

cylinder r η = − eφ
kBT n0

2lBρ
a 0

a ≤ r ≤ R

planar u = ln r
a ψ = −η − 2u ñ0 = lBa2n0

1−lBρ
2πlB

− 1
2πlB

0 ≤ u ≤ d = ln R
a

Table 1. Mapping between PB equation in cylindrical and planar geometries

where the critical value ρ∗ is given by

ρ∗ =
1
lB

ln(R/a)
ln(R/a) + 1

, (60)

and has the limit of ρ∗ → 1/lB for infinite dilution, R/a → ∞, in agreement with the
Manning condensation threshold. The only other parameter in eq. (59) is the integration
constant B, which can be obtained from the boundary condition at the inner cylinder
r = a. Depending on the value of ρ with respect to ρ∗, B can be obtained by inverting
the following equation

ρ =
1
lB
×





1−B coth[B ln(R/a) + arctanh B] ρ < ρ∗

1−B cot[B ln(R/a) + arctan B] ρ > ρ∗
, (61)

5 Poisson-Boltzmann equation in spherical coordinates:
charged colloids

Dispersion of small (submicron) particles in a liquid solution is called a colloidal suspen-
sion. The suspension can be stabilized against van der Waals attractive forces by several
means. In aqueous solutions if the particles are charged, the competition between the
electrostatic repulsion and the van der Waals attraction can stabilize the suspension. This
is the idea behind the famous DLVO theory of Deryagin, Landau, Verwey and Overbeek,
Deryagin and Landau (1941), Verwey and Overbeek (1948), where the attractive van der
Waals attraction is balanced with screened repulsive electrostatic repulsion, resulting in
a secondary minimum for particle-particle interaction.

Let us now considered the limit of infinite particle dilution: one spherical charged
particle immersed in a solution containing its counter-ions and possibly added salt. The
PB equation can be solved in spherical coordinates. For a perfect spherical particle of
radius a and charge Qe, the charge density is σ = Qe/4πa2.

The linearized PB equation (the DH limit) in spherical coordinates is simply written
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as:

∇∇∇2φ =
d2φ

dr2
+

2
r

dφ

dr
= λ−2

D φ(r) , (62)

The linearization can be justified in presence of high added salt and moderate particle
charge density. For one sphere problem, we require the potential and the electric field to
vanish at infinity, while on the spherical surface, r = a, the potential boundary condition
is

dφ

dr

∣∣∣∣
r=a

= −Qe

εa2
,

(63)
dφ

dr

∣∣∣∣
r=∞

= 0

Clearly the solution of the linearized PB equation has the DH form in spherical coor-
dinates: exp(−κDr)/r, where κD = 1/λD. Together with the boundary condition we
get

eφ(r)
kBT

=
QlB

1 + κDa

e−κD(r−a)

r
(64)

The linearized PB equation is correct only in the high salt limit, κDa À 1. However,
even in lower salt concentration, it is useful to consider an effective particle charge Qeff .
Far away from the charged sphere, the non-linear PB solution will have an asymptotic
solution behaving just like the linear PB solution, eq. (64), but with an effective charge
Qeff replacing the nominal charge Q of the sphere.

We concentrate on the case of a charged enough sphere such that a/b = lBQ/2a À 1,
where b is the same Gouy-Chapman length introduced in the planar geometry, eq. (11),
and is equal here to b = 2a2/lBQ. In the very high salt limit, Qeff is about equal to Q.
As we lower the amount of salt, the correction to Qeff is found to be

Qeff = Q

(
1− 1

4κ2
Db2

+ · · ·
)

(65)

At intermediate salt concentration, κDa ' 1, the behavior is non-monotonic (and will not
be detailed here), while for κDa ¿ 1 [but not smaller than exp(−lB/2a)], Qeff saturates
at a value, Ramanathan (1986, 1988) that does not depend on Q itself:

Qeff =
2a

lB
ln

[
4

κDa
ln

(
1

κDa

)]
(66)

Taking values of typical colloidal suspensions we have a ' 200 Å and Q=2000. This
gives us a/b ' 35 À 1. For high salt, Qeff is slightly lower than 2000. As κDa is
lowered, Qeff becomes much lower than Q and then reaches an effective value of about
400 for κDa = 10−2. Namely, about a fifth of its original value. An interesting remark
is that for a large range of low salinity, Qeff is a weak function of Q, and depends mainly
of the salt concentration and particle size a. Namely, different values of Q will roughly
give the same Qeff for the same salinity and particle size.

A similar notion of charge renormalization (Qeff ) was introduced by Alexander et
al (1984), for a solution containing a finite concentration of particles. In the absence
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of salt (counter-ion only), it was proposed that the potential far away from the charged
spherical particles looks like a DH potential with an effective charge which is due to
the presence of all other charged spheres, Belloni (1998). Roughly speaking Qeff is
equal to a/lB multiplied by a logarithmic correction that depends on system parameters.
However, this logarithmic correction is small and we remark the resemblance of this
charge renormalization to that of eq. (66) above.

6 Beyond the PB treatment

In this chapter we concentrated on the relatively simple Poisson-Boltzmann equation
and have shown how its solutions in different geometries: planar, cylindrical, spherical
are related to several interesting physical problems. The PB theory is a mean-field one
and as such it neglects fluctuations and correlations. In addition, it neglects the finite
size of the ions and the fact that the solvent is not a continuous media. (But see Burak
and Andelman (2000, 2001) and references therein for discrete solvent corrections.) At
present, a unified theory that takes into account all corrections to PB is not available, but
there are a number of attempts where specific corrections to PB have been proposed and
studied in detail. We briefly mention some of these corrections (see also the chapter by
Podgornik).

Strong deviations from PB behavior is seen in the cases where the concentration of
ions in solution is very large. There, electrostatic interactions are highly screened and the
specificity of ions, the structure of the water shell around them (hydration shell) and the
ionic finite size and polarizabilities come into play. Molecular dynamic (MD) simulations
have shown that the water shell around ions causes short-range attraction Guàrdia et al
(1991). Another interesting effect for high electrolyte concentration, n0 > (2/π)l−3

B

electrolytes, are phase transitions and related critical phenomena as reviewed by Fisher
(1994) and Levin (2002).

Several attempts have been made in the past to use liquid-state theories, Hansen
and McDonald (1986), Rosenfeld and Ashcroft (1979), Henserson (1992), to improve
upon the PB treatment by calculating the corrections due to correlations. Although these
methods involved uncontrolled approximations (unlike perturbative methods), they are
quite successful in high salt concentrations. We mention here only one variant called the
Anisotropic Hypernetted Chain (AHNC) method. The ANHC involved integral equa-
tions and can be used in anisotropic charged systems such as ionic profiles close to
charged surfaces, Henderson (1992), Kjellander (1996), Kjellander and Marc̆elja (1984)
and (1985). For divalent counter-ions (such as Ca++), ANHC calculations, in agreement
with Monte-Carlo simulations and experiments, have confirmed attractive interaction be-
tween two highly-charged surfaces with inter-surface separation of a few Angstroms.
This result has important consequences in the study of clays and zeolytes. This attraction
clearly goes beyond the PB treatment because it can be shown rigorously that equally
charged surfaces always repel each other within the PB formalism, Neu (1999), Sader
and Chan (1999) and (2000). Another correlation-induced attraction can be found from
Monte-Carlo simulations, Moreira and Netz (2002), Guldbrand et al (1984), Kjellander
et al (1992), Gronbech-Jensen et al (1997), Deserno et al (2003); and other analytical
techniques: Attard et al (1984), Podgornik (1990), Pincus and Safran (1998), Netz and
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Orland (2000), Burak and Andelman (2001). Corrections to PB can be quite substantial
when the counter-ions in solution are multivalent and the surface charges are large.

The phenomenon of DNA condensation and aggregation in presence of multivalent
counter-ions is another example where PB fails to provide the full physical picture. More
details are given in the chapter of Podgornik. The attraction that causes the aggregation
and condensation is especially strong in presence of trivalent and tetravalent counter-ions
such as spermidine and spermine, Anderson and Record (1980), Raspaud et al (1998)
and is a topic of numerous investigations, Bloomfield (1991), Rau and Parsegian (1992a,
1992b), Ha and Liu (1997), Gelbart et al (2000), Grosberg et al (2002), Burak et al (2003,
2004c)

7 Concluding remarks

In this chapter we reviewed some of the underlying principles behind the behavior of
charges in solution. In particular, we considered the way ions in solution will react to the
presence of charged boundary conditions, like a charged surface or particle. Considerable
insight can be gained from simple models of one charged surface immersed in an ionic
solution, or the forces that exist between two such surfaces as mediated by the ionic
solution. Other geometries are also useful to consider. Charged cylinders can be thought
of as models of long, rod-like and charged molecules, while spheres model colloidal
particles.

The chapter mainly describes results obtained within the Poisson-Boltzmann formal-
ism that is a mean-field approximation. Corrections to this theory are due to correlations
and fluctuations of charge densities, and may play a substantial role.

The simple geometries of a plane, cylinder and sphere may be too simplified in some
applications. The geometrical shape of charged membranes and macromolecules is of-
ten more complex. In addition, the shape often is not rigid but can deform at room
temperature. Hence, the flexibility of the objects and its charge contributions has to be
considered.

We close this chapter by mentioning two such examples. Biological membranes are
two-dimensional flexible objects. A stack of membranes forming a lamellar system is
shown on Fig. 9. When the membranes are charged, the most straightforward effect
is a stiffening of the elastic constants. The exact expression of the bending modulus
depends on the amount of salt and membrane thickness and charge. A simple result can
be obtained in the linearized DH limit where the elastic bending modulus is increased by
an amount proportional to

σ2λ3
D

ε
∼ λ3

D

lBb2
. (67)

When the charged membranes are composed of mixtures of charged and neutral
lipids, the charges can rearrange themselves laterally on the membrane. This can lead
to lateral phase separation and nucleation of charged domains.

Another example is related to the flexibility of charged polymers, depicted on Fig. 10.
Polymers have a persistence length `p above which long chains behave as a random walk,
while for lengths smaller than `p, the chain is nearly rigid, rod-like. As the chains become
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Figure 9. A schematic illustration of a lamellar stack of membranes. Each membrane
is made of a charged bilayer. The entire stack is neutral. The membrane undulations
depends on kBT and the elastic bending modulus.

charged, the main effect is the rigidifying of the chains resulting in an increase in the
persistence length. Using the linearized PB equation, the electrostatic persistence length
was calculated by Odijk (1977) and independently by Skolnick and Fixman (1977)

`p =
lBρ2

4κ2
D

(68)

where ρ is the line charge density (number of charges per unit length) on the chain. For
highly charged chains such as DNA, and, in particular, in presence of multivalent counter-
ions, this result has corrections which lead to possible chain instabilities and collapse.
Such a phenomena has been observed for DNA as well as for synthetic polyelectrolytes.
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