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We present a model for the ion distribution near a charged surface, based on the response of the ions to the
presence of a single test particle. Near an infinite planar surface this model produces the exact density profile
in the limits of weak and strong coupling, which correspond to zero and infinite values of the dimensionless
coupling parameter. At intermediate values of the coupling parameter our approach leads to approximate
density profiles that agree qualitatively with Monte Carlo simulation. For large values of the coupling param-
eter our model predicts a crossover from exponential to algebraic decay at large distance from the charged
plate. Based on the test-charge approach we argue that the exact density profile is described, in this regime, by
a modified mean-field equation, which takes into account the interaction of an ion with the ions close to the
charged plate.

DOI: 10.1103/PhysRevE.70.016102 PACS nun®)er82.45.Gj, 61.20.Qg, 61.20.Gy

I. INTRODUCTION is weak. As a result, in the lim& — 0 mean-field theory is

Interactions between charged objects in solution are detef*@ct, as can be formally proved using a field-theory formu-
mined by the distribution of ions around them. UnderstandJation of the problen{20]. Correlations between ions close

ing these distributions is thus of fundamental importance fot0 the charged plate play a progressively more important role

theoretical treatment of water soluble macromolecules suckith increase of the coupling parameter. From EL). one

as polyelectrolytes, charged membranes, and collgids. sees that this happens with an increase of the surface charge,

In recent years, much interest has been devoted to correlatiowth decrease of the temperature or dielectric constant, and

effects in ionic solutions and to attempts to go beyond meanwith increase of the charge or, equivalently, the valency of

field theory in their treatment. In particular, it has been real-counterions. The model of Fig. 1 thus provides an elemen-

ized that such effects can lead to attractive interactions beary theoretical framework for studying ion correlation ef-

tween similarly charged objects, as was demonstrated ifects near charged objects, with no free parameters other than

theoretical model$3—-10, simulation[5,11-14 and experi-

ment[15-19. -o

Despite the theoretical interest in ion correlation effects,

they are not fully understood even in the most simple model @ ®

for a charged object surrounded by its counterions, shown § ok e

schematically in Fig. 1. The charged object in this model is @

an infinite planar surface localized at the pla¥®, having a ® )

uniform charge density. The charged plate is immersed in

a solution of dielectric contact and is neutralized by a

single species of mobile counteriofthere is no salt in the ®

solution). These counterions are confined to the half space /
o2
er

Y
N

z>0 and each one of them carries a chaegevhich is a
multiple of the unit charge for multivalent ions. The ions are @ @ ®
considered as pointlike, i.e., the only interactions in the sys-
tem, apart from the excluded volume &t 0, are electro- @
static.

The system described above is characterized by a single z=0
dimensionless coupling paramef{@0,21].

— kT2

r
@

3 FIG. 1. Schematic description of the double-layer model consid-
- 2m€’0 (1) ered in this work. An infinite charged plate having a uniform sur-
(skBT)Z’ face charged density is immersed in a dielectric medium having
. . dielectric constant on both sides of the plate. The charge of the
Where_: kgT is the thermal energy._A_t small _values of th_'s plate is neutralized by pointlike counterions, carrying each a charge
coupling parameter the electrostatic interaction between ions 1hase ions are confined to the positwealf space, where=0 is
the plane occupied by the plate. In thernigdT) units the interac-
tion between two ions is given bis/r, wherer is the distance
*Electronic address: yorambu@post.tau.ac.il between the ions ang=€?/(kgT) is the Bjerrum length.

I
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H, which tunes and controls the importance of ion correlathe free energy using the dimensionless coupling parameter
tions. E. In the canonical ensemble the partition function can be
In recent years two theoretical approaches were proposegiitten as follows(z is thez coordinate of théth ion):
for treatment of the strong coupling limE — . The first
. K N N
approach9] is based on properties of the strongly coupled, 1 3 Z Ig
two-dimensional one-component plasma, and emphasizes the €XP(— Fn) = N H d°r exp[— E - E m} ,
possibility of Wigner crystal-like ordering parallel to the o X
charged plane. The second appro@t®y is formally an ex- (2
act, virial-type expansion applied to a field-theory formula- . . .
tion of the partition function. Both of these approaches pre—Wherel*3:62/.8k‘3-|—.IS the distance at which the Coulomb en-
dict an exponential decay of the ion density distribution in€'dY Of two ions is equal to the thermal eneigyf, andu
the strong coupling limit, leading to a more compact coun-—¢€/(27lgo) characterizes the bar.e'mteractlon of an ion with
terion layer than in mean-field theory. the charged plane. These quantities, the only two indepen-
Although the form of the density profile is established in dent length scales in the problem, are known as the Bjerrum
the two limitsE — 0 and= — o, its behavior at intermediate length and Gouy-Chapman length, respectively. We rescale
values of the coupling parameter is still not clear. Liquid-the coordinates by the Gouy-Chapman length,
state theory approaches such as the anisotropic hypernetted
chain (AHNC) approximation[22] can probably be used in T = i (3)
this regime, but in practice they were applied in the literature o’
only to relatively small values of the coupling parameter, ~
usually also including ingredients other than those in thevielding exg—Fy)=(u)® exp(-Fy), where
model of Fig. 1—such as finite ion size, added salt, or an LN N _
interaction between two charged planar surfaces. The infinite = _ 3= _N's =
planar double layer with no added séfig. 1) was recently exp(=Fn) = N! f E di exp[ EZ‘ 2;" @ _’f.|]
studied using Monte Carlo computer simulat{ds], provid- - B . b
ing detailed results on the counterion distribution in a wide (4)
range of coupling parameter values. These results validatgnd the ratio
the expected behavior in the weak and strong coupling lim-
its. In addition, they provide new data at intermediate values _ g
of the coupling parameter, to which theoretical approaches ===
can be compared. #
We propose, in the present work, a theoretical approacks the coupling parameter that was previously defined in Eq.
for treating the distribution of counterions near the charged1). The requirement of charge neutralityNéA= o /e, where
plate. This approach is based on an approximate evaluation js the planar area. Hence the number of ions per rescaled
of the response of the ionic layer to the presence of a singlgnit area is equal to
test particle. While an exact evaluation of this response
would, in principle, allow the distribution of ions to be ob- N_ 1
tained exactly, we show that even its approximate calculation =~
provides meaningful and useful results. In the limits of small

and _IargeE the exact density profile is recovered. At inter- \, hara Z\:A/,uz. The local density of ions in the rescaled
mediate values of the coupling parameter our approach,, jinates is equal fp(r)=u3(r). Due to symmetry this
agrees semiquantitatively with all the currently ava"abledensity depends only 6aand it is convenient to define a

simulation data. . . . ; .
The outline of this work is as follows. In Sec. Il we normalized, dimensionless, density per unit length

resent the model and discuss why it produces the exact == 2 o =~
gensity profile in the weak and strgng cF:)oupIing limits. In N(2) = 2mgu’p =2m=p @
Sec. Il we present numerical results for the density profilehaving the property
close to the charged plate, and compare them with simulation "
results of Ref[13]. Numerical results of our model, further —
away from the charged plate, where there are currently no JO 972 =1 ®)
data from simulation, are presented in Sec. IV, and scaling
results are obtained for the behavior of our model in thisas seen from Eqg6) and(7). From here on we will omit the
regime. Finally, in Sec. V we discuss the relevance of our~ symbol from all quantities in order to simplify the nota-
model's predictions, at small and largeto the exact theory. tions. In order to express physical quantities in the original,
Many of the technical details and derivations appear in théonscaled units, the following substitutions can be used:
appendixes at the end of this work.

(5

(6)

A_2’7TE,

r—riu, 9
Il. MODEL

2
A. Scaling n— 2mlgup. (10

Consider the system shown in Fig. 1, with the parametergve will also omit the subscriptl from the free enerngN,
o, e, ande defined in the Introduction. We will first express implying thatN is determined by charge neutrality.
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B. Known results in the limits of small and large E TABLE |. Characteristic values of, u, andE for several rep-

We briefly review some known properties of the ion dis- resentative macromqlecules. Valueszfare shown for two cases:

tribution in the limits of small and larg& (for a more com- monovalent counterion¢l —¢) and four-valent oneg4-e). The
Gouy-Chapman lengtp corresponds to monovalent ions. The cell

plete discussion, see R¢1L0]). In the I|m_|t of :_ﬂo_ mean-  membrane charge density is estimated assuming that 10% of the
field theory becomes exact. The density profile is Obtalr]e(’ﬁpids in the membrane are charged. The surface charge of DNA is

from the Poisson-Boltzman(#®B) equation and decays alge- estimated from the linear charge density along the DNA contour,

braically, having the fornj23] equal to 1/1.7%/A, and assuming a radius of 10 A. For mica full
dissociation of charged groups is assumed. In all three cases the

(11 Bjerrum length is taken alg=7 A, which corresponds to water at

Npg(2) = ——.
(z+1) room temperature.

Within the adsorbed layer ions form a three-dimensional; 5 _ _
weakly correlated gas: the electrostatic interaction between oAy p@A)  El-¢ E(-e
neighboring ions is small compared to the thermal energycq| membrane 0.002 10 0.6 40
This last statement can be verified by considering the densit%NA 0.01 > 3 200
of ions at contact with the plangpg(0)=1/(27 =) [see Egs. Mica 0.02 1 6 400
(7) and(11)]. The typical distance between neighboring ions '
is thus of order=3. In the nonscaled units this distance is
much larger tharg, which validates the statement that ions
are weakly correlated="%u=5"2>1. Note also that are very different from each other: zt-1 the probability to
this typical distance is small compareﬁdl/tO the width of thefing an jon is exponentially small in the SC limit, while in
adsorbed laye(Gouy-Chapman lengih= ?'“<"ﬁ the weak coupling limit it decays only algebraically and is
In the opposite, strong couplin@C) limit of Z>1, the b5 mych larger. Furthermore, in the weak coupling case,
density profile decays exponentially: moments of the density, including the average distance of an
nsd(2) = exp(- 2). (12)  ion from the plate, diverge.
. o ) Although the form of the density profile is known in the
The width of the adsorbed layer is still of ordgrin the |imjts of small and large=, two important issues remain
nonscaled units, but is now small compareddoEquation  gnen The first issue is the form of the density profile at
(6) indicates tEeEZthe average lateral distance between ions jgormediate values d. At coupling parameter values such
then of orders ™. Thlstlllsétance 's large compared o the 55 1 or 100 perturbative expansions around the limits of
;Vr':;“ i?1 f Juislzr;lfhgéiﬁumﬂlinﬂ tﬁol',qz tfle:citlr)g ' E\nd_l,_r:tels small or large= [10,2Q are of little use, because they tend to
ions form, roughly SFJJeaking agtwo-gim;nsio%al z.heet andVe meaningful resulis only at small values of their expan-
' ' Sion parameter. Such intermediate values are common in ex-

are highly correlated within this adsorbed layer. The typical_ . . . . i
lateral separation between ior&EL?, is an important length perimental systems with multivalent ions, as demonstrated in
- Table I. Second, even at very small or very largethe

scale in the strong coupling limit, and will play an important respective asymptotic form ai(z) may be valid within a

role also in our approximated model. . : L
bp limited range ofz values. In particular, for largé& it is

At sufficiently large values oE it has been conjectured L
(but not provedgithat ions form a two-dimensional, triangular natural to suppose th"?‘t sufficiently far away from the charged
’ late the density profile crosses over from SC to PB behav-

close-packed Wigner crystal parallel to the charged plate® X L
Basedpon the meﬁing terr):peratrl)Jre ofa two—dimens?onalpone'pr' Indeed, far away from the plate the ion density is small,

component plasma, one can estimate that this transition O(g(_asgmbling t_he situat.ion near a we.akly c.harged S“ffa?ce- The
curs ats =31 OOO[é 13. Furthermore, the ion-ion correla- Main objective of this work is to investigate these issues,

tion function is expected to display short range order similalbOth of which necessitate going beyond the formal limits of

to that of the Wigner crystal even far below this transitionvanlShIng and infinite=.
threshold. The exponential decay of E2) was predicted,
based on these notions, in R§8]. The same result can be
obtained also in a formal virial expansiddO], which is
valid for largeE but does not involve long range order par-
allel to the charged plate at any value Bf

Finally we note two general properties of the density pro-
file that are valid at any value dE. First, the normalized
contact density(0) is always equal to unity—a consequence
of the contact theorerf24] (see also Appendix P Second,
the characteristic width of the adsorbed layer is always of n(z) = Eexp{— F(2)], (13)
order unity in the rescaled units. These two properties restrict z
the form of the density distribution quite severely and indeed
the two profileg(11) and(12) are similar to each other close
to the charged plane. Far away from the plate, however, theywhere

C. Test-charge mean-field model
Our model is based on the following observation: the nor-

malized densityn(z) is proportional to the partition function
of a system where a single ion is fixed at the coordirzate
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exp - F(z)]
N-1
1
= d3
TR
N-1 N-1 = —
><exp<—zo— z- — - — )(14)
i=1 i1 |ri— 22| j>i|ri_rj|

and

dzexd-F(2)], (15)

J
where the coordinate of the fixgdith) ion in Eq.(14) is z2.
Equationg13)—(15) are exact and can be readily formulated
also in the grand-canonical ensemble.

In the original coordinateB(zy) is the free energy of ions
in the external potential

z

y7

lg

— (16)
Ir - 22|

exerted by the charged plane and fixed ion. Examination o{:

Eq. (14) shows that in the rescaled coordinates these are io
of charge\E in the external potential

Ir - 2] } '
Our starting point for evaluating(z) is the exact relation

expressed by Eq13) but we will use a mean-field approxi-
mation in order to evaluatE(zy). In this approximation the

1

L

J’:
V=

(17)
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FIG. 2. Density profilen(z), numerically calculated using the
TCMF model of Egs.(19~21), with £=0.1 (squares and =
=10 000(circles. The solid lines show the exact asymptotic pro-
files in the low couplingnpg(z)=1/(z+1)?, and in the strong cou-
pling limit, ngc=exp(-2).

It is easy to show that at the extremumFgf the overall
harge of the system, including the charged surface, test

'Pnarge, and mobile counterions, is zero. The fugakityas

no effect on the extremal value &f-g; changing its value
only shifts ¢(r) by a constant.

Equationg(13) and(15), together with the mean-field ap-
proximation forF(z,) given by Eqs(18) and(19), constitute
the approximation used in this work:

(2= Zexii- Fre(2)], (20)

free energy is expressed as an extremum of the following

functional of ¢:
1 3 1 5 _
Fre(zo) = 5 | &7 =5 (V)" -Mo2e*+(p=In))
= o

X [— i(()‘(Z) + Eb‘(l’ - 202)]} = Fsers (18)
2

where ¢ is the reduced electrostatic potenti#lz) is the
Heaviside function, ané; is an infinite self-energy which
does not depend azy. The derivation of Eq(18) is given in
Appendix A.

The mean-field equation fap is found from the require-
ment 6Fpg/ S¢(r) =0,

1 1
- —V2p=N02e - —82) +E&r-2z2). (19
4 2T

where

z

dzexd - Fpg(2)]. (21)

J
We will refer to this approximation as the test-charge mean-
field (TCMF) model.

D. Limits of small and large &

As a first example we present, in Fig. 2, density profiles
obtained numerically from Eqs20) and (21) at £=0.1
(circles and at=Z=10 000 (squares The continuous lines
are the theoretically predicted profiles &—0, npg(2)
=1/(z+1)?, and atE — <, ngz)=exp(-z). The figure dem-
onstrates that the weak coupling and strong coupling limits
are reproduced correctly in our approximation. Before pre-
senting further numerical results, we discuss the behavior of
our model in the two limits of small and large.

This equation describes the mean-field distribution of ions in  Our discussion is based on the following exact identity
the presence of a charged plane of uniform charge density

-1/(2m) [second term in Eq(19)] and a point charg&
located atr =z,Z [third term in Eq.(19)]. In cylindrical co-
ordinates the solutiop can be written as a function only of
the radial coordinate and of z, due to the symmetry of
rotation around the axis.

d
- EOF(ZO)

- Zpriy|

gz Ntz = i

(22)

where{¢(r ;zy)) is the thermally averaged electrostatic po-
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tential atr, when a test charge fixedat z,2 [the first argu-  test charge at =z;2. The structure and size of this hole, as
ment of(¢(r ; zy)) designates the positianwhere the poten- obtained from Eq(19), will be discussed in detail later. For
tial is evaluated, while the second argument designates theow it is sufficient to note that the correlation hole gets big-
position of the test chargeg?Z]. In other words, the gradient ger with increasing=. As E— o the force atzyz due to the

of In[n(zy)] is equal to the electrostatic force acting on a testmobile counterions vanishes, leaving only the contribution of
charge positioned at=z,2. This equation does not involve the charged plands/dz)¢(r ;zy, =) — 1. Hence in this limit
any approximations and is proved in Appendix B.

Within our approximation, wherd=(z,) is replaced by iln[n(z)]:—l, (29
Fpg(zo), a similar equation holdgalso proved in Appendix dz
B) leading to the strong coupling result
d d d = _
@)=~ Feslz) =~ <—glriz)| n(z) = expi=2), 30
% % =7 where the prefactor of the exponent follows from the normal-

(23 ization condition, Eq(8).
In the rest of this work we will explore predictions of the

where ¢(r; z) is, now the 50'9“0” of Eq(19). In other. TCMF model at intermediate coupling, where neither of the
words, the gradient of [m(zy)] is equal to the electrostatic two limits presented above is valid. Before proceeding we

force experienced by a test charge positionedrafZ,  pote that a similar discussion as above, of the weak and
evaluated using the mean-field equat(d®). This quantity  gyrong coupling limits, applies also to the exact theory, be-

cause of Eq(22).

(@)= 2-e(ri2) (24)

r=zy2
. o _ o IIl. NUMERICAL RESULTS AND COMPARISON
will be studied in detail below because of its important role WITH SIMULATION

within our model. With this notation the relation between
f(z) andn(z) reads A. Results for f(2)

d We consider first the behavior 6z), defined in Eq(24),
—In[n(2)]=-1(2). (25) close to the charged plate. FiguréaBshows this behavior
dz for £ = 1, 10, 16, 1¢°, and 10 (alternating solid and

Using Eq.(25) we can understand why both the weak anddashed lines The curves were obtained from a numerical

strong coupling limits are reproduced correctly in our model Solution of the partial differential equatiai®DE), Eq. (19)
(see Appendix C for details of the numerical schenteor

comparison the weak coupli®B) and SC limits are shown

1. Weak couplin . .
Ping using dotted lines:

In the limit §—0,

2

fpe(2 =——; fsd2=1. (31

L ptti20) - ¢eol2), (26) T
As E increased(z) gradually shifts from PB to SC behavior.

wheregpg(2) is the solution of Eq(19) without a test charge, At Z=10", f(2) is very close to 1 within the range ashown
i.e., setting==0. We note that the potential [(Eq.(19)] has  in the plot, although there is still a noticeable small deviation
three sources: the charge of mobile counteriot®z)e™®,  from unity.
the uniformly charged plane, and the test charge. Although |n Fig. 3b) these results are compared with simulation
the potential due to the test charge is infiniter atzyZ, its data (symboly, adapted from Ref[13]. The value off(2)

derivative with respect tais zero and has no contribution in \as obtained from the simulation results fuz) using the

Eq. (26). Using Eq.(25) we find relation d In[n(z)]/dz=-f(z) [25]. Qualitatively our results
d d agree very well with simulation. Note especially the gradual
d—zln[n(z)]:—d—chpB(z). (270 decrease of(z) with increasingz for £=100 (diamond:

this value ofZ is far away from both the weak coupling and
This equation, together with the normalization requirementhe strong coupling limits. The regime whefie) decreases
for n(z), leads to the result linearly with z will be further discussed in Sec. IV A.
It was previously conjecturefd Q] that for all values ofZ
(28) the SC limit is valid close enough to the charged plane. We
note, however, that at contact with the pléite) is different
from unity at small and intermediate values®f Hence it is
not very meaningful to define a region close to the plane
where the SC limit is valid, unless is very large. Values of
In the strong coupling limit,Z —<, a correlation hole f(z), extracted from simulation data in Fig(t8, suggest the
forms in the distribution of mobile counterions around thesame conclusion, i.ef(z) does not approach unity at contact

1
n(z) = Z_exd_ epa(2)] = npg(2).
0

2. Strong coupling
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= E 10%
1074
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(b) z (b) z
FIG. 3. (a) Electrostatic force acting on a test charg), nu- FIG. 4. (a) Correction to the PB density profileyz)—npg(2),
merically calculated using the mean-field equatid®). Alternating  calculated numerically using the TCMF model, as functionzof
solid and dashed lines shoffz) for £=1,10,16,1C% and 10. (lines). For comparison, symbols show the correction obtained from

The dotted lines show the PB and SC formsf@), fpg(2)=1/(z Monte Carlo simulatior{13,27. Four values of= are shown(see

+1), andfs(z)=exp(~2). (b) Comparison off(z), calculated from legend, 1, 10, 18, and 16. (b) The density profile itselfn(z), on a

Eqg. (19) [solid and dashed lines, same as in ga)t, with results ~ wider range ok than in pari(@) and using logarithmic scales in both

from Monte Carlo simulatiorj27], adapted from Ref{13] (E=1,  axes(lines—TCMF; symbols—MC simulation

circles; 2=10, squares= =1(?, diamondsE=10", triangle$. Val-

ues off(z) are obtained from simulation results fofz) using the  are compared with simulation dagsymbolg[13,27.

exact relationd In n(z)/dz=-f(z). Numerical estimation of the de- We first observe that the contact theorem is not obeyed in

rivative of Ir{n(z)] r.esults in relatively large error bars, which are ¢ approximation:n(0) —npg(0)=n(0)-1 is different from

shown as vertical lines. zero. This is an undesirable property, because the contact
theorem is an exact relation. The contact theorem is obeyed

with the plane. A more accurate measurement(af in the  in the TCMF model only in the limits of small and largg,

simulation is desirable because the error bars, as obtained where the density profile as a whole agrees with the exact

Fig. 3b), are quite large. form, and the normalization conditidB) enforces(0) to be
correct. The violation at intermediate values ®fis finite,
B. Results forn(2) small compared to unity, and peaks Atbetween 10 and

) ] ) ) 100. At these values oE the overall correction to PB is

The density profilen(z) can be found numerically by in- qjite inaccurate at the immediate vicinity of the charged
tegrating £q(25) and use of the normalization conditié®)  pjate. On the other hand, atarger than 1 our approximated
[26]. Figure 2 already demonstrated tiéz) coincides with  resyits agree quite well with simulation for all the values of
the exact profilesnpg(z) and nsc(2), in the limits of small =, a5 seen in Fig. @).
and large=. Figure 4a) shows the difference betweentz) The violation of the contact theorem in the TCMF model
andnpg(z) for £=1, 10, 16, and 1d, as calculated numeri- can be traced to a nonzero net force exerted by the ionic
cally in the TCMF model(continuous lines These results solution on itself(see Appendix I This inconsistency re-
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sults from the use of a mean-field approximation for the dis-
tribution of ions around the test charge, while the probability
distribution of the test charge itself is given by Eg0).

It is possible to evaluate exactly the first-order correction
in E to the PB density profile in the TCMF model, the details 100
of which are given in Appendix E. This correction turns out

200

to be different from the exact first-order correction, which € 0 x
was calculated in Ref20] using a loop expansion up to one
loop order(also shown in Appendix E It is important to 100

note, however, that the latter correction provides a useful
result only for relatively small values &. At = of order 10
and larger TCMF results are much closer to simulation than
those of the loop expansion.

Further comparison with simulation is shown in Figby 0 2 4
Here we show the density(z) itself, rather than the differ-
ence with respect topg(z). The data are shown on a larger (a) Z
range ofz than in part(a) and a logarithmic scale is used in
order to allow small values af(z) to be observed far away
from the plate. In the range shown the TCMF model agrees 2000
semiquantitatively with simulation.

As a summary of this section we can say that the TCMF 1000 -
model captures the essential behavior of the ion distribution
at close and moderate distances from the charged plate. Fur
thermore, all the available data from simulation agree quali- o 01
tatively with our approximation’s predictions.

200

1000 -
IV. TCMF RESULTS FAR AWAY FROM THE CHARGED
PLATE 2000 |
Our analysis of the ion distribution far away from the . ‘
charged plate is done, at first, strictly within the context of 0 2000 4000
the TCMF model, while a discussion of its relevance to the (p) Z

exact theory is deferred to Sec. V. The main question of
interest is whether a transition to PB behavior occurs at suf- FIG. 5. (a) Scaled density of ions around a test charge, posi-
ficiently largez, even for large values dE. tioned atzy=1, as obtained from Eq19). The cross designates the

As a first step we will identify the important length scales position of the test charge. In cylindrical coordinates the density is
characterizing the density distribution. Let us concentrate function only ofz (horizontal axi$ andr (vertical axi9. Darker
first on the size of the correlation hole around a test chargeshading in the plot means larger denggge also the legend on the
Naively we may expect this size to be of ordydue to the right). The coupling constant i€=1000. Forr larger thanyE the
form of the bare potentialZ/|r —z2|. A simple argument profile, as function o, quickly converges to the PB profilepg(2).
shows, however, that when the test charge is close to th@ A similar plot as in part(a), but the test charge is now aj
charged plane the size of the correlation hole is much smaller = =1000. Here the ratio between the density and the PB profile is
than=. Assume, roughly, that the mobile ion density is zeroshown, rather than the density itself..This ratio is everywhere a
within a cylindrical shell of radiuR around the test charge. Number between zerlack and one(white). The effect of the test
The amount of charge depleted from this cylinder is thencharge on the ion dIStrIbutIO!’l is large o_nly within a cor_relatlon hole
equal toR?/2, since the surface charge per unit area is equaerroun.d the test cfarge, having approximately a spherical shape and
to 1/27 [see EQ.(19)]. This depleted charge must balance 2 radius of orde.
exactly the charge of the test particle, equaBpyielding a _
cylinder radius that scales a& rather than a&. small compared ta'Z and provided thaE> 1.

In order to put this argument to test, Figabshows the A very different distribution of mobile ions is found when
density of mobile ions calculated from E@L9) with a test  z is of orderE, as shown in Fig. &®). The coupling param-
charge atzy=1, having2=1000. The shape of the correla- eter is the same as in pa#), £=1000, but the test charge is
tion hole is roughly cylindrical and its radius is indeed of now atz;=1000. Instead of showing directly the density of
order VE=30. The influence of the test charge on its sur-mobile ions as in parta), the figure shows the ratio between
roundings is very nonlinear, with a sharp spatial transitiorthis density andnpg(z)=1/(z+1)2. This ratio is now very
from the region close to the test charge, where the density islose to unity near the charged plane, where most of the ions
nearly zero, to the region further away, where the effect ofare present. It is small compared to unity only within a
the test charge is very small. At larger separations from thepherical correlation hole around the test charge, whose size
plate the qualitative picture remains the same, as lorggias is of order=.

016102-7



BURAK, ANDELMAN, AND ORLAND PHYSICAL REVIEW E 70, 016102(2004

1
0.8
N 06
—
0.4
0.2

FIG. 6. (a,p Comparison of
the approximation td(z) given by
Eq. (32) (dashed ling with a full
numerical solution of the PDE
(solid line). The coupling param-
eterE is equal to 10 000 iija) and

%0 100 200 300 400 500 0O 10 20 30 40 50 to 100 in (b). Note that the ap-
(@) Z (b) z proximation shown in the dashed
line is good up to a distance from
2 the plate equal to aboytE in both
1 cases. A distance ofZ from the
18¢ i charged plate is designated by the
o 16- N vertical dotted lines. Part(c)
o | shows a comparison df0) in the
= 1415 ] approximation given by Eq(32)
. (symbolg and in the exact PDE
12+ 1

solution (solid line) for a wide
range ofE values.

() =

The above examples lead us to divide our discussion of f(2) = fpg(2) + Ef1(2). (33
the z dependence into two regimes
The first term in this equation is the PB valueféf), while
A 7<= f1(2) can be calculated using previous results of R2€]:

In order to justify use of the cylindrical correlation hole f.(2)= 1d9(2)
approximation within this range, let us assume such a corre- 112
lation hole and calculate the force acting on the test charge:

. T4z 11)3{82— (L+De 1 -2+ (1-2)7 + 2]
Z -z
f(Z):f0 dZ' npg(2) Ere 22 (32) XE[(1-D)Z]- (1 -i)eT V1 -2+ (1+2)2+ 7]

XE4q[(1 +i)z]}, (34)
wherenpg(Z') is given by Eq.(11), the radius of the cyIin—
drical region from which ions are depleted is takem&  Whereg(z) was defined in Ref[20] and is given by Eq.
and the expression multiplyingeg(z') is the force exerted (E11), andE;(2) is the exponential-integral functid@8]. We
by a charged sheet having a circular hole of radiiisand  Prove the first equality of Eq(34) in Appendix E. Figure 7
positioned in the plang’. Figures 6a) and &b) show a

comparison of this approximatiodashed lineswith that 02— .
obtained from a full numerical solution of E¢19) (solid
lines). The coupling parameter is equal to 10 00Q@n and 01574 ]
to 100 in(b). In both cases the approximation works well up \
to zo=E. In Fig. 6c) the force acting on a test charge at P A ]
contact with the planef(0), is shown for five values oE o
between 1 and 10 000symbolg, and compared with the =005 i
approximation of Eq(32) (solid line). Note that Eq(32) is
not a good approximation whei is of order unity or 0 |
smaller, since the correlation hole is then small compared to 0.05
the width of the ion layer. 0 s 10 15 2
_ z
B.z>\E

) _ FIG. 7. First-order(linean term in an expansion of(2): f(2)
When the test charge is far away from the plane, its effectfo5(z)+=f,(2) +- -+, Eq.(34), as obtained from the loop expansion

close to the charged plate is small, suggesting that a lineat Ref. [20]. The dashed line shows the asymptotic fornf @) at
response calculation may be applicable: largez, f1(2)=3/(42%).
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~ i
[1] —
= [l |
g Q)
= c
o
w | | | |
0 200 400 600 800 1000 0.3 bl i
10 10 10 10 10 10
(a) z z/=
1 ‘ Wwwuv‘wnvnvnvnn‘vnvnvnvnvdvﬂvwwnvﬂ FIG. 9. Same data as in Fig(l8, shown using a logarithmic
o scale in the horizontdlz/Z) axis. The approximated collapse of the
0.8 f - different data sets, corresponding to different values ok seen to
be valid only in the regime= VE. The vertical arrows mark
=1.5/E for =1, 10, 16, and 16, above which the scaling) is
) 0.6 E ] approximately valid.
S~
N ° 1
£ 04 v 10 . For each value of the ratio (f-fpg)/(Ef;) (shown in
¢ 100 the plod approaches unity asis increased, showing that Eq.
0.2 a 1,000 | (33) does become valid at sufficiently largeThe approach
) o 10,000 is, however, rather slow: a value close to unity is reached
| only whenz>=. At z=Z the ratio is approximately equal to
0 ‘ ‘ ‘ 0.6 in all five cases. We conclude that the linear approxima-
0 20 40 60 80 100 tion of Eq. (33) is applicable only forz>Z=. Note that at
(b) zZ/= these distances from the charged plate the linear correction

] ) ) itself is very small compared to the PB term:
FIG. 8. Comparison between the correctionfta) relative to

fpe(2), with the linearized expressidgf,(2). In (a) the ratio[f(2) — - —
~fpa(2)]/[Ef1(2)] is shown as function d for five different values Efi@ 3=z+1 3E
of E: 1, 10, 16, 1, and 14 [see legend in patb); symbols show fea(2) 472 2 8z
the same quantity as the solid line and are displayed in order to

distinguish between the five linsThe ratio approaches unity at  where we also assumed thet 1 and used Eq35).

<1, (36)

much larger tharE. In (b) the same data as if@) are shown as Further insight on the results shown in Figagis ob-
function of z/ =, !eadmg to an almost perfect collapse of the five tained by noting that all of them approximately collapse on a
data sets on a single curve. single curve after scaling tnecoordinate by=. This curve,

denoted byh(z/E), is shown in Fig. &):
showsf4(2) (solid line) together with its asymptotic form for
large z (dashed ling 7
3 f(2) — fpg(2) = Ef1(2) X h(E)' (37
f1(2) = 12 z>1. (35)
In order to demonstrate at what rangezafalues this scaling
Note that the asymptotic form &Ef,(z) has the same de-  result is valid, the same data are shown in Fig. 9 using a
pendence as the electrostatic force exerted by a metallic suegarithmic scale in the horizontét/ Z) axis. It is then seen
face, equal to=/(4z% in our notation, but the numerical clearly that(37) holds forz/E larger than a minimal value,
prefactor is different. which is proportional t&Z "2 The vertical arrows designate
Although the influence of the test charge is small near the/==1.5/\Z for each value off, approximately the point
surface, its influence on ions in its close vicinity is highly where the scaling becomes valid. Returning to_consier
nonlinear and definitely not small. Hence the applicability ofitself, we conclude that Eq37) holds forz=1.5/Z. This
Eq. (33) is far from being obvious wher¥ is large. We result justifies the separation of tlzedependence into two
check this numerically by calculatinf{z) - fpg(z) and com-  regimes,z< VE andz>E.
paring with 2f,(z). The results are shown in Fig(a}, for We finally turn to consider the ion density(z). Using
five values ofZ: 1, 10, 16, 1¢°, and 10. Egs.(35) and(37) we can write
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100 L L L V. FURTHER DISCUSSION
10 At this point we may ask to what extent our results rep-
1070 = 102 resent the behavior af(z) in the exact theory. Before dis-

g cussing this question we turn our attention for a moment to
10 the system that our problem was mapped into in @§)—
that of a single ion of valencg in contact with a charged
plane and its monovalent counterions. The results of Secs. IlI
and IV can be regarded as exact for such a system, provided
that the monovalent ions are weakly correlatbdving, by

1 0-20

n(z)
t

1 0—30

-40

10 4
«— 10 themselves, a small coupling parameter as determined from
100 i . their charge and that of the planar surfadéhese results are
sl -‘--‘-“2 sl il thus of dire_ct rel_evance to the interaction of_a_large multi_va-
10 10 10 10 10 lent macroion with a charged surface that is immersed in a
z weakly correlated solution of counterions.

Returning to the original question, we separate our discus-

FIG. 10. Scaled ion density)(z) calculated using the TCMF  sjon according to the scaling results of the numerical analy-
model, shown for five different values & (solid lines, top to sis.

bottom): 1, 10, 16, 1%, and 10. A logarithmic scale is used on
both axes, allowing the behavior far away from the charged plate to
be seen. The dashed lines showg(z) (upper dashed lineand A z<\E

nsc(2) (lower dashed ling At z>E the density profile is propor- . = . .
tional to npg(2), with a prefactor whose logarithm scales\a. To When= is very large a test charge 2& = is essentially

demonstrate this the horizontal arrows mark the value of( expdeCOUpled from the rest of the ionic SOIPti_on' feeling only the
~0.8/Z)np(10% for £=10, 16, 16%, and 16. The prefactor 0.8 is force exerted by the charged plane. This is the reason why an
an approximate fitting parameter. exponential decayy(z) ~exp(—2), is obtained in our model,
as well as in simulation and in the perturbative strong cou-
d 1\3 ) pling expansion of Ref[10]. However, at intermediate val-
-—n(2) =f(2) = fpg(2) + (:>_<é) h(é) (39) ues ofE such as 10, 100, or 1000 our results show that this
dz E/4\E = exponential decay is only a rough approximation. The decou-
which leads, upon integration, to the approximate scalingOllng of a test charge from the rest of the 10NS 1S only partial,
result even atz=0, leading to a value of(z) that is(i) larger than
unity at z=0 and(ii) considerably smaller than unity at

Z) (39) =\E. Both of these predictions are validated by simulation,
' as shown in Fig. @).
The quantitative agreement f(z) between our model and
simulation is surprisingly good, considering that the ionic
Joc h(u’) environment surrounding the test charge is different in our

1
n(z) = Co(z)m 77(

—
=
f—

where

[ p(w]=->

2 du’ 2 (40 approximation, compared to the exact theory. This good

u agreement can be attributed to the correct length scales that
characterize the approximate ionic environmeyi in the
lateral direction and 1 in the transverse direction. Indeed, in
the lateral direction our results can be compared with pair
distributions that were obtained in Monte Carlo simulation
[13]. The pair distributions found in the simulation are char-
acterized by a strong depletion within a correlation hole hav-
ing diameter of orden=, in great similarity to Fig. ).
What is not captured by our approach is that multiple
maxima and minima exist aE =100 [29]. Nevertheless,
liven at the very large coupling parameter vaiirel0* these
scillations decay quite rapidly with lateral distance, and we

The prefactorcy(Z) depends, through the normalization con-
dition, on the behavior ofi(z) close to the charged plane
where the scaling form of E¢39) is not valid. Equatiori39)

is indeed validated by the numerical data and appliesfor
== and=E>1.

The density itselfn(z), is plotted in Fig. 10 using a semi-
logarithmic scale, foE=1, 10, 16, 10°, and 10. At z>Z,
n(z) is proportional tanpg(2), as expected from E@39). The
prefactorcy is extremely small for larg&. We recall that,
is mainly determined by the behavior close to the charge

plgne, wheref(z) is of order unity up toz=vE. Following can still say that the TCMF model captures the most signifi-
thgs ob_serva_t|on W? can_ expectép(=)] to scgle roughly as _cant feature of the pair distributiqmamely, the structure of
VE. This estimate is validated by the numerical results and i$he correlation holg

demonstrated in the figure using the horizontal arrows. For

2=10, 1, 1¢% and 10 these arrows show an estimate for

n(z) atz=10% given by B. z>\E
= Throughout most of this section we concentrate on the
Npp(2)[ exp(— 0.8VZ= _ . . . = —
rel2) X~ 0.8/=)] casez> =, while a short discussion of the rang& <z< =
in very good agreement with the actual valuenof is presented at the end of this section.
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Our model predicts a transition to algebraic decan(@j plane than in mean field, it is plausible that1/4, as in the
at z=E. Similar predictions were made in R¢B] and in  force acting on a test charge next to a conducting surface
Ref. [13], where it was estimated that mean-field results ard9,13]. In any case, for Eq42) to represent correctly the
valid for z>E In E based on a perturbative expansiondecay ofn(z) we must have
around mean field. There are currently no available results
from simulation in this regime.

A mean-field behavior is obtained in our model in the
sense that

N~| il

1
< 44
o+b (44)

1 leading to the result= (Zb)'/2 which is exponentially large
f(2) =fpg(2) = —— (41) due tob. Up to this crossover distance the decayn@) is
z+1 dominated by the correlation-induced interaction with the

decays as 17 for large z. Nevertheless, the finer details in ions close to the plate.
our results do not match the form predicted by PB theory. We conclude that for a very large range ofalues the
The starting point for the following discussion is a hypoth-decay ofn(z) must be different from Eq(42). At the same
esis that sufficiently far from the plate the exact density fol-time, a mean-field argument is probably applicable, because
lows a PB form the density of ions is very small in this regime: we may
presume that the contribution f¢z) can be divided into two
— (42)  Parts—one part, coming from ions far away from the plate,
(z+b)? which is hardly influenced by the test charge, and a second

part, coming from ions close to the charged plate, where the

whereb (or wb in the original, nonscaled coordinajgs an ? oo = .
effective Gouy-Chapman length, characterizing the ionic soEeSt charge influence q‘rﬁz) 'S g|ven'byaH/22-. This re.ason-
lution far away from the plate. ing leads to the following differential equation fa(z):

nasyn{z) =

The asymptotic density profile found in our approxima- & -
tion, n(z)=c(E)/(z+1)?, is different from Eq.(42). To un- —In[n(2)] = 2n(2) + 202 (45)
derstand this difference let us explain first the asymptotic dz z

behavior off(z): it decays in the TCMF model as @z+ 1) ) S ) ) ]
because beyond the correlation hole the test charge is sufhose detailed derllatlon is given in Appendix F. By defin-
rounded by an ion density of the formg=1/(z+1)2 This  INg N(2)=exp(-¢+aZ/2) Eq. (45 is recast in the form

form is different from the profilen(z) that is eventually ob-

tained by integratingf(z)—an incon;istency which is' the @ — exr(— b+ ﬁ) =-2n(2) (46)
source of the difference betwedfr) in our approximation dZ z

and the hypothesized forii{z) ~1/(z+b) (see also the dis- _ _ _ _

cussion in Appendix R showing that mean-field theory is applicable, but an external

n(2) of the form 1/4z+1)2 The normalization condition for Must be included in the PB equation. In practice, for lafge
n(z) is then enforced through a small prefact6g). In com-  this equation will lead to a decay of the form(z)

parison, in the hypothesized for(2) the prefactor must be ~€XMaE/2) as suggested also in Reff9,13, while a
1 and the normalization is achieved by a large valué.of Crossover to an algebraic decay will occur only at a distance

= '=)11/2
Note thatb must be an extremely large number for large ©f at leas{= exp(vE)]", where Eq(44) has been used and
values ofZ: due to the exponential decay nfz) at z< JE prefactors of order unity, inside and outside the exponential,

the logarithm ofo must be at least of ordef=. are omitted. A nqmerlcal_ sqlunon of Eg46) may be useful
o . — . in order to describe the ionic layer at intermediate values of
Further insight on the behavior at- = can be obtained

. : ) E (of order 10-108 where both mean-field and correlation-
using the exact equatioz): induced forces are of importance at moderate distances from
d the plate. In order to test this idea quantitatively more data
d—zln[n(z)] =-1(2), (43)  from simulation are required. _

Finally we discuss the case where>\Z but z is not
where f(2) is now the mear(thermally averagedelectro-  large compared t&. Let us also assume thatis very large,
static force acting on a test charge at distamdeom the  so that most of the ions are much closer to the plate than a
plate, in the exact theory. test charge fixed atz. Within the TCMF model the effect of

For the mean-field fornm,,,{2) to be correct, the contri- the test charge on ions close to the plate is nonlinear, leading
bution tof(z) coming from the influence of the test charge onto the scaling result of E¢37). Similarly, in the exact theory
its environment must be small compared to the mean-fieldt is not clear whether the correlation-induced force acting on
force, which is given by 1(z+b). Following our results from  the test charge is of the form=/2% since the effect of the
the preceding section, the former quantity is givera®/z?,  test charge on ions close to the plate is not a small perturba-
wherea is of order unity. Using the mean-field equatid®)  tion. Hence we believe that the relevance of E46) for
we obtaineda=3/4; in theexact theory, and for larg&, z<ZE, and the behavior of(z) in this regime, merit further
where ions form a much more localized layer close to theénvestigation[30].
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VI. CONCLUSION asymptotic behavior of the form 12+b)? is probably valid
at very largez, but is not predicted by the TCMF model.

In this work we showed how ion correlation effects can beArguments presented in Sec. V, based on the exact equation
studied by evaluating the response of the ionic solution to th22), lead to the conclusion that for large the latter form
presence of a single test particle. Although we calculated thigwith a constant value d) can only be valid at extremely
response using a mean-field approximation, we obtained eXarge values of, while suggesting that at all distances from
act results in the limits of small and largg and qualitative  the plate larger tha® a modified mean-field equation, Eq.
agreement with simulation at intermediate values. (46), is valid. This equation, matched with the behavior of

The approach taken in this work demonstrates that fothe ion distribution close to the charged plate, ultimately de-
highly correlated ionic liquids it is essential to treat the par-termines the value of the effective Gouy-Chapman lergth
ticle charge in a nonperturbative manner. Once a single ionis Finally, as a by-product of the analysis of Sec. IV, we
singled out, even a mean-field approximation applied to thebtain scaling results for the interaction of a high-valent
other ions provides useful results. This scheme, called thgounterion with a charged plane immersed in a weakly cor-
TCMF model, provides a relatively simple approximation, related ionic liquid. All the results of Sec. IV and in particu-
capturing the essential effects of strong correlations—tqar the scaling forng37), valid for z= \E, can be regarded as
which more sophisticated treatments can be compared.  exact in such a system.

Technically what is evaluated in this work is the ion-  Qur approach can be easily generalized to more compli-
surface correlation function. Consideration of correlationcated geometries than the planar one, although the practical
functions of various orders leads naturally to liquid-statesplution of the PB equation with a test charge may be more
theory approximationf31], some of which are very success- difficult in these cases. Other natural generalizations are to
ful in describing ionic liquids[22]. In particular, these ap- consider nonuniformly charged surfaces and charged objects
proximations usually treat the ion-ion correlation function injn contact with a salt solution. Beyond the TCMF approxi-
a more consistent manner than the approximation used in thigation of Egs.(19)—(21), the exact equatiori22) always
work, thus possibly alleviating some of the undesirable feaapplies and can be a very useful tool for assessing correlation
tures of the TCMF model presented here, such as the violasffects near charged macromolecules of various geometries.
tion of the contact theorem. The main advantage of the we conclude by noting that important questions remain
TCMF model is its simplicity, allowing the behavior ofz)  open regarding the infinite planar double layer, which is the
to be understood in all the range of coupling parameter valmost simple model of a charged macroion in solution. One
ues in terms off(z), the force acting on a test charge. Fur- such issue, on which the present work sheds light, is the
thermore, the exact equatiq@2), which does not involve crossover from a strongly coupled liquid close to the charged
any approximation, is a useful tool in assessing correlatiomplate to a weakly correlated liquid further away. In particular,
effects—as was done, for example, in this work in the end othe precise functional dependence of the effective Gouy-
Sec. V. Chapman length on E is still not known. More simulation

It will be useful to summarize the main results obtained inresults, in particular at large distances from the charged plate,
this work. First, the exact equatiqi22) provides a simple and a direct evaluation dfz) from simulation may be useful
explanation of the exponential decay of the density profile inin order to gain further understanding and to test some of the
the strong coupling limit. In light of this equation, exponen- ideas presented in this work. Another important issue, which
tial decay is expected as long as the test charge is decoupléds not been addressed at all in the present work, is the
from the rest of the ionic solution. Note that there is nopossible emergence of a crystalline long range order parallel
necessity for long range order to exist in order for the expoto the plane at sufficiently large values of the coupling pa-
nential decay to occur, as was emphasized also in [Ref. rameter. Although plausible arguments have been presented
Indeed, within our TCMF model the ion distribution around for the occurrence of such a phase transitiorEat 3 X 10*

a test charge does not display any long range osieg Fig. [9], its existence has not been proved.
5(a)] and yet simulation results, in particular in the strong

coupling limit, are recovered very successfully. ACKNOWLEDGMENTS
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valid. o . y APPENDIX A: MEAN-FIELD FREE ENERGY
For z= =2 our approximation predicts a transition to an
algebraic decay ofi(z), of the formc(z)/(z+1)?, where the In this appendix we show how the mean-field free energy

prefactorc(z) is exponentially small for larg&. A different  (18) is obtained as an approximation Edz,), Eq. (14). We
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start from a general expression for the grand-canonical pag, However the first derivative dfpg with respect tap(r) is
tential of an ionic solution interacting with an external andzero. Hence the only contribution &g/ 6z, comes from
fixed charge distributiorr(r). In the mean-field approxima- the explicit dependence ag:

tion [20,33, Fodz] 1 5
o —LEE == [ dBr(p-InNE —5(r — )=
- [ d3r{— sV T —x@)(r)e-q“”}, 2] Z
8d

(A1)
) ) ) . . It is also instructive to derive this identity within the exact
whereq is the valency of the ionsy is the fugacity®(r) is  theory. Equation(14) can be written as follows:
equal to 1 in the region accessible to the ions and to zero

r:zoi.
(B1)

K .. . N-1
elsewherdequal in our case t6(z), the Heaviside functiop a 3
and( is given in units ofkgT. Requiring an extremum with exf-F(z)]= (N= 1)1 H d°ri exp(— Hy,lri}),
respect tap, the reduced electrostatic potential, yields the PB
equation which determines the electrostatic potential and the (B2)

actual value of(). We use Eq(Al), which is given in the | 1ore theNth charge is fixed at=z2:
grand-canonical ensemble, because it is widely used in the

literature[27,32. In Ref.[20] Eq. (A1) is derived systemati- NN g =

cally as the zeroth order term in a loop expansion of the zo{f =2z~ > Z - E R

exact partition function. =1 ZOZ| =i Iri =l
Inspection of Eq.(14) shows that it describes the free (B3)

energy of an ionic solution interacting with an external
charge distribution having the following parameters:

_ N-1
q=VE (valency, 5F(Zo):_<‘9H20>:_ -1+ E(z-2)
24 92 o1 |ri- 22

Differentiating with respect ta, yields

(B4)

where the averaging is performed over all configurations of
theN-1 ions with the weight e>(&HZO{ri}). This quantity is
the mean electrostatic field acting on a test charggzat

e

o(r)=

/

1
- —&8(2) + E6(r - z52) | (external potential
Y 27T

I

lg=1 (Bjerrum length. (A2)

In the second lingexternal potentialthe first term comes
from the uniformly charged plate and the second term comes
from the fixed test charge. Plugging these values in(Ed)
yields Numerically solving a nonlinear PDE such as Ef9)
requires careful examination of the solution behavior. The

Q= é f d3r{— i(V(p)z—)\G(Z)e_‘P purpose o_f this section_ is to _explain the numerical sche_me

used in this work, and in particular the parameters required
to obtain a reliable solution.

APPENDIX C: NUMERICAL SCHEME

+<p[—i5(z)+55(r —zoz)”. (A3)
2T

1. Finite cell
In order to obtain Eq(18) two modifications are required.
First, we need to return to the canonical ensemble by adding
uN to Q, whereN is the total number of ions. Noting that o
w=In \ and that from charge neutraliN=—[d% o(r), this
modification yields the extra term that is proportional to\In
in EQ. (18). Second, we note thd? includes the Coulomb
self-energy of the charged plane and of the test charge. Th

infinite term does not depend @p and should be subtracted pio . . .
from Q since it is not included in the definition &%(zy), Eq. We impose a boundary condition of zero electrostatic

We solve Eq.(19) as a two-dimensional problem in the
ordinates andz, making use of the symmetry of rotation
around thez axis. The problem is defined within a finite cell
of cylindrical shape, shown schematically in Fig. 11. The
negatively charged plate is 260 and ions are only allowed
I% the regionz>0, marked as the gray-shaded region in the

(14) field,
We finally note that the results of this appendix can also Ve-fi=0 (C1
be obtained directly from the canonical partition function, as )
expressed by Eq14). at the cell boundarieg=-zy,, Z=Znan andr=R. The cell
size, as determined by these boundaries, must be sufficiently
APPENDIX B: DERIVATION OF IDENTITY (23) large, as will be further discussed below.

In the numerical solution it is necessary to solvéor the
We would like to evaluate the variatioAFpg(zy)/ 5z, electrostatic potential at positive as well as negai\J83].
whereFpg is given by Eq(18). Note thaty itself depends on  Note that a boundary condition such as EG1) at z=0
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R tions on a grid. These equations are then solved using Gauss

elimination with scaled partial pivoting. Storing the band

matrix representing the linear equations requires
~48X Nr2>< N, memory cells, wher®\, andN, are the num-

ber of grid points in the andz directions, respectivel{36].

r Because this number can be very large, it is essential to use

a variably spaced grid in both of the coordinates. We use the

following scheme.

. Z0 Z r coordinate In the absence of a test charge, an arbitrarily
coarse grid can be used in thalirection, due to the trans-
lational symmetry parallel to the charged plane. In our case
(where a test charge is presgtihe grid spacing is deter-
mined by the distance from the test charge as follows:

(1]

n__n (C5)
“Zmin 0 Zmax dr gy’

FIG. 11. Schematic illustration of the setup used to solve nuWheren, andrg.q are two fixed parameters, whike stands
merically the PDE19). The equation is solved in a finite cylindri- for the grid point index andin/dr is the number of grid
cal cell, extending from %, t0 Zynax in the z axis and from 0 tR ~ points per unit increment of the radial coordinate. This spac-
in ther axis. The charged plane is z£0 and ions are only present ing is approximately uniform up to the thresholgq,
for z>0. Neumann boundary conditiof¥¢-1=0) are imposed at  whereas for >rgq it is proportional to 1f. The grid points

the cell boundaries. The test charge is atzyZ. are then of the form
. . : n
would correspond to zero dielectric constantzatO, while = fgrid[exp<_> - 1], (C6)
we are interested in the case of continuous dielectric constant Ny
across the plate. In practice,r 4 is chosen approximately proportional &,

in order to allow the structure of the correlation hole to be

2. Differential equation represented faithfully.

The source term in Eq(19) diverges atz=0 and atr z coordinate In this coordinate the grid spacing is influ-
=2y2. We avoid this difficulty by shifting the potential enced by the distance from the charged plate as well as the
= distance from the test charge. We describe separately the
e=yYt|g+ —— (C2) spacing determined from each of these two criteria; the ac-
Ir = 22| tual grid is obtained by using the smaller of the two spacings

at each point.
(i) Distance from the plate: we use a grid spacing propor-
tional to the derivative ofppg(2),

and solving fory, which is the potential due only to the
mobile ions. The equation fap,

f—t

sz//:—47-r)\6(z)exp<—w—z— = - ) (C3 dn 2
Ir = zp2| d—zocm (C?

is solved with a Neumann boundary condition figrderived
from Egs.(C1) and (C2). Note that, unlikep, ¢ is well
behaved axyz. The nonlinear equatiofC3) can be solved by
iterative solution of a linear equatigeee, for example, Refs. z,=expnD) -1, (C8)
[34,39):

Ignoring, for the moment, the distance from the test charge,
Eq. (C7) leads to grid points of the form

where the parameteD is the grid spacing close to the
charged plate. A similar scheme is used in the negattvaf

—

V2, = — 4\ G(Z)exp(— Y1 -2 = )

Cr-z] space. _
(i) Distance from the test charge: we use a form similar
X[l - (';bn - '//n—l)]r (C4) to Eq.(CH),
where ¢, represents thath iteration. dn n
e (C9
3. Grid and solution method dz |z-z|+ Zyrid
In the coordinates,z the cylindrical cell is a rectangular In practice, the threshold,q is chosen proportional t&,
domain, in contrast torgq Which is chosen proportional to=.
[0,R] X [~ Zins Zmaxd - 4. Parameters
We use bicubic Hermite collocatiof86] in this domain in The parameters that were used to obtain the numerical

order to translate the PDE into a set of linear algebraic equaesults presented in this work are summarized in Table II. We
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TABLE II. Parameters used in numerical solution of the  The discussion up to now was exact. It also applies to PB

PDE. theory, where the self-consistency of the mean-field approxi-
mation ensures that Newton’s third law is obeyed. On the
E Zimin Zmax R D Zya Nz TIgig N other hand, within our approximation the force exerted by

10° 100 16 16 02 5000 100 the ions on themselves,

106 10t 10° 10° 0.2 500 33

5
. .
1¢ 1¢8 100 10* 02 50 4 10 f L) -1,
4
4

0
10 16 10t 100 0.2 5

1 4X 107 4x10° 4x10° 0.2 0.5 1
0.1 80 800 800 0.2 0.05 4 02 4

N e N e

is not zero. This inconsistency can be traced to a more fun-
damental inconsistency which is briefly described below.

The probability to find the test charge ratzz and a mo-
bile ion atr’ is proportional, in our approximation, to

compared our results with those obtained v(i]hi_ncreasing n(2n(z)g(r,r') = n2exd- o(r';2)]. (D6)
Znin» Zmax @NAR by a factor of 10; angb) decreasing the grid - i ) )
spacing by a factor of 2, both in threand in thez coordi- N the exact theory the probability to find two ionsraandr
nates. The influence of these changes was found to be nefflust be symmetric with respect to exchange ahdr’. On
ligible on all the data presented in this work. the other hand the correlation functiafr,r’), as defined

above, is not symmetric. In other words, the ion-ion correla-
tion function in the TCMF model is not symmetric.
APPENDIX D: CONTACT THEOREM

In this appendix we derive the contact theorf29] in a APPENDIX E: SMALL E EXPANSION
way that highlights the reason why it is not obeyed in our

approximation. We start from an exact expression for the free 1€ recovery of mean-field results at smallwas dem-
energy onstrated and explame_d in Sec. Il. Hsre we derive this result
formally as an expansion in powers &f The advantage of
o , this formal expansion is that it allows us to find also the
F=- Inf dz' exd - F(z)], (DY) first-order correction to the PB profile within our model.
We expand=Fpg, Eq.(18), up to second order iE:

a

where the charged plate is ata. This plate position can be — — —
chosen arbitrarily, hencéF/sa=0: EFpe(z0) = Fo+ EFy(20) + EFo(z) + --. (ED)
o JE The zeroth-order ternfry does not depend om, and is the
=n(0) _f dz n(z)—(z), (D2) PB free energy of a charged plane in contact with its coun-
=0 a Jz terions, without a test charge. In order to evaluate the follow-
ing terms, we also expangd in powers ofZ:

JF
0= —
Jda

a=

where we used the relations

_ exd-F(@)] ¢(r;20) = @o(r) + Ea(r;20) + E2¢,(r;29) + -+ . (E2)
n(2)=— (D3) To zeroth order we have from Eq4.8) and(19)
J dz exd-F(Z')] 1
0 Fo= J d3r{— —(Veo)*- Aﬁ(Z)e"PO(Z)} . (B3
and o
JE IF where

J ;Z) - J (zZ) ' ©4 o

z a Vz(po = d—;.;o =—4a\0(z)e 0 (E4)

We now use Eq(22) to obtain

o J is the potential due to counterions in the PB approximation.
n(0) _f ”(Z)—<¢(V;Z)>r=zoi= 0. (D5) The first-order term in the free enerdy is found by ex-

0 9z panding Eq.(18) in E. This expansion includes two contri-
butions, the first fromp,; and the second from the explicit
gependence o in Eg.(18). The first contribution vanishes

force acting on the lons per unit area. This force can b%ecausapo is an extremum of the zeroth-order free energy,
separated into two contributions. The first one, exerted by th?eaving only the second contribution

charged plane, is equal toféz'n(z’)=—1 because the plane
applies an electrostatic force which does not depend’on 3 ~

and is equal to unity in our rescaled coordinates. The remain- Fi(zo) = f d> @o(r)alr = zp2) = @o(2p) - (E5)
ing contribution to the force, exerted by the ions on them-

selves, must be zero due to Newton'’s third law, leading to thdreturning to our approximation fox(z), given by Eq.(20),
resultn(0)=1. we find that
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1 1 F
n(2) = Zexr- Fee(2)] = zeXp[— o @0(2)]

= ~exii- (2], (E6)
0

whereZ, is found from the normalization conditiai21). To

leading order irg, n(z) is equal to the PB density profile, as

expected:

N(2) = Neg(2) = Zioexr{— eo(2)] (E7)

T z+1)?’

whereZ, is a normalization constant. The next-order term in

the expansion of can be found on similar lines d5,(2),
and is equal to

Fa(2o) = 3601(202;2), (E9)
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FIG. 12. First-orde(linean correction inZ to n(z), as obtained

where 5o is the difference between the first-order correctionfrom the test-charge mean-field approximation, Eg13) (solid

to ¢ and the bare potential of the test charge:
1
S¢1(r) =eu(r) - ———. (E9
Ir =22
The first-order term in the expansion of ¢4(r;z), is the
solution of the differential equation

[V2 - 4mne 0@, = — 4md(r — 202). (E10)

The functionde4(r) arises also in the systematic loop expan-—

sion of the free energy around the mean-field solufi2dj.
Its value atr =z, is given by[20]
8¢1(202;29) = 9(20)
_ 1
C2z+1)?
x{ieM%E,[(1 -)z5](1 +izp)?
— ieME [ (1+1)29)(1 ~iz)? - 42y},
(E11)

whereE;[x] is the exponential-integral functigi28]. Using
Egs. (20) and (E8) we find that up to first order irg the
density profile is given by

n(2) = npg(2) + Eny(2), (E12
where

n(2) =[Ny - 39(2) |nes(2). (E13

In this expressiorg(z) is given by Eq.(E11) andN; is ob-
tained from the normalization conditiqi2l):

N, = % J dz ma(2)g(2) = - 0.3104. (E14)

line), compared to the exact first-order correction calculated using a
loop expansion[20] (dashed ling The symbols show[n(z)
—-npg(2)]/E calculated numerically in the test-charge mean-field ap-
proximation with==0.1.

cally from TCMF for£=0.1 and scaled by H=10. At this
small value ofZ the linearization provides a very good ap-
proximation for the correction topg(2).

The dashed line shows the exact first-order correction in
E to the ion density, obtained from the loop expansion.
Comparison of the solid and dashed lines shows that the
TCMF model does not capture correctly the exact first-order
correction. In particularn,(0) is different from zero in our
approximation; in the exact correction(0)=0 as it must be
due to the contact theorem. It is important to realize that
although the exact first-order correction is useful for values
of E of order unity and smaller, the TCMF has a much wider
range of validity forg=1.

1. Proof of Eq. (34)

Our purpose here is to prove the first equality of E33),

1dg(2)

fi(2) = > dz (E15

where the electrostatic field acting on a test charge is
—[fpe(2 +Ef1(20+---], i.e., f1(2) is the first-order term irE.

In order to do this, let us consider the correction to the mean-
field potential due to an infinitesimal point charge of magni-
tude E that is placed at =zz. We designate this correction,
evaluated at the poimt, asG(r,r’). This Green’s function is
found by solving Eq(E10) which reads, with a slight change
of notation,

Note that this is different from the exact expression for the

first-order correction irfE [37], which is obtained in the loop
expansion and is not reproduced here, but is shown in Fig.

12.
Figure 12 shows,(z) as defined by EqQE13) (solid line).

The symbols show the correction pg calculated numeri-

[VZ, = 4mne o IG(r,r") == 4mwd(r —r'). (E16)

The electrostatic field acting on the test charge is then
_pr(Z)_Efl(Z), Whel’e
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1dg(2) ions between the plane and the test particle, and the third
G(”):E? term is the contribution of the other ions. Equati¢fil)
would describe the exact force acting on the test particle had
(E17 it not had any effect on the distribution of the other ions in
g the system. We need to add to this force the contribution due
to the influence of the test charge on the other ions.
Due to the exponential decay close to the plate the ion
elayer further thare= = is very dilute. Hence it makes sense
to include in the correlation-induced force only a contribu-
tion from the ions close to the plate. Estimating this contri-

J 10
fi@= —G(r,r’ =——
1(2) az ( ),,:r 20z

andg(z) is defined in Eq(E1)). In the second step we use
the symmetry ofG(r,r’) to exchange of andr’, which
follows from the fact that the operator acting @tr,r’) in
Eq. (E16) as well as the right-hand side of that equation ar
symmetric with respect to exchangerofindr’.

APPENDIX F: MEAN-FIELD EQUATION AT LARGE z bution asa= /7% we conclude that
We start from the exact identit§43) and would like to
evaluatef(z) for a test particle placed at sufficiently large dinn@@ _ H2) =~ fue(2) - aE F2)
assuming also thaE is large. The mean-field electrostatic dz oW Z
force acting on the particle is given by
z o Differentiation of this equation with respect mwyields Eq.
fur(2) = 1—f dz n(Z) +f dz n(z), (F1) (45
0 z
where the first term on the right-hand side is the contribution d*Inn(@ _ n(2) + 2a= (E3)
of the charged plane, the second term is the contribution of dZ zZ
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