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We present a model for the ion distribution near a charged surface, based on the response of the ions to the
presence of a single test particle. Near an infinite planar surface this model produces the exact density profile
in the limits of weak and strong coupling, which correspond to zero and infinite values of the dimensionless
coupling parameter. At intermediate values of the coupling parameter our approach leads to approximate
density profiles that agree qualitatively with Monte Carlo simulation. For large values of the coupling param-
eter our model predicts a crossover from exponential to algebraic decay at large distance from the charged
plate. Based on the test-charge approach we argue that the exact density profile is described, in this regime, by
a modified mean-field equation, which takes into account the interaction of an ion with the ions close to the
charged plate.
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I. INTRODUCTION

Interactions between charged objects in solution are deter-
mined by the distribution of ions around them. Understand-
ing these distributions is thus of fundamental importance for
theoretical treatment of water soluble macromolecules such
as polyelectrolytes, charged membranes, and colloids[1,2].
In recent years, much interest has been devoted to correlation
effects in ionic solutions and to attempts to go beyond mean-
field theory in their treatment. In particular, it has been real-
ized that such effects can lead to attractive interactions be-
tween similarly charged objects, as was demonstrated in
theoretical models[3–10], simulation[5,11–14] and experi-
ment [15–19].

Despite the theoretical interest in ion correlation effects,
they are not fully understood even in the most simple model
for a charged object surrounded by its counterions, shown
schematically in Fig. 1. The charged object in this model is
an infinite planar surface localized at the planez=0, having a
uniform charge densitys. The charged plate is immersed in
a solution of dielectric contact« and is neutralized by a
single species of mobile counterions(there is no salt in the
solution). These counterions are confined to the half space
z.0 and each one of them carries a chargee, which is a
multiple of the unit charge for multivalent ions. The ions are
considered as pointlike, i.e., the only interactions in the sys-
tem, apart from the excluded volume atz,0, are electro-
static.

The system described above is characterized by a single
dimensionless coupling parameter[20,21].

J =
2pe3s

s«kBTd2 , s1d

where kBT is the thermal energy. At small values of this
coupling parameter the electrostatic interaction between ions

is weak. As a result, in the limitJ→0 mean-field theory is
exact, as can be formally proved using a field-theory formu-
lation of the problem[20]. Correlations between ions close
to the charged plate play a progressively more important role
with increase of the coupling parameter. From Eq.(1) one
sees that this happens with an increase of the surface charge,
with decrease of the temperature or dielectric constant, and
with increase of the charge or, equivalently, the valency of
counterions. The model of Fig. 1 thus provides an elemen-
tary theoretical framework for studying ion correlation ef-
fects near charged objects, with no free parameters other than
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FIG. 1. Schematic description of the double-layer model consid-
ered in this work. An infinite charged plate having a uniform sur-
face charged densitys is immersed in a dielectric medium having
dielectric constant« on both sides of the plate. The charge of the
plate is neutralized by pointlike counterions, carrying each a charge
e. These ions are confined to the positivez half space, wherez=0 is
the plane occupied by the plate. In thermalskBTd units the interac-
tion between two ions is given bylB/ r, where r is the distance
between the ions andlB=e2/ s«kBTd is the Bjerrum length.

PHYSICAL REVIEW E 70, 016102(2004)

1539-3755/2004/70(1)/016102(18)/$22.50 ©2004 The American Physical Society70 016102-1



J, which tunes and controls the importance of ion correla-
tions.

In recent years two theoretical approaches were proposed
for treatment of the strong coupling limitJ→`. The first
approach[9] is based on properties of the strongly coupled,
two-dimensional one-component plasma, and emphasizes the
possibility of Wigner crystal-like ordering parallel to the
charged plane. The second approach[10] is formally an ex-
act, virial-type expansion applied to a field-theory formula-
tion of the partition function. Both of these approaches pre-
dict an exponential decay of the ion density distribution in
the strong coupling limit, leading to a more compact coun-
terion layer than in mean-field theory.

Although the form of the density profile is established in
the two limitsJ→0 andJ→`, its behavior at intermediate
values of the coupling parameter is still not clear. Liquid-
state theory approaches such as the anisotropic hypernetted
chain (AHNC) approximation[22] can probably be used in
this regime, but in practice they were applied in the literature
only to relatively small values of the coupling parameter,
usually also including ingredients other than those in the
model of Fig. 1—such as finite ion size, added salt, or an
interaction between two charged planar surfaces. The infinite
planar double layer with no added salt(Fig. 1) was recently
studied using Monte Carlo computer simulation[13], provid-
ing detailed results on the counterion distribution in a wide
range of coupling parameter values. These results validate
the expected behavior in the weak and strong coupling lim-
its. In addition, they provide new data at intermediate values
of the coupling parameter, to which theoretical approaches
can be compared.

We propose, in the present work, a theoretical approach
for treating the distribution of counterions near the charged
plate. This approach is based on an approximate evaluation
of the response of the ionic layer to the presence of a single
test particle. While an exact evaluation of this response
would, in principle, allow the distribution of ions to be ob-
tained exactly, we show that even its approximate calculation
provides meaningful and useful results. In the limits of small
and largeJ the exact density profile is recovered. At inter-
mediate values of the coupling parameter our approach
agrees semiquantitatively with all the currently available
simulation data.

The outline of this work is as follows. In Sec. II we
present the model and discuss why it produces the exact
density profile in the weak and strong coupling limits. In
Sec. III we present numerical results for the density profile
close to the charged plate, and compare them with simulation
results of Ref.[13]. Numerical results of our model, further
away from the charged plate, where there are currently no
data from simulation, are presented in Sec. IV, and scaling
results are obtained for the behavior of our model in this
regime. Finally, in Sec. V we discuss the relevance of our
model’s predictions, at small and largez, to the exact theory.
Many of the technical details and derivations appear in the
appendixes at the end of this work.

II. MODEL

A. Scaling

Consider the system shown in Fig. 1, with the parameters
s, e, and« defined in the Introduction. We will first express

the free energy using the dimensionless coupling parameter
J. In the canonical ensemble the partition function can be
written as follows(zi is thez coordinate of theith ion):

exps− FNd =
1

N!
E p

i=1

N

d3r i expF− o
i=1

N
zi

m
− o

j.i

lB
ur i − r ju

G ,

s2d

wherelB=e2/«kBT is the distance at which the Coulomb en-
ergy of two ions is equal to the thermal energykBT, andm
=e/ s2plBsd characterizes the bare interaction of an ion with
the charged plane. These quantities, the only two indepen-
dent length scales in the problem, are known as the Bjerrum
length and Gouy-Chapman length, respectively. We rescale
the coordinates by the Gouy-Chapman length,

r̃ i =
r i

m
, s3d

yielding exps−FNd=smd3N exps−F̃Nd, where

exps− F̃Nd =
1

N!
E p

i=1

N

d3r̃ i expF− o
i=1

N

z̃i − o
j.i

J

ur̃ i − r̃ ju
G

s4d

and the ratio

J =
lB
m

s5d

is the coupling parameter that was previously defined in Eq.
(1). The requirement of charge neutrality isN/A=s /e, where
A is the planar area. Hence the number of ions per rescaled
unit area is equal to

N

Ã
=

1

2pJ
, s6d

where Ã=A/m2. The local density of ions in the rescaled
coordinates is equal tor̃sr d=m3r̃sr d. Due to symmetry this
density depends only onz̃ and it is convenient to define a
normalized, dimensionless, density per unit length

ñsz̃d = 2plBm2r = 2pJr̃ s7d

having the property

E
0

`

dz̃ñsz̃d = 1 s8d

as seen from Eqs.(6) and(7). From here on we will omit the
, symbol from all quantities in order to simplify the nota-
tions. In order to express physical quantities in the original,
nonscaled units, the following substitutions can be used:

r → r /m, s9d

n → 2plBm2r. s10d

We will also omit the subscriptN from the free energyF̃N,
implying thatN is determined by charge neutrality.
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B. Known results in the limits of small and large J

We briefly review some known properties of the ion dis-
tribution in the limits of small and largeJ (for a more com-
plete discussion, see Ref.[10]). In the limit of J→0 mean-
field theory becomes exact. The density profile is obtained
from the Poisson-Boltzmann(PB) equation and decays alge-
braically, having the form[23]

nPBszd =
1

sz+ 1d2 . s11d

Within the adsorbed layer ions form a three-dimensional,
weakly correlated gas: the electrostatic interaction between
neighboring ions is small compared to the thermal energy.
This last statement can be verified by considering the density
of ions at contact with the plane,rPBs0d=1/s2pJd [see Eqs.
(7) and(11)]. The typical distance between neighboring ions
is thus of orderJ1/3. In the nonscaled units this distance is
much larger thanlB, which validates the statement that ions
are weakly correlated:J1/3m=J−2/3lB@ lB. Note also that
this typical distance is small compared to the width of the
adsorbed layer(Gouy-Chapman length): J1/3m!m.

In the opposite, strong coupling(SC) limit of J@1, the
density profile decays exponentially:

nSCszd = exps− zd. s12d

The width of the adsorbed layer is still of orderm in the
nonscaled units, but is now small compared tolB. Equation
(6) indicates that the average lateral distance between ions is
then of orderJ1/2. This distance is large compared to the
width of the ionic layer,J1/2m@m. On the other hand, it is
small in units of the Bjerrum lengthJ1/2m=J−1/2lB! lB. The
ions form, roughly speaking, a two-dimensional sheet and
are highly correlated within this adsorbed layer. The typical
lateral separation between ions,J1/2, is an important length
scale in the strong coupling limit, and will play an important
role also in our approximated model.

At sufficiently large values ofJ it has been conjectured
(but not proved) that ions form a two-dimensional, triangular
close-packed Wigner crystal parallel to the charged plate.
Based on the melting temperature of a two-dimensional, one-
component plasma, one can estimate that this transition oc-
curs atJ*31 000[9,13]. Furthermore, the ion-ion correla-
tion function is expected to display short range order similar
to that of the Wigner crystal even far below this transition
threshold. The exponential decay of Eq.(12) was predicted,
based on these notions, in Ref.[9]. The same result can be
obtained also in a formal virial expansion[10], which is
valid for largeJ but does not involve long range order par-
allel to the charged plate at any value ofJ.

Finally we note two general properties of the density pro-
file that are valid at any value ofJ. First, the normalized
contact densityns0d is always equal to unity—a consequence
of the contact theorem[24] (see also Appendix D). Second,
the characteristic width of the adsorbed layer is always of
order unity in the rescaled units. These two properties restrict
the form of the density distribution quite severely and indeed
the two profiles(11) and(12) are similar to each other close
to the charged plane. Far away from the plate, however, they

are very different from each other: atz@1 the probability to
find an ion is exponentially small in the SC limit, while in
the weak coupling limit it decays only algebraically and is
thus much larger. Furthermore, in the weak coupling case,
moments of the density, including the average distance of an
ion from the plate, diverge.

Although the form of the density profile is known in the
limits of small and largeJ, two important issues remain
open. The first issue is the form of the density profile at
intermediate values ofJ. At coupling parameter values such
as 10 or 100 perturbative expansions around the limits of
small or largeJ [10,20] are of little use, because they tend to
give meaningful results only at small values of their expan-
sion parameter. Such intermediate values are common in ex-
perimental systems with multivalent ions, as demonstrated in
Table I. Second, even at very small or very largeJ the
respective asymptotic form ofnszd may be valid within a
limited range ofz values. In particular, for largeJ it is
natural to suppose that sufficiently far away from the charged
plate the density profile crosses over from SC to PB behav-
ior. Indeed, far away from the plate the ion density is small,
resembling the situation near a weakly charged surface. The
main objective of this work is to investigate these issues,
both of which necessitate going beyond the formal limits of
vanishing and infiniteJ.

C. Test-charge mean-field model

Our model is based on the following observation: the nor-
malized densitynszd is proportional to the partition function
of a system where a single ion is fixed at the coordinatez,

nszd =
1

Z
expf− Fszdg, s13d

where

TABLE I. Characteristic values ofs, m, andJ for several rep-
resentative macromolecules. Values ofJ are shown for two cases:
monovalent counterionss1−ed and four-valent oness4−ed. The
Gouy-Chapman lengthm corresponds to monovalent ions. The cell
membrane charge density is estimated assuming that 10% of the
lipids in the membrane are charged. The surface charge of DNA is
estimated from the linear charge density along the DNA contour,
equal to 1/1.7e/Å, and assuming a radius of 10 Å. For mica full
dissociation of charged groups is assumed. In all three cases the
Bjerrum length is taken aslB=7 Å, which corresponds to water at
room temperature.

s se/Å2d m sÅd Js1−ed Js4−ed

Cell membrane 0.002 10 0.6 40

DNA 0.01 2 3 200

Mica 0.02 1 6 400
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expf− Fsz0dg

=
1

sN − 1d! E p
i=1

N−1

d3r i

3expS− z0 − o
i=1

N−1

zi − o
i=1

N−1
J

ur i − z0ẑu
− o

j.i

J

ur i − r ju
D s14d

and

Z =E
0

`

dz expf− Fszdg, s15d

where the coordinate of the fixed(Nth) ion in Eq.(14) is z0ẑ.
Equations(13)–(15) are exact and can be readily formulated
also in the grand-canonical ensemble.

In the original coordinatesFsz0d is the free energy of ions
in the external potential

z

m
+

lB
ur − z0ẑu

s16d

exerted by the charged plane and fixed ion. Examination of
Eq. (14) shows that in the rescaled coordinates these are ions
of chargeÎJ in the external potential

1
ÎJ

Fz+
J

ur − z0ẑuG . s17d

Our starting point for evaluatingnszd is the exact relation
expressed by Eq.(13) but we will use a mean-field approxi-
mation in order to evaluateFsz0d. In this approximation the
free energy is expressed as an extremum of the following
functional ofw:

FPBsz0d =
1

J
E d3rH−

1

8p
s=wd2 − luszde−w + sw − ln ld

3F−
1

2p
dszd + Jdsr − z0ẑdGJ − Fself, s18d

where w is the reduced electrostatic potential,uszd is the
Heaviside function, andFself is an infinite self-energy which
does not depend onz0. The derivation of Eq.(18) is given in
Appendix A.

The mean-field equation forw is found from the require-
mentdFPB/dwsr d=0,

−
1

4p
¹2w = luszde−w −

1

2p
dszd + Jdsr − z0ẑd. s19d

This equation describes the mean-field distribution of ions in
the presence of a charged plane of uniform charge density
−1/s2pd [second term in Eq.(19)] and a point chargeJ
located atr =z0ẑ [third term in Eq.(19)]. In cylindrical co-
ordinates the solutionw can be written as a function only of
the radial coordinater and of z, due to the symmetry of
rotation around thez axis.

It is easy to show that at the extremum ofFPB the overall
charge of the system, including the charged surface, test
charge, and mobile counterions, is zero. The fugacityl has
no effect on the extremal value ofFPB; changing its value
only shiftswsr d by a constant.

Equations(13) and(15), together with the mean-field ap-
proximation forFsz0d given by Eqs.(18) and(19), constitute
the approximation used in this work:

nszd =
1

Z
expf− FPBszdg, s20d

where

Z =E
0

`

dz expf− FPBszdg. s21d

We will refer to this approximation as the test-charge mean-
field (TCMF) model.

D. Limits of small and large J

As a first example we present, in Fig. 2, density profiles
obtained numerically from Eqs.(20) and (21) at J=0.1
(circles) and atJ=10 000 (squares). The continuous lines
are the theoretically predicted profiles atJ→0, nPBszd
=1/sz+1d2, and atJ→`, nSCszd=exps−zd. The figure dem-
onstrates that the weak coupling and strong coupling limits
are reproduced correctly in our approximation. Before pre-
senting further numerical results, we discuss the behavior of
our model in the two limits of small and largeJ.

Our discussion is based on the following exact identity

d

dz0
lnfnsz0dg = −

d

dz0
Fsz0d = − U ]

] z
kwsr ;z0dlU

r=z0ẑ
,

s22d

where kwsr ;z0dl is the thermally averaged electrostatic po-

FIG. 2. Density profilesnszd, numerically calculated using the
TCMF model of Eqs.(19)–(21), with J=0.1 (squares) and J
=10 000(circles). The solid lines show the exact asymptotic pro-
files in the low coupling,nPBszd=1/sz+1d2, and in the strong cou-
pling limit, nSC=exps−zd.
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tential atr , when a test charge isfixedat z0ẑ [the first argu-
ment ofkwsr ;z0dl designates the positionr where the poten-
tial is evaluated, while the second argument designates the
position of the test charge,z0ẑ]. In other words, the gradient
of lnfnsz0dg is equal to the electrostatic force acting on a test
charge positioned atr =z0ẑ. This equation does not involve
any approximations and is proved in Appendix B.

Within our approximation, whereFsz0d is replaced by
FPBsz0d, a similar equation holds(also proved in Appendix
B)

d

dz0
lnfnsz0dg = −

d

dz0
FPBsz0d = − U ]

] z
wsr ;z0dU

r=z0ẑ
,

s23d

where wsr ;z0d is now the solution of Eq.(19). In other
words, the gradient of lnfnsz0dg is equal to the electrostatic
force experienced by a test charge positioned atr =z0ẑ,
evaluated using the mean-field equation(19). This quantity

fsz0d ; U ]

] z
wsr ;z0dU

r=z0ẑ
s24d

will be studied in detail below because of its important role
within our model. With this notation the relation between
fszd andnszd reads

d

dz
lnfnszdg = − fszd. s25d

Using Eq.(25) we can understand why both the weak and
strong coupling limits are reproduced correctly in our model.

1. Weak coupling

In the limit J→0,

]

] z
wsr ;z0d → d

dz
wPBszd, s26d

wherewPBszd is the solution of Eq.(19) without a test charge,
i.e., settingJ=0. We note that the potentialw [(Eq. (19)] has
three sources: the charge of mobile counterions,luszde−w,
the uniformly charged plane, and the test charge. Although
the potential due to the test charge is infinite atr =z0ẑ, its
derivative with respect toz is zero and has no contribution in
Eq. (26). Using Eq.(25) we find

d

dz
lnfnszdg = −

d

dz
wPBszd. s27d

This equation, together with the normalization requirement
for nszd, leads to the result

nszd =
1

Z0
expf− wPBszdg = nPBszd. s28d

2. Strong coupling

In the strong coupling limit,J→`, a correlation hole
forms in the distribution of mobile counterions around the

test charge atr =z0ẑ. The structure and size of this hole, as
obtained from Eq.(19), will be discussed in detail later. For
now it is sufficient to note that the correlation hole gets big-
ger with increasingJ. As J→` the force atz0ẑ due to the
mobile counterions vanishes, leaving only the contribution of
the charged plane:s] /]zdwsr ;z0,Jd→1. Hence in this limit

d

dz
lnfnszdg = − 1, s29d

leading to the strong coupling result

nszd = exps− zd, s30d

where the prefactor of the exponent follows from the normal-
ization condition, Eq.(8).

In the rest of this work we will explore predictions of the
TCMF model at intermediate coupling, where neither of the
two limits presented above is valid. Before proceeding we
note that a similar discussion as above, of the weak and
strong coupling limits, applies also to the exact theory, be-
cause of Eq.(22).

III. NUMERICAL RESULTS AND COMPARISON
WITH SIMULATION

A. Results for f„z…

We consider first the behavior offszd, defined in Eq.(24),
close to the charged plate. Figure 3(a) shows this behavior
for J 5 1, 10, 102, 103, and 104 (alternating solid and
dashed lines). The curves were obtained from a numerical
solution of the partial differential equation(PDE), Eq. (19)
(see Appendix C for details of the numerical scheme). For
comparison the weak coupling(PB) and SC limits are shown
using dotted lines:

fPBszd =
2

z+ 1
; fSCszd = 1. s31d

As J increasesfszd gradually shifts from PB to SC behavior.
At J=104, fszd is very close to 1 within the range ofz shown
in the plot, although there is still a noticeable small deviation
from unity.

In Fig. 3(b) these results are compared with simulation
data (symbols), adapted from Ref.[13]. The value offszd
was obtained from the simulation results fornszd using the
relation d lnfnszdg /dz=−fszd [25]. Qualitatively our results
agree very well with simulation. Note especially the gradual
decrease offszd with increasingz for J=100 (diamonds):
this value ofJ is far away from both the weak coupling and
the strong coupling limits. The regime wherefszd decreases
linearly with z will be further discussed in Sec. IV A.

It was previously conjectured[10] that for all values ofJ
the SC limit is valid close enough to the charged plane. We
note, however, that at contact with the planefszd is different
from unity at small and intermediate values ofJ. Hence it is
not very meaningful to define a region close to the plane
where the SC limit is valid, unlessJ is very large. Values of
fszd, extracted from simulation data in Fig. 3(b), suggest the
same conclusion, i.e.,fszd does not approach unity at contact
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with the plane. A more accurate measurement offszd in the
simulation is desirable because the error bars, as obtained in
Fig. 3(b), are quite large.

B. Results for n„z…

The density profilenszd can be found numerically by in-
tegrating Eq.(25) and use of the normalization condition(8)
[26]. Figure 2 already demonstrated thatnszd coincides with
the exact profiles,nPBszd and nSCszd, in the limits of small
and largeJ. Figure 4(a) shows the difference betweennszd
andnPBszd for J=1, 10, 102, and 104, as calculated numeri-
cally in the TCMF model(continuous lines). These results

are compared with simulation data(symbols)[13,27].
We first observe that the contact theorem is not obeyed in

our approximation:ns0d−nPBs0d=ns0d−1 is different from
zero. This is an undesirable property, because the contact
theorem is an exact relation. The contact theorem is obeyed
in the TCMF model only in the limits of small and largeJ,
where the density profile as a whole agrees with the exact
form, and the normalization condition(8) enforcesns0d to be
correct. The violation at intermediate values ofJ is finite,
small compared to unity, and peaks atJ between 10 and
100. At these values ofJ the overall correction to PB is
quite inaccurate at the immediate vicinity of the charged
plate. On the other hand, atz larger than 1 our approximated
results agree quite well with simulation for all the values of
J, as seen in Fig. 4(a).

The violation of the contact theorem in the TCMF model
can be traced to a nonzero net force exerted by the ionic
solution on itself(see Appendix D). This inconsistency re-

FIG. 3. (a) Electrostatic force acting on a test charge,fszd, nu-
merically calculated using the mean-field equation(19). Alternating
solid and dashed lines showfszd for J=1,10,102,103, and 104.
The dotted lines show the PB and SC forms offszd, fPBszd=1/sz
+1d, and fSCszd=exps−zd. (b) Comparison offszd, calculated from
Eq. (19) [solid and dashed lines, same as in part(a)], with results
from Monte Carlo simulation[27], adapted from Ref.[13] (J=1,
circles;J=10, squares;J=102, diamonds;J=104, triangles). Val-
ues of fszd are obtained from simulation results fornszd using the
exact relationd ln nszd /dz=−fszd. Numerical estimation of the de-
rivative of lnfnszdg results in relatively large error bars, which are
shown as vertical lines.

FIG. 4. (a) Correction to the PB density profile,nszd−nPBszd,
calculated numerically using the TCMF model, as function ofz
(lines). For comparison, symbols show the correction obtained from
Monte Carlo simulation[13,27]. Four values ofJ are shown(see
legend), 1, 10, 102, and 104. (b) The density profile itself,nszd, on a
wider range ofz than in part(a) and using logarithmic scales in both
axes(lines—TCMF; symbols—MC simulation).
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sults from the use of a mean-field approximation for the dis-
tribution of ions around the test charge, while the probability
distribution of the test charge itself is given by Eq.(20).

It is possible to evaluate exactly the first-order correction
in J to the PB density profile in the TCMF model, the details
of which are given in Appendix E. This correction turns out
to be different from the exact first-order correction, which
was calculated in Ref.[20] using a loop expansion up to one
loop order(also shown in Appendix E). It is important to
note, however, that the latter correction provides a useful
result only for relatively small values ofJ. At J of order 10
and larger TCMF results are much closer to simulation than
those of the loop expansion.

Further comparison with simulation is shown in Fig. 4(b).
Here we show the densitynszd itself, rather than the differ-
ence with respect tonPBszd. The data are shown on a larger
range ofz than in part(a) and a logarithmic scale is used in
order to allow small values ofnszd to be observed far away
from the plate. In the range shown the TCMF model agrees
semiquantitatively with simulation.

As a summary of this section we can say that the TCMF
model captures the essential behavior of the ion distribution
at close and moderate distances from the charged plate. Fur-
thermore, all the available data from simulation agree quali-
tatively with our approximation’s predictions.

IV. TCMF RESULTS FAR AWAY FROM THE CHARGED
PLATE

Our analysis of the ion distribution far away from the
charged plate is done, at first, strictly within the context of
the TCMF model, while a discussion of its relevance to the
exact theory is deferred to Sec. V. The main question of
interest is whether a transition to PB behavior occurs at suf-
ficiently largez, even for large values ofJ.

As a first step we will identify the important length scales
characterizing the density distribution. Let us concentrate
first on the size of the correlation hole around a test charge.
Naively we may expect this size to be of orderJ, due to the
form of the bare potential,J / ur −z0ẑu. A simple argument
shows, however, that when the test charge is close to the
charged plane the size of the correlation hole is much smaller
thanJ. Assume, roughly, that the mobile ion density is zero
within a cylindrical shell of radiusR around the test charge.
The amount of charge depleted from this cylinder is then
equal toR2/2, since the surface charge per unit area is equal
to 1/2p [see Eq.(19)]. This depleted charge must balance
exactly the charge of the test particle, equal toJ, yielding a
cylinder radius that scales asÎJ rather than asJ.

In order to put this argument to test, Fig. 5(a) shows the
density of mobile ions calculated from Eq.(19) with a test
charge atz0=1, havingJ=1000. The shape of the correla-
tion hole is roughly cylindrical and its radius is indeed of
order ÎJ.30. The influence of the test charge on its sur-
roundings is very nonlinear, with a sharp spatial transition
from the region close to the test charge, where the density is
nearly zero, to the region further away, where the effect of
the test charge is very small. At larger separations from the
plate the qualitative picture remains the same, as long asz0 is

small compared toÎJ and provided thatJ@1.
A very different distribution of mobile ions is found when

z0 is of orderJ, as shown in Fig. 5(b). The coupling param-
eter is the same as in part(a), J=1000, but the test charge is
now atz0=1000. Instead of showing directly the density of
mobile ions as in part(a), the figure shows the ratio between
this density andnPBszd=1/sz+1d2. This ratio is now very
close to unity near the charged plane, where most of the ions
are present. It is small compared to unity only within a
spherical correlation hole around the test charge, whose size
is of orderJ.

FIG. 5. (a) Scaled density of ions around a test charge, posi-
tioned atz0=1, as obtained from Eq.(19). The cross designates the
position of the test charge. In cylindrical coordinates the density is
a function only ofz (horizontal axis) and r (vertical axis). Darker
shading in the plot means larger density(see also the legend on the
right). The coupling constant isJ=1000. Forr larger thanÎJ the
profile, as function ofz, quickly converges to the PB profile,nPBszd.
(b) A similar plot as in part(a), but the test charge is now atz0

=J=1000. Here the ratio between the density and the PB profile is
shown, rather than the density itself. This ratio is everywhere a
number between zero(black) and one(white). The effect of the test
charge on the ion distribution is large only within a correlation hole
around the test charge, having approximately a spherical shape and
a radius of orderJ.
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The above examples lead us to divide our discussion of
the z dependence into two regimes

A. z,ÎJ

In order to justify use of the cylindrical correlation hole
approximation within this range, let us assume such a corre-
lation hole and calculate the force acting on the test charge:

fszd . E
0

`

dz8 nPBsz8d
z8 − z

ÎJ + sz8 − zd2
, s32d

wherenPBsz8d is given by Eq.(11), the radius of the cylin-
drical region from which ions are depleted is taken asÎJ,
and the expression multiplyingnPBsz8d is the force exerted
by a charged sheet having a circular hole of radiusÎJ and
positioned in the planez8. Figures 6(a) and 6(b) show a
comparison of this approximation(dashed lines) with that
obtained from a full numerical solution of Eq.(19) (solid
lines). The coupling parameter is equal to 10 000 in(a) and
to 100 in(b). In both cases the approximation works well up
to z0.ÎJ. In Fig. 6(c) the force acting on a test charge at
contact with the plane,fs0d, is shown for five values ofJ
between 1 and 10 000(symbols), and compared with the
approximation of Eq.(32) (solid line). Note that Eq.(32) is
not a good approximation whenJ is of order unity or
smaller, since the correlation hole is then small compared to
the width of the ion layer.

B. z.ÎJ

When the test charge is far away from the plane, its effect
close to the charged plate is small, suggesting that a linear
response calculation may be applicable:

fszd = fPBszd + Jf1szd. s33d

The first term in this equation is the PB value offszd, while
f1szd can be calculated using previous results of Ref.[20]:

f1szd =
1

2

dgszd
dz

=
1

4sz+ 1d3h8z− s1 + ides1−idzf1 − z+ s1 − 2idz2 + z3g

3E1fs1 − idzg− s1 − ides1+idzf1 − z+ s1 + 2idz2 + z3g

3E1fs1 + idzgj, s34d

where gszd was defined in Ref.[20] and is given by Eq.
(E11), andE1szd is the exponential-integral function[28]. We
prove the first equality of Eq.(34) in Appendix E. Figure 7

FIG. 6. (a,b) Comparison of
the approximation tofszd given by
Eq. (32) (dashed line), with a full
numerical solution of the PDE
(solid line). The coupling param-
eterJ is equal to 10 000 in(a) and
to 100 in (b). Note that the ap-
proximation shown in the dashed
line is good up to a distance from
the plate equal to aboutÎJ in both
cases. A distance ofÎJ from the
charged plate is designated by the
vertical dotted lines. Part(c)
shows a comparison offs0d in the
approximation given by Eq.(32)
(symbols) and in the exact PDE
solution (solid line) for a wide
range ofJ values.

FIG. 7. First-order(linear) term in an expansion offszd: fszd
= fPBszd+Jf1szd+¯, Eq. (34), as obtained from the loop expansion
of Ref. [20]. The dashed line shows the asymptotic form off1szd at
largez, f1szd.3/s4z2d.
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showsf1szd (solid line) together with its asymptotic form for
largez (dashed line),

f1szd .
3

4z2, z@ 1. s35d

Note that the asymptotic form ofJf1szd has the samez de-
pendence as the electrostatic force exerted by a metallic sur-
face, equal toJ / s4z2d in our notation, but the numerical
prefactor is different.

Although the influence of the test charge is small near the
surface, its influence on ions in its close vicinity is highly
nonlinear and definitely not small. Hence the applicability of
Eq. (33) is far from being obvious whenJ is large. We
check this numerically by calculatingfszd− fPBszd and com-
paring with Jf1szd. The results are shown in Fig. 8(a), for
five values ofJ: 1, 10, 102, 103, and 104.

For each value ofJ the ratio sf − fPBd / sJf1d (shown in
the plot) approaches unity asz is increased, showing that Eq.
(33) does become valid at sufficiently largez. The approach
is, however, rather slow: a value close to unity is reached
only whenz@J. At z=J the ratio is approximately equal to
0.6 in all five cases. We conclude that the linear approxima-
tion of Eq. (33) is applicable only forz@J. Note that at
these distances from the charged plate the linear correction
itself is very small compared to the PB term:

Jf1szd
fPBszd

.
3J

4z2

z+ 1

2
.

3

8

J

z
! 1, s36d

where we also assumed thatz@1 and used Eq.(35).
Further insight on the results shown in Fig. 8(a) is ob-

tained by noting that all of them approximately collapse on a
single curve after scaling thez coordinate byJ. This curve,
denoted byhsz/Jd, is shown in Fig. 8(b):

fszd − fPBszd . Jf1szd 3 hS z

J
D . s37d

In order to demonstrate at what range ofz values this scaling
result is valid, the same data are shown in Fig. 9 using a
logarithmic scale in the horizontalsz/Jd axis. It is then seen
clearly that(37) holds forz/J larger than a minimal value,
which is proportional toJ−1/2. The vertical arrows designate
z/J=1.5/ÎJ for each value ofJ, approximately the point
where the scaling becomes valid. Returning to considerz
itself, we conclude that Eq.(37) holds for z*1.5ÎJ. This
result justifies the separation of thez dependence into two
regimes,z,ÎJ andz.ÎJ.

We finally turn to consider the ion densitynszd. Using
Eqs.(35) and (37) we can write

FIG. 8. Comparison between the correction tofszd relative to
fPBszd, with the linearized expressionJf1szd. In (a) the ratioffszd
− fPBszdg / fJf1szdg is shown as function ofz for five different values
of J: 1, 10, 102, 103, and 104 [see legend in part(b); symbols show
the same quantity as the solid line and are displayed in order to
distinguish between the five lines]. The ratio approaches unity atz
much larger thanJ. In (b) the same data as in(a) are shown as
function of z/J, leading to an almost perfect collapse of the five
data sets on a single curve.

FIG. 9. Same data as in Fig. 8(b), shown using a logarithmic
scale in the horizontalsz/Jd axis. The approximated collapse of the
different data sets, corresponding to different values ofJ, is seen to
be valid only in the regimez*ÎJ. The vertical arrows markz
=1.5ÎJ for J=1, 10, 102, and 103, above which the scaling(3) is
approximately valid.
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−
d

dz
nszd = fszd . fPBszd + S 1

J
D3

4
S z

J
D−2

hS z

J
D , s38d

which leads, upon integration, to the approximate scaling
result

nszd . c0sJd
1

sz+ 1d2hS z

J
D , s39d

where

lnfhsudg = −
3

4
E

u

`

du8
hsu8d
u82 . s40d

The prefactorc0sJd depends, through the normalization con-
dition, on the behavior ofnszd close to the charged plane
where the scaling form of Eq.(39) is not valid. Equation(39)
is indeed validated by the numerical data and applies forz
*ÎJ andJ@1.

The density itself,nszd, is plotted in Fig. 10 using a semi-
logarithmic scale, forJ=1, 10, 102, 103, and 104. At z@J,
nszd is proportional tonPBszd, as expected from Eq.(39). The
prefactorc0 is extremely small for largeJ. We recall thatc0
is mainly determined by the behavior close to the charged
plane, wherefszd is of order unity up toz&ÎJ. Following
this observation we can expect lnfc0sJdg to scale roughly as
ÎJ. This estimate is validated by the numerical results and is
demonstrated in the figure using the horizontal arrows. For
J=10, 102, 103, and 104 these arrows show an estimate for
nszd at z=104, given by

nPBszdfexps− 0.8ÎJdg

in very good agreement with the actual value ofn.

V. FURTHER DISCUSSION

At this point we may ask to what extent our results rep-
resent the behavior ofnszd in the exact theory. Before dis-
cussing this question we turn our attention for a moment to
the system that our problem was mapped into in Eq.(19)—
that of a single ion of valenceJ in contact with a charged
plane and its monovalent counterions. The results of Secs. III
and IV can be regarded as exact for such a system, provided
that the monovalent ions are weakly correlated(having, by
themselves, a small coupling parameter as determined from
their charge and that of the planar surface). These results are
thus of direct relevance to the interaction of a large multiva-
lent macroion with a charged surface that is immersed in a
weakly correlated solution of counterions.

Returning to the original question, we separate our discus-
sion according to the scaling results of the numerical analy-
sis.

A. z,ÎJ

WhenJ is very large a test charge atz,ÎJ is essentially
decoupled from the rest of the ionic solution, feeling only the
force exerted by the charged plane. This is the reason why an
exponential decay,nszd,exps−zd, is obtained in our model,
as well as in simulation and in the perturbative strong cou-
pling expansion of Ref.[10]. However, at intermediate val-
ues ofJ such as 10, 100, or 1000 our results show that this
exponential decay is only a rough approximation. The decou-
pling of a test charge from the rest of the ions is only partial,
even atz=0, leading to a value offszd that is (i) larger than
unity at z=0 and (ii ) considerably smaller than unity atz

=ÎJ. Both of these predictions are validated by simulation,
as shown in Fig. 3(b).

The quantitative agreement infszd between our model and
simulation is surprisingly good, considering that the ionic
environment surrounding the test charge is different in our
approximation, compared to the exact theory. This good
agreement can be attributed to the correct length scales that
characterize the approximate ionic environment:ÎJ in the
lateral direction and 1 in the transverse direction. Indeed, in
the lateral direction our results can be compared with pair
distributions that were obtained in Monte Carlo simulation
[13]. The pair distributions found in the simulation are char-
acterized by a strong depletion within a correlation hole hav-
ing diameter of orderÎJ, in great similarity to Fig. 5(a).
What is not captured by our approach is that multiple
maxima and minima exist atJ*100 [29]. Nevertheless,
even at the very large coupling parameter valueJ=104 these
oscillations decay quite rapidly with lateral distance, and we
can still say that the TCMF model captures the most signifi-
cant feature of the pair distribution(namely, the structure of
the correlation hole).

B. z.ÎJ

Throughout most of this section we concentrate on the
casez.J, while a short discussion of the rangeÎJ,z,J
is presented at the end of this section.

FIG. 10. Scaled ion density,nszd calculated using the TCMF
model, shown for five different values ofJ (solid lines, top to
bottom): 1, 10, 102, 103, and 104. A logarithmic scale is used on
both axes, allowing the behavior far away from the charged plate to
be seen. The dashed lines shownPBszd (upper dashed line) and
nSCszd (lower dashed line). At z@J the density profile is propor-
tional to nPBszd, with a prefactor whose logarithm scales asÎJ. To
demonstrate this the horizontal arrows mark the value of exps
−0.8ÎJdnPBs104d for J=10, 102, 103, and 104. The prefactor 0.8 is
an approximate fitting parameter.
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Our model predicts a transition to algebraic decay ofnszd
at z*J. Similar predictions were made in Ref.[9] and in
Ref. [13], where it was estimated that mean-field results are
valid for z.J ln J based on a perturbative expansion
around mean field. There are currently no available results
from simulation in this regime.

A mean-field behavior is obtained in our model in the
sense that

fszd . fPBszd =
1

z+ 1
s41d

decays as 1/z for large z. Nevertheless, the finer details in
our results do not match the form predicted by PB theory.
The starting point for the following discussion is a hypoth-
esis that sufficiently far from the plate the exact density fol-
lows a PB form

nasymszd =
1

sz+ bd2 , s42d

whereb (or mb in the original, nonscaled coordinates) is an
effective Gouy-Chapman length, characterizing the ionic so-
lution far away from the plate.

The asymptotic density profile found in our approxima-
tion, nszd=csJd / sz+1d2, is different from Eq.(42). To un-
derstand this difference let us explain first the asymptotic
behavior of fszd: it decays in the TCMF model as 1/sz+1d
because beyond the correlation hole the test charge is sur-
rounded by an ion density of the formnPB=1/sz+1d2. This
form is different from the profilenszd that is eventually ob-
tained by integratingfszd—an inconsistency which is the
source of the difference betweenfszd in our approximation
and the hypothesized formfszd,1/sz+bd (see also the dis-
cussion in Appendix D).

The behavior of our approximatefszd leads to a decay of
nszd of the form 1/sz+1d2. The normalization condition for
nszd is then enforced through a small prefactorcsJd. In com-
parison, in the hypothesized form(42) the prefactor must be
1 and the normalization is achieved by a large value ofb.
Note thatb must be an extremely large number for large
values ofJ: due to the exponential decay ofnszd at z&ÎJ
the logarithm ofb must be at least of orderÎJ.

Further insight on the behavior atz.J can be obtained
using the exact equation(22):

d

dz
lnfnszdg = − fszd, s43d

where fszd is now the mean(thermally averaged) electro-
static force acting on a test charge at distancez from the
plate, in the exact theory.

For the mean-field formnasymszd to be correct, the contri-
bution to fszd coming from the influence of the test charge on
its environment must be small compared to the mean-field
force, which is given by 1/sz+bd. Following our results from
the preceding section, the former quantity is given byaJ /z2,
wherea is of order unity. Using the mean-field equation(19)
we obtaineda=3/4; in theexact theory, and for largeJ,
where ions form a much more localized layer close to the

plane than in mean field, it is plausible thata=1/4, as in the
force acting on a test charge next to a conducting surface
[9,13]. In any case, for Eq.(42) to represent correctly the
decay ofnszd we must have

aJ

z2 ,
1

z+ b
s44d

leading to the resultz* sJbd1/2 which is exponentially large
due tob. Up to this crossover distance the decay ofnszd is
dominated by the correlation-induced interaction with the
ions close to the plate.

We conclude that for a very large range ofz values the
decay ofnszd must be different from Eq.(42). At the same
time, a mean-field argument is probably applicable, because
the density of ions is very small in this regime: we may
presume that the contribution tofszd can be divided into two
parts—one part, coming from ions far away from the plate,
which is hardly influenced by the test charge, and a second
part, coming from ions close to the charged plate, where the
test charge influence onfszd is given byaJ /z2. This reason-
ing leads to the following differential equation fornszd:

d2

dz2lnfnszdg = 2nszd +
2aJ

z3 s45d

whose detailed derivation is given in Appendix F. By defin-
ing nszd=exps−f+aJ /zd Eq. (45) is recast in the form

d2f

dz2 = − 2 expS− f +
aJ

z
D = − 2nszd s46d

showing that mean-field theory is applicable, but an external
potential −aJ /z, coming from the ions close to the plate,
must be included in the PB equation. In practice, for largeJ
this equation will lead to a decay of the formnszd
,expsaJ /zd as suggested also in Refs.[9,13], while a
crossover to an algebraic decay will occur only at a distance
of at leastfJ expsÎJdg1/2, where Eq.(44) has been used and
prefactors of order unity, inside and outside the exponential,
are omitted. A numerical solution of Eq.(46) may be useful
in order to describe the ionic layer at intermediate values of
J (of order 10–100), where both mean-field and correlation-
induced forces are of importance at moderate distances from
the plate. In order to test this idea quantitatively more data
from simulation are required.

Finally we discuss the case wherez.ÎJ but z is not
large compared toJ. Let us also assume thatJ is very large,
so that most of the ions are much closer to the plate than a
test charge fixed atzẑ. Within the TCMF model the effect of
the test charge on ions close to the plate is nonlinear, leading
to the scaling result of Eq.(37). Similarly, in the exact theory
it is not clear whether the correlation-induced force acting on
the test charge is of the formaJ /z2, since the effect of the
test charge on ions close to the plate is not a small perturba-
tion. Hence we believe that the relevance of Eq.(46) for
z,J, and the behavior offszd in this regime, merit further
investigation[30].
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VI. CONCLUSION

In this work we showed how ion correlation effects can be
studied by evaluating the response of the ionic solution to the
presence of a single test particle. Although we calculated this
response using a mean-field approximation, we obtained ex-
act results in the limits of small and largeJ, and qualitative
agreement with simulation at intermediate values.

The approach taken in this work demonstrates that for
highly correlated ionic liquids it is essential to treat the par-
ticle charge in a nonperturbative manner. Once a single ion is
singled out, even a mean-field approximation applied to the
other ions provides useful results. This scheme, called the
TCMF model, provides a relatively simple approximation,
capturing the essential effects of strong correlations—to
which more sophisticated treatments can be compared.

Technically what is evaluated in this work is the ion-
surface correlation function. Consideration of correlation
functions of various orders leads naturally to liquid-state
theory approximations[31], some of which are very success-
ful in describing ionic liquids[22]. In particular, these ap-
proximations usually treat the ion-ion correlation function in
a more consistent manner than the approximation used in this
work, thus possibly alleviating some of the undesirable fea-
tures of the TCMF model presented here, such as the viola-
tion of the contact theorem. The main advantage of the
TCMF model is its simplicity, allowing the behavior ofnszd
to be understood in all the range of coupling parameter val-
ues in terms offszd, the force acting on a test charge. Fur-
thermore, the exact equation(22), which does not involve
any approximation, is a useful tool in assessing correlation
effects—as was done, for example, in this work in the end of
Sec. V.

It will be useful to summarize the main results obtained in
this work. First, the exact equation(22) provides a simple
explanation of the exponential decay of the density profile in
the strong coupling limit. In light of this equation, exponen-
tial decay is expected as long as the test charge is decoupled
from the rest of the ionic solution. Note that there is no
necessity for long range order to exist in order for the expo-
nential decay to occur, as was emphasized also in Ref.[9].
Indeed, within our TCMF model the ion distribution around
a test charge does not display any long range order[see Fig.
5(a)] and yet simulation results, in particular in the strong
coupling limit, are recovered very successfully.

Second, the characteristic size of the correlation hole
around an ion close to the plane,ÎJ, plays an important role
in determining the density profile. For very largeJ the pro-
file decays exponentially up toz&ÎJ, beyond which a cross-
over to a less rapid decay occurs. For intermediate values of
the coupling parameterz=ÎJ is still an approximate bound-
ary between regimes of different behavior ofnszd, but the
density profile atz,ÎJ does not decay in the simple expo-
nential form, exps−zd. In this sense one cannot speak of a
region close to the plate where strong coupling results are
valid.

For z*J our approximation predicts a transition to an
algebraic decay ofnszd, of the formcszd / sz+1d2, where the
prefactorcszd is exponentially small for largeJ. A different

asymptotic behavior of the form 1/sz+bd2 is probably valid
at very largez, but is not predicted by the TCMF model.
Arguments presented in Sec. V, based on the exact equation
(22), lead to the conclusion that for largeJ the latter form
(with a constant value ofb) can only be valid at extremely
large values ofz, while suggesting that at all distances from
the plate larger thanJ a modified mean-field equation, Eq.
(46), is valid. This equation, matched with the behavior of
the ion distribution close to the charged plate, ultimately de-
termines the value of the effective Gouy-Chapman lengthb.

Finally, as a by-product of the analysis of Sec. IV, we
obtain scaling results for the interaction of a high-valent
counterion with a charged plane immersed in a weakly cor-
related ionic liquid. All the results of Sec. IV and in particu-
lar the scaling form(37), valid for z*ÎJ, can be regarded as
exact in such a system.

Our approach can be easily generalized to more compli-
cated geometries than the planar one, although the practical
solution of the PB equation with a test charge may be more
difficult in these cases. Other natural generalizations are to
consider nonuniformly charged surfaces and charged objects
in contact with a salt solution. Beyond the TCMF approxi-
mation of Eqs.(19)–(21), the exact equation(22) always
applies and can be a very useful tool for assessing correlation
effects near charged macromolecules of various geometries.

We conclude by noting that important questions remain
open regarding the infinite planar double layer, which is the
most simple model of a charged macroion in solution. One
such issue, on which the present work sheds light, is the
crossover from a strongly coupled liquid close to the charged
plate to a weakly correlated liquid further away. In particular,
the precise functional dependence of the effective Gouy-
Chapman lengthb on J is still not known. More simulation
results, in particular at large distances from the charged plate,
and a direct evaluation offszd from simulation may be useful
in order to gain further understanding and to test some of the
ideas presented in this work. Another important issue, which
has not been addressed at all in the present work, is the
possible emergence of a crystalline long range order parallel
to the plane at sufficiently large values of the coupling pa-
rameter. Although plausible arguments have been presented
for the occurrence of such a phase transition atJ*33104

[9], its existence has not been proved.
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APPENDIX A: MEAN-FIELD FREE ENERGY

In this appendix we show how the mean-field free energy
(18) is obtained as an approximation toFsz0d, Eq. (14). We
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start from a general expression for the grand-canonical po-
tential of an ionic solution interacting with an external and
fixed charge distributionssr d. In the mean-field approxima-
tion [20,32],

V =E d3rH−
1

8plBq2f¹fsr dg2 +
ssr dfsr d

q
− lQsr de−fsr dJ ,

sA1d

whereq is the valency of the ions,l is the fugacity,Qsr d is
equal to 1 in the region accessible to the ions and to zero
elsewhere[equal in our case touszd, the Heaviside function],
andV is given in units ofkBT. Requiring an extremum with
respect tow, the reduced electrostatic potential, yields the PB
equation which determines the electrostatic potential and the
actual value ofV. We use Eq.(A1), which is given in the
grand-canonical ensemble, because it is widely used in the
literature[27,32]. In Ref. [20] Eq. (A1) is derived systemati-
cally as the zeroth order term in a loop expansion of the
exact partition function.

Inspection of Eq.(14) shows that it describes the free
energy of an ionic solution interacting with an external
charge distribution having the following parameters:

q = ÎJ svalencyd,

ssr d =
1

ÎJ
F−

1

2p
dszd + Jdsr − z0ẑdG sexternal potentiald,

lB = 1 sBjerrum lengthd. sA2d

In the second line(external potential) the first term comes
from the uniformly charged plate and the second term comes
from the fixed test charge. Plugging these values in Eq.(A1)
yields

V =
1

J
E d3rH−

1

8p
s=wd2 − luszde−w

+ wF−
1

2p
dszd + Jdsr − z0zdGJ . sA3d

In order to obtain Eq.(18) two modifications are required.
First, we need to return to the canonical ensemble by adding
mN to V, whereN is the total number of ions. Noting that
m=ln l and that from charge neutralityqN=−ed3rssr d, this
modification yields the extra term that is proportional to lnl
in Eq. (18). Second, we note thatV includes the Coulomb
self-energy of the charged plane and of the test charge. This
infinite term does not depend onz0 and should be subtracted
from V since it is not included in the definition ofFsz0d, Eq.
(14).

We finally note that the results of this appendix can also
be obtained directly from the canonical partition function, as
expressed by Eq.(14).

APPENDIX B: DERIVATION OF IDENTITY (23)

We would like to evaluate the variationdFPBsz0d /dz0,
whereFPB is given by Eq.(18). Note thatw itself depends on

z0. However the first derivative ofFPB with respect towsr d is
zero. Hence the only contribution todFPB/dz0 comes from
the explicit dependence onz0:

dFPBfz0g
dz0

=
1

J
E d3r sw − ln ldJ

]

] z0
dsr − z0ẑd=− U ] w

] z
U

r=z0ẑ
.

sB1d

It is also instructive to derive this identity within the exact
theory. Equation(14) can be written as follows:

expf− Fsz0dg =
1

sN − 1d! E p
i=1

N−1

d3r i exps− Hz0
hr ijd,

sB2d

where theNth charge is fixed atr =z0ẑ:

Hz0
hr ij = − z0 − o

i=1

N−1

zi − o
i=1

N−1
J

ur i − z0ẑu
− o

j.i

J

ur i − r ju
.

sB3d

Differentiating with respect toz0 yields

dFsz0d
dz0

= −K ] Hz0

] z0
L = −K− 1 + o

i=1

N−1
Jsz0 − zid
ur i − z0ẑu3L ,

sB4d

where the averaging is performed over all configurations of
theN−1 ions with the weight exps−Hz0

hr ijd. This quantity is
the mean electrostatic field acting on a test charge atz0ẑ.

APPENDIX C: NUMERICAL SCHEME

Numerically solving a nonlinear PDE such as Eq.(19)
requires careful examination of the solution behavior. The
purpose of this section is to explain the numerical scheme
used in this work, and in particular the parameters required
to obtain a reliable solution.

1. Finite cell

We solve Eq.(19) as a two-dimensional problem in the
coordinatesr andz, making use of the symmetry of rotation
around thez axis. The problem is defined within a finite cell
of cylindrical shape, shown schematically in Fig. 11. The
negatively charged plate is atz=0 and ions are only allowed
in the regionz.0, marked as the gray-shaded region in the
plot.

We impose a boundary condition of zero electrostatic
field,

¹w · n̂ = 0 sC1d

at the cell boundariesz=−zmin, z=zmax, and r =R. The cell
size, as determined by these boundaries, must be sufficiently
large, as will be further discussed below.

In the numerical solution it is necessary to solvew for the
electrostatic potential at positive as well as negativez [33].
Note that a boundary condition such as Eq.(C1) at z=0
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would correspond to zero dielectric constant atz,0, while
we are interested in the case of continuous dielectric constant
across the plate.

2. Differential equation

The source term in Eq.(19) diverges atz=0 and atr
=z0ẑ. We avoid this difficulty by shifting the potential

w = c + uzu +
J

ur − z0ẑu
sC2d

and solving forc, which is the potential due only to the
mobile ions. The equation forc,

¹2c = − 4pluszdexpS− c − z−
J

ur − z0ẑuD sC3d

is solved with a Neumann boundary condition forc, derived
from Eqs. (C1) and (C2). Note that, unlikew, c is well
behaved atz0ẑ. The nonlinear equation(C3) can be solved by
iterative solution of a linear equation(see, for example, Refs.
[34,35]):

¹2cn = − 4pluszdexpS− cn−1 − z−
J

ur − z0ẑuD
3f1 − scn − cn−1dg, sC4d

wherecn represents thenth iteration.

3. Grid and solution method

In the coordinatesr,z the cylindrical cell is a rectangular
domain,

f0,Rg 3 f− zmin,zmaxg.

We use bicubic Hermite collocation[36] in this domain in
order to translate the PDE into a set of linear algebraic equa-

tions on a grid. These equations are then solved using Gauss
elimination with scaled partial pivoting. Storing the band
matrix representing the linear equations requires
<483Nr

23Nz memory cells, whereNr andNz are the num-
ber of grid points in ther andz directions, respectively[36].
Because this number can be very large, it is essential to use
a variably spaced grid in both of the coordinates. We use the
following scheme.

r coordinate. In the absence of a test charge, an arbitrarily
coarse grid can be used in ther direction, due to the trans-
lational symmetry parallel to the charged plane. In our case
(where a test charge is present) the grid spacing is deter-
mined by the distance from the test charge as follows:

dn

dr
=

nr

r + rgrid
, sC5d

wherenr and rgrid are two fixed parameters, whilen stands
for the grid point index anddn/dr is the number of grid
points per unit increment of the radial coordinate. This spac-
ing is approximately uniform up to the thresholdrgrid,
whereas forr @ rgrid it is proportional to 1/r. The grid points
are then of the form

rn = rgridFexpS n

nr
D − 1G . sC6d

In practice,rgrid is chosen approximately proportional toÎJ,
in order to allow the structure of the correlation hole to be
represented faithfully.

z coordinate. In this coordinate the grid spacing is influ-
enced by the distance from the charged plate as well as the
distance from the test charge. We describe separately the
spacing determined from each of these two criteria; the ac-
tual grid is obtained by using the smaller of the two spacings
at each point.

(i) Distance from the plate: we use a grid spacing propor-
tional to the derivative ofwPBszd,

dn

dz
~

2

z+ 1
. sC7d

Ignoring, for the moment, the distance from the test charge,
Eq. sC7d leads to grid points of the form

zn = expsnDd − 1, sC8d

where the parameterD is the grid spacing close to the
charged plate. A similar scheme is used in the negativez half
space.

(ii ) Distance from the test charge: we use a form similar
to Eq. (C5),

dn

dz
=

nz

uz− z0u + zgrid
. sC9d

In practice, the thresholdzgrid is chosen proportional toJ,
in contrast torgrid which is chosen proportional toÎJ.

4. Parameters

The parameters that were used to obtain the numerical
results presented in this work are summarized in Table II. We

FIG. 11. Schematic illustration of the setup used to solve nu-
merically the PDE(19). The equation is solved in a finite cylindri-
cal cell, extending from −zmin to zmax in the z axis and from 0 toR
in the r axis. The charged plane is atz=0 and ions are only present
for z.0. Neumann boundary conditionss=w ·n̂=0d are imposed at
the cell boundaries. The test charge is atr =z0ẑ.
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compared our results with those obtained with(a) increasing
zmin, zmax, andR by a factor of 10; and(b) decreasing the grid
spacing by a factor of 2, both in ther and in thez coordi-
nates. The influence of these changes was found to be neg-
ligible on all the data presented in this work.

APPENDIX D: CONTACT THEOREM

In this appendix we derive the contact theorem[24] in a
way that highlights the reason why it is not obeyed in our
approximation. We start from an exact expression for the free
energy

F = − lnE
a

`

dz8 expf− Fsz8dg, sD1d

where the charged plate is atz=a. This plate position can be
chosen arbitrarily, hence]F /]a=0:

0 =U ] F

] a
U

a=0
= ns0d −E

a

`

dz8 nsz8d
] F

] z
sz8d, sD2d

where we used the relations

nszd =
expf− Fszdg

E
0

`

dz8 expf− Fsz8dg
sD3d

and

U ] Fszd
] a

U
z

= − U ] Fszd
] z

U
a

. sD4d

We now use Eq.(22) to obtain

ns0d −E
0

`

nszd
]

] z
kwsr ;zdlr=z0ẑ = 0. sD5d

The second term in this equation is the average electrostatic
force acting on the ions per unit area. This force can be
separated into two contributions. The first one, exerted by the
charged plane, is equal to −edz8nsz8d=−1 because the plane
applies an electrostatic force which does not depend onz8
and is equal to unity in our rescaled coordinates. The remain-
ing contribution to the force, exerted by the ions on them-
selves, must be zero due to Newton’s third law, leading to the
resultns0d=1.

The discussion up to now was exact. It also applies to PB
theory, where the self-consistency of the mean-field approxi-
mation ensures that Newton’s third law is obeyed. On the
other hand, within our approximation the force exerted by
the ions on themselves,

E
0

`

nszdffszd − 1g,

is not zero. This inconsistency can be traced to a more fun-
damental inconsistency which is briefly described below.

The probability to find the test charge atr =zẑ and a mo-
bile ion at r 8 is proportional, in our approximation, to

nszdnsz8dgsr ,r 8d ; nszdexpf− wsr 8;zdg. sD6d

In the exact theory the probability to find two ions atr andr 8
must be symmetric with respect to exchange ofr andr 8. On
the other hand the correlation functiongsr ,r 8d, as defined
above, is not symmetric. In other words, the ion-ion correla-
tion function in the TCMF model is not symmetric.

APPENDIX E: SMALL J EXPANSION

The recovery of mean-field results at smallJ was dem-
onstrated and explained in Sec. II. Here we derive this result
formally as an expansion in powers ofJ. The advantage of
this formal expansion is that it allows us to find also the
first-order correction to the PB profile within our model.

We expandJFPB, Eq. (18), up to second order inJ:

JFPBsz0d = F0 + JF1sz0d + J2F2sz0d + ¯ . sE1d

The zeroth-order termF0 does not depend onz0 and is the
PB free energy of a charged plane in contact with its coun-
terions, without a test charge. In order to evaluate the follow-
ing terms, we also expandw in powers ofJ:

wsr ;z0d = w0sr d + Jw1sr ;z0d + J2w2sr ;z0d + ¯ . sE2d

To zeroth order we have from Eqs.(18) and (19)

F0 =E d3rH−
1

8p
s=w0d2 − luszde−w0szdJ , sE3d

where

¹2w0 =
d2w0

dz2 = − 4pluszde−w0 sE4d

is the potential due to counterions in the PB approximation.
The first-order term in the free energyF1 is found by ex-
panding Eq.(18) in J. This expansion includes two contri-
butions, the first fromw1 and the second from the explicit
dependence onJ in Eq. (18). The first contribution vanishes
becausew0 is an extremum of the zeroth-order free energy,
leaving only the second contribution

F1sz0d =E d3r w0sr ddsr − z0ẑd = w0sz0d. sE5d

Returning to our approximation fornszd, given by Eq.(20),
we find that

TABLE II. Parameters used in numerical solution of the
PDE.

J zmin zmax R D zgrid nz rgrid nr

104 104 105 105 0.2 5000 5 100 5

103 104 105 105 0.2 500 4 33 4

102 103 104 104 0.2 50 4 10 4

10 103 104 104 0.2 5 4 3 4

1 43102 43103 43103 0.2 0.5 4 1 4

0.1 80 800 800 0.2 0.05 4 0.2 4
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nszd =
1

Z
expf− FPBszdg =

1

Z
expF−

F0

J
− w0szdG

=
1

Z0
expf− w0szdg, sE6d

whereZ0 is found from the normalization condition(21). To
leading order inJ, nszd is equal to the PB density profile, as
expected:

nszd = nPBszd =
1

Z0
expf− w0szdg =

1

sz+ 1d2 , sE7d

whereZ0 is a normalization constant. The next-order term in
the expansion ofF can be found on similar lines asF1szd,
and is equal to

F2sz0d = 1
2dw1sz0ẑ;z0d, sE8d

wheredw is the difference between the first-order correction
to w and the bare potential of the test charge:

dw1sr d = w1sr d −
1

ur − z0ẑu
. sE9d

The first-order term in the expansion ofw, w1sr ;z0d, is the
solution of the differential equation

f¹2 − 4ple−w0gw1 = − 4pdsr − z0ẑd. sE10d

The functiondw1sr d arises also in the systematic loop expan-
sion of the free energy around the mean-field solution[20].
Its value atr =z0ẑ is given by[20]

dw1sz0ẑ;z0d ; gsz0d

=
1

2sz0 + 1d2

3hies1−idz0E1fs1 − idz0gs1 + iz0d2

− ies1+idz0E1fs1 + idz0gs1 − iz0d2 − 4z0j,

sE11d

whereE1fxg is the exponential-integral function[28]. Using
Eqs. (20) and (E8) we find that up to first order inJ the
density profile is given by

nszd = nPBszd + Jn1szd, sE12d

where

n1szd = fN1 − 1
2gszdgnPBszd. sE13d

In this expressiongszd is given by Eq.(E11) and N1 is ob-
tained from the normalization condition(21):

N1 =
1

2
E dz nPBszdgszd . − 0.3104. sE14d

Note that this is different from the exact expression for the
first-order correction inJ [37], which is obtained in the loop
expansion and is not reproduced here, but is shown in Fig.
12.

Figure 12 showsn1szd as defined by Eq.(E13) (solid line).
The symbols show the correction tonPB calculated numeri-

cally from TCMF forJ=0.1 and scaled by 1/J=10. At this
small value ofJ the linearization provides a very good ap-
proximation for the correction tonPBszd.

The dashed line shows the exact first-order correction in
J to the ion density, obtained from the loop expansion.
Comparison of the solid and dashed lines shows that the
TCMF model does not capture correctly the exact first-order
correction. In particular,n1s0d is different from zero in our
approximation; in the exact correctionn1s0d=0 as it must be
due to the contact theorem. It is important to realize that
although the exact first-order correction is useful for values
of J of order unity and smaller, the TCMF has a much wider
range of validity forJ*1.

1. Proof of Eq. (34)

Our purpose here is to prove the first equality of Eq.(34),

f1szd =
1

2

dgszd
dz

, sE15d

where the electrostatic field acting on a test charge is
−ffPBszd+Jf1szd+¯g, i.e., f1szd is the first-order term inJ.
In order to do this, let us consider the correction to the mean-
field potential due to an infinitesimal point charge of magni-
tudeJ that is placed atr =zẑ. We designate this correction,
evaluated at the pointr 8, asGsr ,r 8d. This Green’s function is
found by solving Eq.(E10) which reads, with a slight change
of notation,

f¹r8
2 − 4ple−w0sr8dgGsr ,r 8d = − 4pdsr − r 8d. sE16d

The electrostatic field acting on the test charge is then
−fPBszd−Jf1szd, where

FIG. 12. First-order(linear) correction inJ to nszd, as obtained
from the test-charge mean-field approximation, Eq.(E13) (solid
line), compared to the exact first-order correction calculated using a
loop expansion[20] (dashed line). The symbols showfnszd
−nPBszdg /J calculated numerically in the test-charge mean-field ap-
proximation withJ=0.1.
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f1szd = U ]

] z8
Gsr ,r 8dU

r8=r
=

1

2

]

] z
Gsr ,r d =

1

2

dgszd
dz

sE17d

andgszd is defined in Eq.(E11). In the second step we used
the symmetry ofGsr ,r 8d to exchange ofr and r 8, which
follows from the fact that the operator acting onGsr ,r 8d in
Eq. (E16) as well as the right-hand side of that equation are
symmetric with respect to exchange ofr and r 8.

APPENDIX F: MEAN-FIELD EQUATION AT LARGE z

We start from the exact identity(43) and would like to
evaluatefszd for a test particle placed at sufficiently largez,
assuming also thatJ is large. The mean-field electrostatic
force acting on the particle is given by

fMFszd = 1 −E
0

z

dz8 nsz8d +E
z

`

dz8 nsz8d, sF1d

where the first term on the right-hand side is the contribution
of the charged plane, the second term is the contribution of

ions between the plane and the test particle, and the third
term is the contribution of the other ions. Equation(F1)
would describe the exact force acting on the test particle had
it not had any effect on the distribution of the other ions in
the system. We need to add to this force the contribution due
to the influence of the test charge on the other ions.

Due to the exponential decay close to the plate the ion
layer further thanz=ÎJ is very dilute. Hence it makes sense
to include in the correlation-induced force only a contribu-
tion from the ions close to the plate. Estimating this contri-
bution asaJ /z2 we conclude that

d ln nszd
dz

= − fszd = − fMFszd −
aJ

z2 . sF2d

Differentiation of this equation with respect toz yields Eq.
(45):

d2 ln nszd
dz2 = 2nszd +

2aJ

z3 . sF3d
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