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I. INTRODUCTION

Gemini surfactants are composed of two monomeric surfactant molecules
linked by a spacer chain. They constitute a new class of amphiphilic mole-
cules having its own distinct behavior. Since their first systematic studies
over a decade ago, gemini surfactants have been the subject of intensive
research (see Ref. 1 and references therein). Research has been motivated
by the advantages of gemini surfactants over regular ones with respect to
various applications [e.g., their increased surface activity, lower critical mi-
celle concentration (cmc), and useful viscoelastic properties such as effective
thickening].

In addition to their importance for applications, the behavior of gemini
surfactants is qualitatively different in several respects from that of regular
surfactants, posing challenges to current theories of surfactant self-assem-
bly. The main puzzles raised by gemini surfactants can be summarized as
follows [1]:

� Surface behavior. The area per molecule in a saturated monolayer at
the water–air interface, made of gemini surfactants with polymethylene
spacers (m-s-m surfactants, where s is the spacer length and m the tail
length in hydrocarbon groups), has a nonmonotonous dependence on s
[2,3]. For example, for a tail length of m =12, the molecular area at the
water–air interface is found to increase with s for short spacers, reach a
maximum at about sf 10–12, and then decrease for longer spacers. This
decrease in the specific area for the m-s-m surfactants is somewhat un-
expected given the fact that the molecule becomes larger as s increases.
One would naively expect a monotonous increase in the molecular area
as, indeed, is observed for another class of gemini surfactants having a
poly(ethylene oxide) spacer (m-EOx-m surfactants) [4,5].
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� Micellization point. The cmc of gemini surfactants is typically one to two
orders of magnitude lower than that of the corresponding monomeric
surfactants having the same head and tail groups [6]. For regular (mono-
meric) surfactants, the cmc decreases monotonously with the number
of hydrocarbon groups because of increased molecular hydrophobicity.
In the case of m-s-m gemini surfactants, by contrast, the dependence of
the cmc on the spacer length s is nonmonotonous with a maximum at
about s f 4–6 [6–8]. Similarly, the Krafft temperature exhibits a mini-
mum [9] and the micellization enthalpy exhibits a maximum [10] at about
the same s value.

� Aggregate Shape. As certain parameters, such as the relative size of the
head and tail groups or the salt concentration, are progressively changed,
regular surfactants change their aggregate morphology in the direc-
tion of decreasing curvature (e.g., from spherical micelles to cylindrical
micelles to bilayer vesicles) [11,12]. However, when the polymethylene
spacer length in m-s-m gemini surfactants is increased, a different se-
quence of shape is observed—for instance, from cylindrical micelles to
spherical micelles to vesicles for the 12-s-12 surfactants [13,14]. More-
over, gemini surfactants with short spacers exhibit uncommon aggregate
morphologies in the form of branched cylindrical micelles and ring mi-
celles [15].

� Phase behavior. The spacer length in m-s-m gemini surfactants has an
unusual effect also on the phase behavior of binary surfactant–water
mixtures. For geminis with tail length m =12, for instance, the phase-
diagram region corresponding to hexagonal and lamellar phases is found
to shrink with increasing s, disappear for s =10–12, and reappear for
s=16 [16]. In ternary systems containingwater, oil, andm–s–m surfactant,
the size of the microemulsion (single-phase) region in the phase diagram
has a nonmonotonous dependence on s with a maximum at sf10 [17].

� Dynamics. Dilute micellar solutions of gemini surfactants with short
spacers have unusual rheological properties, such as pronounced increase
in viscosity upon increase of surfactant volume fraction [18,19] and shear
thickening [20,21].

In view of the amount of experimental work and its unusual findings, the
number of theoretical studies devoted to gemini surfactants has been surpris-
ingly small. In this chapter, we have, therefore, two aims. The first is to review
the current state of theoretical models of gemini surfactants. The second,
perhaps more important aim, is to indicate the considerable gaps in our
knowledge and the key open questions awaiting theoretical work. In Section
II, we set the stage by reviewing several theoretical models of surfactant self-
assembly. This will facilitate the discussion in Section III of the gemini
surfactant models, which can be viewed as extensions to previous models of
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regular surfactants. Finally, in Section IV, we conclude and summarize the
open questions.

II. MODELS OF SURFACTANT SELF-ASSEMBLY

In this section, we review several theoretical models pertaining to the self-
assembly of soluble surfactants. This is not meant to be an exhaustive review
of self-assembly theory but merely to provide the appropriate background for
the models of gemini surfactants discussed in Section III.

A. Surface Behavior

Let us start by considering an aqueous surfactant solution below the cmc.
The soluble surfactant molecules self-assemble into a condensed layer at
the water–air interface, referred to as a Gibbs monolayer (to be distinguished
from a Langmuir monolayer that forms when insoluble surfactants are
spread on the water–air interface) [22]. Because the surfactant is water
soluble, this layer exchanges molecules with the bulk solution and a nonuni-
form concentration profile forms. Typical surfactants have strong surface
activity (i.e., the energy gained by a molecule when it migrates to the surface
is much larger than the thermal energy kBT). As a result, the concentration
profile drops sharply to its bulk value within a molecular distance from the
surface (hence the term monolayer).

The number of molecules participating in a Gibbs monolayer per unit
area, the surface excess G, is obtained by integrating the excess concentration
(with respect to the bulk one) over the entire solution. Such a monolayer
can be regarded as a separate subsystem at thermodynamic equilibrium
and in contact with a large reservoir of molecules having temperature T and
chemical potential A. From the excess free energy per unit area of this system,
c(T, A), which is by definition the surface tension of the solution, we get the
number of molecules per unit area:

G ¼ � @c
@A

� �
T

ð1Þ

This is referred to as the Gibbs equation [22]. For dilute solutions A ~
kBT ln C, where C is the bulk surfactant concentration. (The constant of
proportionality is 1 for nonionic surfactants and ionic surfactants at a high
salt concentration; it has a higher value for salt-free ionic surfactant
solutions, where strong correlations between the different ions lead to
nonideal activity coefficients [22].) Hence,

G~� 1

kBT

@c
@ lnC

� �
T

ð2Þ
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Because of the high surface activity of surfactant molecules, leading to a sharp
concentration profile at the water–air interface, G�1 is commonly interpreted
as the average surface area per molecule, a. The second consequence of the
high surface activity is that, already for C much smaller than the cmc, the
monolayer becomes saturated (i.e., G stops increasing with C). Experimen-
tally, the curve describing the change in g as a function of ln C becomes a
straight line with a negative slope proportional to �G.

We now wish to find a simple estimate for the energy of lateral interaction
between molecules in such a saturated monolayer (repeating a well-known
result of Ref. 11). Saturation implies that the molecules are packed in an
energetically optimal density, such that there is no gain in adding or removing
molecules. This optimum arises from a competition between attractive and
repulsive interactions. The attractive interaction tries to decrease the area per
molecule, and we can phenomenologically write its energy per molecule as
proportional to a, g1a, where the proportionality constant g1 has units of
energy per unit area. Because the attraction comes mainly from the desire of
the hydrocarbon tails to minimize their contact with water, g1 should be
roughly equal to the hydrocarbon–water interfacial tension (g1f50 mN/m).
The repulsive interaction, on the other hand, tries to increase a and, at the
same phenomenological level, we can write its energy per molecule as
inversely proportional to a, a/a, where a is a positive constant. Minimizing
the sum of these two contributions, we get for the interaction energy per
molecule u=g1(a�a0)

2/a+const, where a0= (a/g1)
1/2 is the optimal molec-

ular area. Expanding around a = a0 to second order and omitting the
constant term, we obtain

u að Þg c1
a0

a� a0ð Þ2 ð3Þ

This is merely a harmonic approximation for the interaction energy associ-
ated with small deviations from optimal packing.

We can slightly modify this result to obtain a similar harmonic estimate for
the energy u2 of effective interaction between two neighboring molecules
residing in the saturated monolayer. (This will be useful later when we add the
spacer to form gemini surfactants.) We need to divide u by half the number of
in-plane neighbors, q/2, and express a in terms of the average intermolecular
distance r, a =gr2, where g is a prefactor of order unity (e.g., for hexagonal
packing q =6 and g ¼

ffiffiffi
3

p
=2f0:9Þ . Assuming, again, that r is close to its

optimal value r0, we get

u2 rð Þg 1

2
k0 r� r0ð Þ2; k0 ¼

16gc1
q

ð4Þ
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This expression replaces the actual surfactant–surfactant interaction in the
monolayer, including effects of other nearby surfactants, with an effective
spring of equilibrium length r0 and spring constant k0. For hexagonal pack-
ing, we get the reasonable value k0f120 mN/mf0.3kBT/Å

2. Note that,
because of the saturation condition, the expression for k0 is insensitive to
molecular details. In turn, those details will affect the properties of the satu-
ration state itself (e.g., the value of a0 or r0).

B. Micelles

As the solution concentration is increased beyond the cmc, the surfactant
molecules start to form aggregates. Unlike simple solute molecules (e.g.,
alkanes), which undergo macroscopic phase separation upon increasing con-
centration or changing temperature, surfactants form micelles at the meso-
scopic scale. The challenges posed to theories of surfactant self-assembly are
to predict the micellization point as a function of concentration (i.e., the cmc,
hereafter referred to by the corresponding volume fraction Bcmc) and temper-
ature (Tm), as well as themicelle shape and size. Themain complications come
from the fact that micellization is not a macroscopic phase transition—the
aggregate sizes are finite and polydisperse—and, thus, the well-developed
theoretical framework of phase transitions does not strictly apply.

From a thermodynamic point of view, the difference between surfactant
micellization and phase separation lies in the following observation [12]. For
alkanes solubilized inwater, for example, the (Gibbs) free energy permolecule
in an aggregate of sizeN, gN, is amonotonously decreasing function ofN—for
N!l, gN tends to the free energy per molecule in the bulk alkane phase, gl,
whereas for smaller N, gN > gl due to unfavorable surface terms of the
finite cluster. As a result, there is a critical concentration (or critical temper-
ature) at which the favorable size changes discontinuously from monomers
solubilized in water (N=1) to a macroscopic phase of bulk alkane (N!l).
The first-order phase transition point is reached when the chemical potential
of monomers exceeds min {gN}= gl. In a dilute solution, this implies that
Bc = exp[gl/(kBT )], kBTc = gl/ln B. (We have set the free energy of the N
=1 state as the reference, g1=0.) In the case of surfactants, by contrast, gN has
a minimum at a finite aggregate size N*. As a result, when the chemical po-
tential exceeds gN*, a large population of aggregates appears, whose sizes are
distributed around N*. Hence, the micellization point can be estimated as

ucmc ¼ expgN*=kBT ; kBTm ¼
gN*
lnu

ð5Þ

The remaining task is to obtain a theoretical expression for gN
(s), the free

energy per molecule in aggregates of size N and shape S. Because we expect
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this function to have a minimum at a finite yet large N (say, N*f102), the
importance of many-body interactions is inevitable, and obtaining gN

(s) from
rigorous statistical mechanics is a formidable task. Consequently, analytical
models have relied on phenomenological approaches, trying to account for
various competing contributions to the free energy while assuming a certain
geometry for the aggregate [11,12,23]. From the minimum of gN

(s) with respect
to N and various possible shapes S, one can obtain the aggregate shape,
aggregation number, and micellization point, using Eq. (5).

In the simplest picture [11,12], rough estimates for the minimum of gN
(s) can

be obtained by imposing geometrical constraints that arise from the incom-
pressibility of the micellar hydrocarbon core (see Fig. 1). These constraints
lead to a finite aggregation number N*, as required. The hydrocarbon tail
chains cannot extend beyond a certain length l, and each tail must occupy a
certain volume v. (Both l and v are known to have a simple linear dependence
on the number of hydrocarbon groups in the tail chain [24].) In addition, as in
the case of the Gibbs monolayer of Section II.A, surfactant molecules in the
favorable aggregate state attain a certain optimal area per molecule a0. Then,
due to translational entropy, the favorable aggregates would be the smallest

MD: ZANA, JOB: 03146, PAGE: 42

FIG. 1 Packing constraints on a surfactant in an aggregate. Each head group occu-

pies an optimal area a0 on the aggregate surface; the tail chain occupies a volume v
and cannot stretch beyond length l. These constraints define the packing parameter,
P = v/a0l, which suggests the possible aggregate shape.
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ones that satisfy all constraints. The constraints define a dimensionless
packing parameter (Fig. 1),

P ¼ v

a0l
ð6Þ

If P< one/third, the constraints can be satisfied by spherical micelles, which
will be the smallest and hence the most favorable ones; when 1⁄3< P< 1⁄2, the
micelles will have to be of elongated or cylindrical shapes; for 1⁄2< P<1,
planar shapes will form; and for P >1, the morphology must be inverted.

Once the shape is determined, we can find the maximum allowed aggre-
gation number. For example, for spherical micelles N<4kl2/a0= (4k/3)l3 /v,
and we get

N < 36k
v2

a30
ð7Þ

We see how competing interactions between the molecules (giving rise to a0)
together with the incompressibility of the micellar core lead to finite micelles.
Because the tail chains usually should not stretch to their full extent, the actual
aggregation number will be smaller than this upper bound.

Yet, these geometrical arguments cannot provide us with theoretical pre-
dictions as to the optimal molecular area a0 itself or the aggregation free
energy gN

(s), as well as their dependence on parameters such as temperature
or salt concentration. In order to get such information and subsequently
predict the micellization point, micelle shape, and size, one needs a more
detailed theory.

1. Phenomenological Models

There have been attempts to analytically account for the various competing
contributions to the free energy per molecule gN

(s) (e.g., Ref. 23). The advan-
tage of this approach is that once we have an expression for the free energy,
we can easily change parameters and gain insight into the role of various
contributions. On the other hand, such models essentially attempt to push
the limits of the phenomenological approach toward a detailed molecular
description. They usually entail uncontrolled approximations and parame-
ters whose accurate values are often hard to obtain. As an example, which
will serve us in Section III, we give an analysis along the lines of (yet not
identical to) Ref. 23.

Five major contributions to the aggregation free energy (per surfactant
molecule on the aggregate) can be considered [23]:

g
ðsÞ
N að Þ ¼ ghc þ gint að Þ þ ges a;Rð Þ þ gst að Þ þ gel Rð Þ ð8Þ
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where a is the area per molecule on the aggregate surface and R is the
aggregate size (radius or width). Note that R is not an independent variable
but is related to N and a via the aggregate geometry S (e.g., for spherical
micelles, Na =4kR2). The five contributions are as follows:

1. The driving force for aggregation is the hydrophobic effect (i.e., the free
energy per surfactant molecule ghc gained by shielding the hydrocarbon
groups from water) [24]. This contribution to gN

(s) is negative and, to a
good approximation, independent of N and the aggregate geometry S;
namely its contribution to the entire aggregate free energy is linear in N
and tends to increase the aggregate size. The hydrophobic term ghc
depends linearly on the number of hydrocarbon groups in the surfactant,
with a reduction of roughly kBT per hydrocarbon group [12]. That is why,
for regular surfactants, the cmc decreases exponentially with the number
of hydrocarbon groups in the molecule and is reduced by a factor of
roughly 2–3 per each additional hydrocarbon group.

2. The hydrophobic gain is corrected by an interfacial contribution gint due
to the unfavorable contact between the hydrocarbon core and water:

gint að Þ ¼ c1 a� aminð Þ ð9Þ

where g1 is the interfacial tension of the core–water interface (roughly
equal to the hydrocarbon–water interfacial tension) and amin is the
minimum area per molecule (i.e., the interfacial area occupied by a head
group). This contribution evidently acts to reduce the area per molecule.

3. If the surfactant head groups are charged, there is electrostatic repulsion
between them, acting to increase a. Within the Poisson–Boltzmann
theory, this electrostatic contribution is given by [25]

ges ¼
2kBT

h

(
h ln hþ 1þ h2

� �1=2h i
� 1þ h2
� �1=2

þ1� 2ckDln

"
1

2
þ 1

2
ð1þ h2Þ1=2

#)
;

ð10Þ

where h=4klBkD/a is a dimensionless charging parameter depending on
two other lengths: the Debye screening length kD and the Bjerrum length
lB. The Debye screening length in the solution is kD = (8klBCsalt)

�1/2,
where Csalt is the added salt concentration, taken here to be monova-
lent, and lB = e2/qkBT is about 7 Å for aqueous solution with dielectric
constant q=80 at room temperature. (For simplicity, a monovalent head
group has been assumed.) Finally, c is themean curvature of the aggregate
(e.g., 1/R for spherical micelles).
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4. There is also steric repulsion between head groups. From the (nonideal)
entropy of mixing per molecule, for this contribution we get

gst að Þ ¼ kBT ln

�
amin
a

�
þ
�

a

amin
� 1

�
ln 1� amin

a

� � �
ð11Þ

5. The last contribution to the free energy is associated with the tail packing
in the hydrophobic core; that is, deviations of the hydrocarbon tail chains
from their relaxed length l0,

gel Rð Þ ¼ 1

2
kV R� l0ð Þ2 ð12Þ

The elastic constant kV depends on the chain statistics, as well as the
packing parameter (i.e., aggregate shape) [23].

The equilibrium aggregation numberN and specific area a (and hence also
aggregate size R) for a given shape S and surfactant chemical potential A are
then determined by the equations

g
ðsÞ
N að Þ ¼ A;

@g
ðsÞ
N að Þ
@a

¼ 0 ð13Þ

Comparing the minimum value of gN
(s) for various shapes S, one also obtains

the equilibrium aggregate morphology. As long as A < kBT ln Bcmc, these
equations will have no solution, and the monomeric state (N =1) of single
surfactant molecules solubilized in water is the stable one. As the chemical
potential increases, we reach the micellization condition given by Eq. (5),
where the average micelle size at the cmc,N*, can be calculated now from the
expression of gN

(s) at its minimum.

2. Computer Simulations

Another route to overcome the complexity of treating surfactantmicellization
is to use computer simulations. This approach can be divided into two
categories: statistical-mechanical models using Monte Carlo (MC) simula-
tions and molecular dynamics (MD) simulations.

Following Widom’s statistical–mechanical model of microemulsions [26],
a host of lattice models was presented for treating surfactant self-assembly
(see, e.g., Refs. 27–31). These molecular toy models represent the water
molecules and various groups in the surfactant as Ising spins on a discrete
lattice. The various interactions between the groups are represented by
ferromagnetic or antiferromagnetic couplings between nearest-neighbor spins
(see Fig. 2). Evidently, this is a very crude description of surfactant solutions
and is not expected to yield quantitative predictions. Another difficulty is
attaining thermodynamic equilibrium in simulations of these self-assembling
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systems, which contain slowly relaxing, large aggregates. Such models,
however, have been shown to correctly reproduce various qualitative features
of amphiphilic systems (e.g., aggregate formation, aggregate shape, and the
overall structure of phase diagrams). The main advantage of this statistical–
mechanical approach is that, by tuning a small number of parameters, from
the MC simulations one can get insight into molecular mechanisms that
determine the overall systembehavior.Here,webrieflypresent amodel similar
to that ofRef. 31. It will serve uswhenwe discuss gemini surfactants in Section
III.B.

In the lattice model, each water molecule is assigned a spin r=+1, a
hydrocarbon group in the tail has spin r = �1, and the head group has spin
r=+2 (see Fig. 2). In between the hydrophilic head group and the hydro-
phobic tail, there is a neutral group of spin r = 0. All of the couplings are
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FIG. 2 Schematic representation of a surfactant molecule (gray) solubilized in
water (white) in a lattice spin model. Each water molecule and surfactant group

are represented by a spin variable on a lattice site. Water molecules have spin
+1, head groups +2, and tail groups �1. In between the head and the tail, there
is a neutral group of spin 0. The various particles interact via nearest-neighbor

ferromagnetic couplings favoring spins of the same sign, except for the head–head
interaction, which is antiferromagnetic, disfavoring neighboring heads. The chain
connectivity and the overall number of chains are preserved during the MC
simulation.
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ferromagnetic (favoring neighboring spins of the same sign), except for the
head–head coupling, which is antiferromagnetic, mimicking head–head
repulsion due to screened electrostatics. The energy of the system can be
written as

E ¼ �J
X

hiji rirj 1� 2yri;2yrj;2

� �
ð14Þ

where J >0 is the coupling strength, hiji denotes summation only over
nearest-neighbor pairs of the lattice, and yi, j =1 when i = j and zero when
i p j is the Kronecker delta function. Two neighboring water molecules
attract each other with energy �J because, then, rirj =1. The same applies
to two tail groups, whereas a water molecule and a tail group repel with
energy +J. The extra factor of 1 � 2yri2 yri2 in Eq. (14) is unity for all cases
except when i and j are two heads with r = +2, yielding a repulsion of
+4J between two head groups. Finally, a head group and a water molecule
attract with energy �2J, and a head group and a tail group repel with energy
+2J. These couplings apply whether the two neighboring lattice sites belong
to the same molecule or not. In addition, the groups belonging to the same
surfactant molecule are kept linked throughout the simulation. Thus, the
essential features of hydrophobicity, hydrophilicity, molecular connectivity,
and (screened) electrostatic repulsion are all accounted for using the single
parameter J. Other parameters are the length of the tail group and total
number of surfactant molecules in the system.

The MC simulation starts from a certain configuration of surfactant
molecules in water. At each iteration, the various groups of the surfactants
are moved while maintaining the connectivity of the molecules, their total
number, and the total number of water molecules (e.g., using a ‘‘slithering
snake’’ scheme [31]). The energetic cost of the move is calculated using Eq.
(14), and the MC step is accepted or rejected according to a Metropolis
criterion, ensuring convergence toward equilibrium.

This simple scheme can reproduce much of the richness of surfactant self-
assembly, including the formation of monolayers, micelles, and bilayers, the
dependence of the cmc on tail length, transitions between various aggregate
shapes, and so forth. On the other hand, such models can merely indicate
general trends and not detailed information. For example, the correspon-
dence between the MC spin variable representing subgroups of a surfactant
molecule and the actual chemical groups is not well defined and remains
ambiguous to some extent.

Another class of numerical studies that have been used to explore sur-
factant self-assembly are molecular dynamics (MD) simulations. These mod-
els range in detail from coarse-grained bead–spring representations of the
molecules (e.g., Refs. 32–37) to atomistic descriptions (e.g., Refs. 38–42). The
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advantage of the MD approach, as compared to phenomenological theories
and spin models, is that the description of the system on the molecular scale
is less artificial. The disadvantages are the limited spatial and temporal extent
of the simulations, entailing equilibration problems, and sometimes also a
large number of required parameters. A typical all-atom MD simulation of
an aqueous surfactant system may contain about 100 surfactant molecules
along with a few thousands of water molecules, and the dynamics can be
run for a few nanoseconds (e.g., Ref. 42). A coarse-grained simulation allows
a significant increase of these numbers at the expense of molecular detail
(see, e.g., Ref. 37). Here, we outline a coarse-grained approach to surfactant
micellization, as presented in Ref. 32, which was later extended to gemini
surfactants [36].

The MD model of Ref. 32 contains only two types of particles: waterlike
and oilike, where a surfactant molecule is composed of a few waterlike par-
ticles (the head group) and a chain of oillike particles (the tail). The particles
interact via a truncated Lennard-Jones potential,

V rð Þ ¼
4� d

r

� �12

� d

r

� �6
" #

; rV rc

0; r > rc

8>><
>>: ð15Þ

where r is the interparticle distance, � is the energy parameter of the Lennard-
Jones potential, d is its length parameter, and rc is a cutoff. This potential has a
minimum at rmin=21/6d. Hence, for rcV rmin, the potential is purely repulsive,
which is what is chosen for the oil-water interaction. For rc > rmin, the
potential contains a short-ranged repulsion followed by an attractive region,
which is a suitable choice for the water–water and oil–oil interactions. In
addition, the particles constituting a single surfactant molecule are connected
by harmonic potentials of equilibrium length d and strong spring constant
(much larger than �/d2), ensuring chain connectivity.

The MD simulation starts from a random distribution of surfactants in
water. It then evolves in time according to the classical equations of motion
governing the motion of individual particles. The simulations typically
contain a few tens of thousands of particles and are run for about 105–106

time steps [32,33,36,37]. Thanks to the coarse-grained description, this can
amount to about 1 As in real system time [37]. Such a scheme was shown to
successfully reproduce the structure of monolayers and micelles of various
shapes and to provide some understanding of the dynamics of surfactant self-
assembly [32,33]. On the other hand, as in the MC case, the coarse-grained
representation prevents a well-defined correspondence between the simulated
system and the actual molecules in the experiments.
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C. Phase Behavior

Concentrated surfactant solutions and ternary water–oil–surfactant systems
exhibit a rich variety of disordered and liquid-crystalline phases [43–45].
Some examples are the lamellar (La) phase, sponge (L3) phase, hexagonal
(H1) phase, and cubic (V1) phase. All of these phases are based on various
packing of surfactant layers: bilayers (in the binary-mixture case) or mono-
layers (in the ternary case). The lamellar phase is made of stacks of parallel
layers, the sponge phase contains a disordered arrangement of multicon-
nected layers, the hexagonal phase consists of hexagonal arrays of parallel
cylinders, and the cubic phase contains spherical layers arranged in a cubic
lattice.

Unlike micellization, one deals here with macroscopic bulk phases and
their corresponding phase transitions. Hence, the powerful tools of
thermodynamics and statistical mechanics are applicable. Consequently,
the theory of surfactant phase behavior has reached a more advanced
level, particularly in the case of phases with long-ranged order. We will not
review these theories here, as most of them have not been used in current
models of gemini surfactants, but we will merely mention the various
approaches.

Two phenomenological approaches to the phase behavior of surfac-
tant binary and ternary mixtures have been used. The first is based on the
Ginzburg–Landau formalism, which has been widely used in statistical
physics [43]. It starts with a lattice description of the mixture and derives
from it a coarse-grained, continuous expression for the energy (Hamilto-
nian), which can be studied by statistical–mechanical techniques. The sec-
ond approach is based on the elastic and thermodynamic properties of
the membranes that make the various phases. For a review, see, for exam-
ple, Ref. 45. In addition to these phenomenological theories, a variety of
lattice spin models employing Monte Carlo simulations, as discussed in
Section II.B, were originally designed and applied to study surfactant phase
behavior [26–31].

III. MODELS OF GEMINI SURFACTANTS

Having provided the necessary background, we now turn to models of gem-
ini surfactants. As will be demonstrated in this section, these models are
essentially extensions of surfactant self-assembly theories, which have been
reviewed in Section II. The binding of the surfactant molecules into pairs
via spacer chains introduces new constraints affecting the molecular arrange-
ment in monolayers, micelles, and mesophases, as well as the thermody-
namics of self-assembly.
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A. Surface Behavior

As in Section II, we begin by looking at a saturatedmonolayer, this timemade
of gemini surfactants, lying at the water–air interface. The gemini nature of
the molecules (i.e., the introduction of the spacer) adds considerable complex-
ity to the problem, mainly because it introduces anisotropy and inhomoge-
neity into themonolayer. A schematic view of the surface covered with dimers
is shown in Fig. 3. The dimers may be oriented in various directions, and the
distances between two linked monomers (in a dimer) and between two
unlinked ones will differ in general.

Nevertheless, we are going to disregard these complications and focus
on the simplest question: How does the introduction of a spacer consist-
ing of s groups affect the in-plane distance rd (s) between two monomers
belonging to the same dimer? Although seemingly oversimplified, the
answer to this question will give us key insight into the surface behavior of
gemini surfactants.

We proceed by reviewing and slightly extending the work presented in
Refs. 46 and 47. We have seen in Section II.A that the interaction between
surfactants in a saturated monolayer can be roughly approximated by
effective springs whose equilibrium length r0 is determined by the optimum
packing at saturation and whose spring constant k0 is given in Eq. (4). Thus,
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FIG. 3 Schematic top view of a saturated monolayer at the water–air interface.
Left: Regular surfactant head groups separated by a mean optimal distance r0; right:

same view of gemini surfactants where the head groups are linked into dimers by
spacers. The mean distance between head groups in a dimer is rd, which, in general,
differs from the distance between unlinked head groups.
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it is natural to consider the spacer chain as another effective spring, of
equilibrium length rs and spring constant ks, connecting the two surfactant
heads in a dimer. The combination of the two types of monomer–monomer
interaction (the one present between unlinked monomers and the one due to
the spacer) is then reduced to adding together two springs in parallel. From
this, we obtain

rd sð Þ ¼ k0r0 þ ks sð Þrs sð Þ
k0 þ ks sð Þ ð16Þ

The origin of the spacer spring is entropy and its parameters are de-
termined by the statistical distribution of spacer configurations. The equilib-
rium length of the spring is the mean end-to-end distance of the spacer chain,
and the spring constant is inversely proportional to the variance of the end-
to-end distance,

rs ¼ rh i; ks ¼
kBT

r2h i � rh i2
ð17Þ

where the averages are taken over all spacer chain configurations. Thus, the
harmonic spring approximation for the spacer is equivalent to representing
the actual statistical distribution of spacer configurations by its first two
moments.

Before considering specific models for the spacer chain, let us examine
what qualitative results are expected from this description. When the spacer
is very short and rigid, such that ksH k0, the equilibrium length rd of the
dimer is determined by the spacer, rd f rs. On the other hand, when the
spacer is very long and flexible, such that ksb k0, rd will be determined by
the regular monomer–monomer interaction, rd f r0. Hence, upon increasing
the number s of groups in the spacer, we expect rd(s) to first increase and then
saturate toward r0, the optimal distance between the monomeric surfactants.
Whether the behavior for intermediate spacer lengths is monotonous or not
depends on specific details of the spacer chain. If the spacer stiffness ks(s)
drops sufficiently fast with s, the ‘‘interaction spring’’ will start dominating
before rs(s) exceeds r0, and rd(s) will then grow monotonously with s. By
contrast, if ks(s) decreases slowly with s, the ‘‘spacer spring’’ will dominate
even for quite long spacers and rd f rs will become larger than r0. For even
longer s, it will have to decrease back toward r0, leading to nonmonotonous
behavior in this case.

The simplest model for the spacer is that of a Gaussian constraint-free
chain. This case is somewhat artificial and is discussed here merely as a model
for very flexible and long chains, in contrast with more realistic models
discussed in the following for more rigid chains. A Gaussian chain consisting
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of s segments is analogous to a random walk of s steps. The mean squared
displacement of such a walk, averaged over all s-step walks, should scale
linearly with s. The mean end-to-end distance of a Gaussian spacer is
therefore rs f bs1/2, where b is the segment length. More specifically, the
statistical distribution of the end-to-end distance in a Gaussian chain is

p rð Þdr ¼ 3

2ksb2

� �3=2

e�3r
2=2sb24kr2 dr ð18Þ

From the mean and variance of this distribution, we get, according to
Eq. (17),

rs sð Þ ¼ b
8s

3k

� �1=2

; ks sð Þ ¼ kBT

1� 8= 3kð Þ½ �b2s ð19Þ

Thus, in order to calculate rs and ks, we just need to know the segment length
b. For a polymethylene spacer, b is 2.53Å. The remaining information
required to compute rd from Eq. (17) are the properties of the monomeric
surfactant in a saturatedmonolayer, namely k0 and r0. In a roughly hexagonal
arrangement of molecules, one has k0f0.3kBT/Å

2 (see Section II.A). A
saturated monolayer of dodecyltrimethylammonium bromide (DTAB) sur-
factants, for example, is known to have a0f55Å2 (i.e., r0f8Å). By using
these values and substituting Eq. (19) in Eq. (16), rd as function of s is
calculated and depicted as the dashed line in Fig. 4. The intermonomer
distance increases moderately with s and even exceeds r0, yet the maximum
and descent back to r0 are shallow and occur at very large s, lying outside the
experimentally relevant range of spacer lengths 1V s V 20 shown in Fig. 4.

More realistically, the spacer chain can be described by the rotational–
isomeric model, where each segment in the chain can have only three possible
orientations with respect to the two that precede it in the sequence (the three
conformations called trans and gaucheF) [48]. In addition, we require that the
hydrophobic spacer be restricted to reside in the nonaqueous side of the
water–air interface. These constraints stiffen the chain and bias its statistics
toward larger end-to-end distances. Therefore, we expect a larger overshoot
and a sharper maximum of rd (s), as is confirmed by the solid curve in Fig. 4.
The points of this curve were obtained from simulations of rotational–
isomeric polymethylene chains whose ends were fixed to a surface (the air–
water interface) and whose segments were forbidden from crossing that
surface into the water side (see Ref. 46 for more details). From the simu-
lations, one obtains the end-to-end distance distribution and then extracts the
spring parameters rs and ks according to Eq. (17) [47].

What has been calculated is the intermonomer distance in a dimer and not
the average area per dimer in the monolayer. However, because the latter
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must increase together with the former (cf. Fig. 3), this very simple spring
model reproduces the experimental observation of a nonmonotonous behav-
ior of a(s) for them-s-m gemini surfactants [2] and gemini surfactants derived
from arginine [3]. Although the shape of the experimental curve is reproduced
only qualitatively, the position of themaximum at sf12 is the same as the one
found experimentally for 12-s-12 surfactants [2]. Furthermore, the spring
model elucidates the source of the nonmonotonous behavior—a competition
between the regular monomer–monomer interactions, on one side, and the
natural length and rigidity of the spacer, on the other. According to this
picture, we should expect a more moderate and monotonous increase in a for
a more flexible spacer chain, as has been demonstrated by the above Gaussian
chain example. This may explain the behavior of a(s) observed for them-EOx-
m gemini surfactants, having more flexible poly(ethylene oxide) spacers [4,5].
(Compare, for example, our Fig. 4 with Fig. 1 of Chapter 4.)

MD: ZANA, JOB: 03146, PAGE: 53

FIG. 4 The distance rd between the two head groups of a gemini surfactant in a

saturated monolayer as a function of the number of groups s in its spacer. The dis-
tance is rescaled by r0, the distance between unlinked heads in a saturated monolayer
of the corresponding monomeric surfactant. Curves for two spacer models are

shown:Gaussian chainwith no constraints (dashed line) and rotational–isomeric chain
restricted to the nonaqueous side of the interface (symbols and solid line). The latter
has a maximum at s =12, in accord with experimental results of Refs. 2 and 3.
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These qualitative features, as well as themaximum at sf10–12, were found
to remain unchanged upon various refinements of the model (e.g., the
inclusion of nonbonded interactions within the spacer chain or a more
detailed treatment of the monolayer structure) [46]. A hydrophobic effect
(i.e., repulsion of spacer monomers from the water phase) was invoked in
several works as an explanation for a lift off of the spacer from the water
surface and hence themaximum in a(s). Such an effect, according to the spring
model, actually suppresses the maximum, as it brings the spacer ends closer
together and thus reduces the overshoot of rd.We note that this effectmight be
related, though, to the maximum observed in the cmc ofm-s-m surfactants at
lower s values; see Section III.B.

The description provided by the spring model is too simplistic to account
for various details of gemini surfactant monolayers. In particular, two criti-
cal comments can be made. First, the experimentally observed decrease of
a(s) for s>12 is much steeper than what the model describes [2]. As has been
suggested in Ref. 1, this might be a result of increased premicellar aggrega-
tion in the bulk solution as the spacer becomes more hydrophobic. Second,
the model regards the spacer as an isolated chain, whereas, in reality, the
gemini surfactant has two additional tail chains nearby. In this respect, the
model treats the geminis as equivalent to bolaform surfactants. Although
undoubtedly the presence of the tails is important for quantitative predic-
tions, it is not expected to alter the above-described qualitative competition
picture, and a similar nonmonotonous behavior of a(s) was indeed observed
in bolaform surfactants as well [49].

B. Micelles

The micellization behavior of gemini surfactants is qualitatively different
from that of regular ones. We have reviewed some of these differences in
Section I, and they can now be further elucidated in the light of what we have
discussed in the previous sections.

The cmc of gemini surfactants is typically one to two orders of magnitude
lower than that of the corresponding monomeric surfactants [6]. The lower
cmc can be directly attributed to the increase in the number of hydrocarbon
groups in the molecule (i.e., decrease in the hydrophobic contribution ghc)
due to the second tail and also due to the hydrophobic spacer chain in the
case of m-s-m surfactants. Based only on the contribution of a second tail to
ghc and the fact that the molecular volume is roughly doubled going from the
monomeric surfactant to a gemini one, one would have predicted a larger
decrease in cmc than what is actually observed. The difference is probably
due to unfavorable terms introduced by the spacer, which will be further
discussed in this subsection.
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The cmc ofm-s-m gemini surfactants, instead of monotonously decreasing
with the number s of spacer hydrocarbon groups (i.e., with molecular
hydrophobicity), is a nonmonotonous function with a maximum around
sf4–6 [6–8]. A corresponding nonmonotonous behavior is observed in the
Krafft temperature [9] and micellization enthalpy [10]. This behavior can be
attributed to the straightness and rigidity of short spacers, which force their
hydrocarbon groups to be in unfavorable contact with water. At about sf4–
6, although the spacer chain is still rigid, a gauche conformation should
become accessible, allowing some of the groups to penetrate in the micellar
hydrophobic core. When the spacer is hydrophilic, this effect should be
absent, as indeed is the case with m-EOx-m surfactants, exhibiting a weak
monotonous increase of the cmc with the hydrophilic spacer length x [4].

As a function of spacer length s, m-s-m surfactants exhibit an unusual
progression of aggregate shapes from cylinders to spheres to bilayers. This is
different from the more natural succession, occurring in monomeric surfac-
tants, where the change in aggregate curvature is monotonous: spheres
transforming into cylinders transforming into bilayers. Assuming that the
molecular area at the aggregate surface is related to that in a saturated
monolayer, this uncommon behavior can be qualitatively understood in view
of the nonmonotonous variation of a(s) as a function of s, as discussed in
Section III.A. Considering that the radius and volume of the micellar core
depend primarily on the tails and not on the spacers, an increase and then a
decrease of a as a function of s should be accompanied by a decrease and then
an increase in the packing parameter P of Eq. (6), hence the unusual
morphological sequence.

More specific predictions require a detailed theory and will be reviewed
next.

1. Phenomenological Model

An extension of the phenomenological theory of surfactant aggregation to
gemini surfactants with hydrophobic spacers is presented in Ref. 50. It
introduces the following additions and modifications to the model outlined
in Section II.B.

1. The hydrophobic free energy ghc contains, apart from the double-tail
contribution, a spacer contribution also. Only the spacer section which
penetrates in the micellar hydrophobic core, score, is considered. This
spacer section is taken simply as the difference between the total spacer
length and the mean head–head distance, score = s � a1/2/b. Because the
three chains (two tails and spacer) are already in partial contact prior to
aggregation, the hydrophobic energy gain per hydrocarbon group is
taken to be smaller than in the case of a single-tail surfactant.
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2. The interfacial term, gint(a), is modified to account for the part of the
core–water interfacial area that is now occupied by the spacer. The chain
length that participates in this shielding is proportional to a1/2. This
contribution is thus

ygintg g2 � g1ð Þa1=2w ð20Þ

where g2 is the spacer–water interfacial tension and w is the spacer width.
If the spacer is a polymethylene chain, then g2=g1 and this correction
vanishes.

3. When the spacer is short, it forces the two tails to be closer together than
they would be if they belonged to two separate molecules. This packing
constraint reduces the entropy of the tail chains. For a single-tail
surfactant, the area close to the core-water surface sampled by tail groups
is atail f v/R (cf. Fig. 1), with a prefactor of order unity that varies with
aggregate shape [23,50]. The proximity to a second tail due to the spacer
reduces this available area per tail to aspf (sb)2. Thus, the contribution to
the free energy can be estimated as

gtailgkBT ln
atail
asp

� �
gkBT ln

v

Rb2s2

� 
ð21Þ

4. Finally, themost difficultmodification to handle is the electrostatic one. A
short spacer forces the distance between two connected head groups to be
shorter than that between two unconnected ones, resulting in a nonuni-
form charge distribution of pairs over themicellar surface (cf. Fig. 3). This
problem is bypassed in Ref. 50 by introducing an empirical correction
factor to ges, which becomes equal to unity when the spacer is longer than
the mean interhead distance.

This extended phenomenological model is applied in Ref. 50 to gemini
surfactants with short hydrophobic spacers, using parameters known from
regular single-tail and double-tail surfactants. The model yields cmc values
for various tail lengths in good agreement with the measured ones. More
important, it correctly accounts for the observed micelle shapes of m-s-m
surfactants with small s (i.e., the crossover from cylinders to spheres as s is
increased). Following the changes in the various free-energy contributions,
one can identify the crossover mechanism as a competition between the
elastic and packing contributions from the tails (favoring cylinders), and
the electrostatic contribution (favoring spheres). Note, however, the various
assumptions and approximations involved in these calculations. Although
the electrostatic contribution to the free energy is found to be crucial for
the self-assembly behavior, it is treated somewhat dubiously, as already
admitted in Ref. 50.
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2. Computer Simulations

The additional complexity introduced by the spacers makes analytical
calculations very difficult. One is inclined, therefore, to resort to computer
simulations in order to gain detailed information on the self-assembly of
gemini surfactants.

The statistical–mechanical approach based on Monte Carlo (MC) simu-
lations, as outlined in Section II.B, was extended to treat gemini surfactants
[51,52]. The spin assignment to various groups and the corresponding energy
function are the same as for regular, monomeric surfactants [see Eq. (14)]. The
main modification is the connection of head groups in pairs via spacers (Fig.
5). Both hydrophobic spacers (spins r=�1) and hydrophilic ones (r =+1)
were simulated. In addition, the role of spacer stiffness was checked by
assigning an energy penalty for ‘‘kinks’’ in the spacer configuration.

This spin model reproduces a few important properties of gemini surfac-
tants as observed in experiments, primarily the nonmonotonous dependence
of the cmc on spacer length for hydrophobic spacers and the formation of
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FIG. 5 Schematic representation of a gemini surfactant molecule (gray) solubilized
in water (white) in a lattice spin model. The spin scheme is similar to that of Fig. 2,
except that the two hydrophilic head groups (spin +2) of each surfactant are linked

by a spacer chain. The spacer is composed of spins �1 for hydrophobic spacers, as
shown here, or +1 for hydrophilic spacers. In addition, a ‘‘kink’’ in the spacer chain
such as the one shown here is assigned an energy penalty in order to mimic the role of

spacer stiffness.
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branched and entangled wormlike micelles in the case of short hydrophobic
spacers (see Fig. 6). However, theMC simulations produce also some findings
which are not in full accord with experiments. The cmc is found to increase
with tail length, unlike the common experimental results (with the exception
of Ref. 53). The mechanism for such a cmc increase with surfactant hydro-
phobicity is unclear. It is hard to simply attribute it to spacer–head repulsion
because the increase is found to be insensitive to the ‘‘spin’’ associated with
the head group. A similar issue appears in the cmc dependence for hydrophilic
spacers, which is found to decrease with spacer length, in disagreement with
the experimentally observed (and expected) increase [4]. The maximum in
the cmc as a function of s is obtained for long hydrophobic spacers of
about sf 12 regardless of tail length, contrary to the experimental result of

MD: ZANA, JOB: 03146, PAGE: 58

FIG. 6 Wormlike micelles formed in a MC simulation of the spin model. The

gemini surfactant has 2 heads of 1 lattice site each, 2 neutral groups of 1 site each,
2 tails of 15 sites each, and a hydrophobic spacer of 2 sites. Different gray tones
correspond to different surfactant groups. The water molecules are not shown for

clarity. (Reprinted with permission from Ref. 51.)
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only sf 5 [6–8]. Surfactants with long (s=16) hydrophobic spacers are found
to form rodlike cylindrical micelles, whereas in experiments, they form
bilayers [14]. Hence, the spin model investigated by MC simulations seems
to capture part of the essential features of gemini surfactant self-assembly
while missing others.

The bead–spring MD approach discussed in Section II.B was extended
as well to treat gemini surfactants [36,37]. The only essential modification
is the connection of head groups in pairs by spacer chains. Like the tail
chains, the spacers are made of oillike particles connected to one another
by harmonic springs, where only hydrophobic spacers were studied. These
MD simulations are able to reproduce the micellar shapes formed by the
m-s-m gemini surfactants–branched wormlike micelles and ring micelles—
compared to the spherical morphology formed by the corresponding mono-
meric surfactants (see Fig. 7). A similar coarse-grained MD approach, along
with a self-consistent-field calculation, were applied to the more complex
glucitol amine gemini surfactants, which have flexible sugar side chains
attached to the charged head groups [54]. The main finding is a transition
from cylindrical micelles to bilayers upon increasing pH, in accord with
experimental indications [55].

C. Phase Behavior

The spacer length has an unusual effect also on the phase behavior of systems
containing m-s-m gemini surfactants. This fact has been mentioned already
in Section I. For binary surfactant–water mixtures, the regions in the con-
centration-temperature phase diagrams, where single-phase hexagonal and
lamellar phases are the stable state, become smaller as s increases, vanish for
s = 10–12, and then are finite again for s = 16 [16]. In ternary water–oil–
surfactant phase diagrams of the same surfactants, the size of the micro-
emulsion (single-phase) region increases with s and then decreases, with a
maximum at sf10 [17].

These observations can be rationalized in the light of the packing consid-
erations discussed in Sections III.A and III.B [1]. As s increases from low
values, the optimal area per molecule a(s) increases and the packing param-
eter P of Eq. (6) decreases. Hence, surfactant packing into bilayers, which are
the building blocks of the lamellar and hexagonal mesophases, becomes less
and less favorable. As we have seen in the previous sections, this effect is
maximal for s =10–12, whereupon bilayers apparently can no longer be
stabilized. When s increases further, a decreases, and bilayers can form
again. This qualitative description agrees also with the experimental results
for m-EOx-m gemini surfactants. The observed monotonous increase in the
phase-diagram region belonging to the isotropic micellar phase [56] is in
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accord with the moderate monotonous increase of a(s) observed for these
surfactants at the water–air interface [4].

In ternary oil-water–surfactant mixtures, as s increases and P decreases,
the surfactantmonolayers required for stabilizing amicroemulsion can have a
higher curvature. Hence, smaller oil domains can form and themicroemulsion
region in the phase diagram extends toward a higher surfactant concentra-
tion. This effect, too, should be maximal for s =10–12, as observed in the
experiment [17].

A theoretical study of gemini surfactant phase behavior, using MC
simulations of a lattice model and a theory of mixture thermodynamics, is

MD: ZANA, JOB: 03146, PAGE: 60

FIG. 7 Micelles formed in coarse-grained MD simulations of gemini surfactants.
Left: branched wormlike micelle. The surfactant has two heads of three waterlike

particles each, two tails of six oillike particles each, and a spacer of one oillike particle.
Different gray tones correspond to different surfactant groups. The water molecules
are not shown for clarity. (Reprinted with permission from Ref. 36. Copyright 1994

American Association for the Advancement of Science.) Right: ring micelles. The
surfactant has two heads of one waterlike particle each, two tails of four oillike
particles, and a spacer of two oillike particles. Different gray tones correspond to

different surfactant groups. The water molecules are not shown for clarity. (Reprinted
with permission from Ref. 37. Copyright 2002 American Chemical Society.)
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presented in Ref. 57. Employing a simulation technique which, after equili-
bration, samples the composition of small regions in the entire lattice, the
model is insensitive to long-ranged structures and is rather focused on the
thermodynamics of phase coexistence. The study was restricted also to short
hydrophilic spacers. Thus, the result cannot be compared with the above-
mentioned experiments. The main finding is the suppression of the three-
phase region (coexistence of water-rich, oil-rich, and surfactant-rich phases)
upon introducing molecular rigidity.

IV. CONCLUSIONS AND OPEN QUESTIONS

The unusual self-assembly behavior of gemini surfactants poses challenging
puzzles to theoretical investigations.We have reviewed the currently available
models that attempt to address these puzzles, concentrating on surface
properties, micellization, and phase behavior of gemini surfactant solutions.
The overall impression emerging from the current state of the art is that,
despite several successes, the theoretical understanding of gemini surfactants
is fragmentary and lags behind the wealth of available experimental data.

As demonstrated in this review, current gemini surfactantmodels are based
on previous theories of surfactant self-assembly, with the most essential
modifications required due to the addition of the spacer chains. It seems that
this route has been exhausted, and further progress will depend on detailed
consideration of features distinguishing gemini surfactants from regular
monomeric ones.

One of the distinct factors that stands out as a crucial ingredient is the
spacer effect on lateral organization of the surfactant molecules in water-air
monolayers and at aggregate surfaces. Linking the head groups in pairs has at
least three different aspects as can be seen in Fig. 3. (1) The distribution of
head groups on the surface becomes inhomogeneous, as linked head groups
have a mutual distance different from that of unlinked ones. This should
affect, for example, the surface charge distribution. (2) The spacers give the
surfactant molecule an inplane orientation (i.e., the combined head group
made of the two monomeric heads and spacer is asymmetric). Such a break-
down of isotropy, as is known from other systems, may lead to drastic effects
on the overall behavior and may result in the formation of in-plane liquid-
crystalline order. Nematic ordering due to elongated head groups was
theoretically addressed in the case of bilayer membranes [58]. A recent work
combining dichroism spectroscopy and atomistic MD simulations has
revealed orientational ordering of gemini surfactants in cylindrical micelles
[42]. More theoretical work is required to elucidate this issue. (3) The above
two aspects apply as well to double-tail surfactants (e.g., phospholipids) with
large, elongated head groups. What truly distinguishes gemini surfactants
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from double-tailed surfactants is the fact that the spacer makes a soft link
between the head groups. Containing at least several chemical bonds, it allows
a degree of conformational flexibility to the entire molecule (e.g., with respect
to the relative orientations of the two tails). This feature is probably what
allows gemini surfactants to form such uncommon structures as branched
micelles and ring micelles. In the MD simulations of Ref. 36, for example, the
gemini surfactants residing in a branching junction of awormlikemicelle were
found to have their two tails oriented in different directions. This property
might also make gemini surfactants serve as cross-linkers of regular micelles
[59]. Hence, it seems that our understanding of gemini surfactant self-
assembly will be incomplete until we have a good account of the interplay
among various lateral organizations of these molecules at surfaces.

Another important direction where there is substantial experimental
information but almost no theory is the dynamics and rheology of gemini
surfactant solutions. This aspect is particularly relevant to applications, as
these solutions exhibit unusual and useful rheological properties such as
shear thickening at low volume fractions [1].Moreover, recently these proper-
ties have made micellar solutions of gemini surfactants a model system for
studying nonequilibrium behaviors such as shear thickening and ultraslow
relaxation [21]. We note that the dynamic issues and the issue of molecular
organization mentioned earlier may be closely related. It has been argued
recently that the distinct rheological behavior of wormlike micellar solutions
(e.g., shear thickening) stems from the formation and interlinking of ring
micelles [60].

We hope that this review and the posed open questions will motivate
further theoretical studies of this class of fascinating and very useful self-
assembling molecules.
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