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Abstract

Chain-like macromolecules (polymers) show characteristicadsorption properties due to their �exibility and inter-
nal degrees of freedom, when attracted to surfaces and interfaces. In this review we discuss concepts and
features that are relevant to the adsorption of neutral and charged polymers at equilibrium, including the type
of polymer/surface interaction, the solvent quality, the characteristics of the surface, and the polymer structure.
We pay special attention to the case of charged polymers (polyelectrolytes) that have a special importance
due to their water solubility. We present a summary of recent progress in this rapidly evolving �eld. Because
many experimental studies are performed with rather sti� biopolymers, we discuss in detail the case of
semi-�exible polymers in addition to �exible ones. We �rst review the behavior of neutral and charged chains
in solution. Then, the adsorption of a single polymer chain is considered. Next, the adsorption and depletion
processes in the many-chain case are reviewed. Pro�les, changes in the surface tension and polymer surface
excess are presented. Mean-�eld and corrections due to �uctuations and lateral correlations are discussed. The
force of interaction between two adsorbed layers, which is important in understanding colloidal stability, is
characterized. The behavior of grafted polymers is also reviewed, both for neutral and charged polymer brushes.
c© 2003 Elsevier Science B.V. All rights reserved.
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Nomenclature

a Kuhn length or e�ective monomer size
b monomer size
cm monomer concentration (per unit volume)
cm(x) monomer density pro�le at distance x from the surface
cbm bulk monomer concentration in semi-dilute solutions.
c∗m overlap concentration of bulk polymer solution
csalt salt concentration in the solution
c±(x) pro�les of ± ions
d polymer diameter (or cross-section)
D adsorption layer thickness, height of brush
e electronic unit charge
f fractional charge of the chain 0¡f¡ 1
f̂ force rescaled by kBT
F intensive free energy in units of kBT (per unit area or unit volume)
F extensive free energy in units of kBT
g number of monomers per blob
h(x) dimensionless PE adsorption pro�le
H height of counterion cloud (PE brush case)
kBT thermal energy
L contour length of a chain
Lel chain length inside one electrostatic blob
Lsw chain length inside one swollen blob
‘B Bjerrum length (=e2=�kBT )
‘0 bare (mechanical) persistence length
‘OSF electrostatic contribution to persistence length (Odijk, Skolnick, and Fixman

length)
‘e� e�ective persistence length
N polymerization index
R end-to-end polymer chain radius
Rel radius of one electrostatic blob
S(q) structure factor (or scattering function) of a PE solution
S0(q) form factor of a single chain
U (x) electrostatic potential at point x from the surface
Us surface potential at x = 0
u(x) dimensionless potential pro�le (=eU (x)=kBT )
us = u(0) rescaled surface potential
v2 2nd virial coe�cient of monomers in solution. v2 ¿ 0 for good solvents
ṽ2 dimensionless 2nd virial coe�cient of monomers in solution (=v2=a3)
v(r) Coulomb interaction between two ions in units of kBT (=e2=kBT�r)
vDH(r) Debye–H�uckel interaction (=v(r) exp(−�r))
z valency of the ions (=± 1;±2; : : :)
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� polymer surface excess per unit area
� dielectric constant of the medium. �= 80 for water
�−1 Debye–H�uckel screening length
�salt salt contribution to �
�± chemical potential of ± ions
�p chemical potential of polymer
� Flory exponent for the polymer size
�b; �s correlation length (mesh size) of semi-dilute polymer solution in bulk and at surface
� osmotic pressure in units of kBT
� grafting density of a polymer brush
	 surface charge density (in units of e) at x = 0
�	 overcharging parameter (=f� − 	)

 linear charge density on the chain (=f=b)
�(x) monomer volume fraction (dimensionless) at distance x from the surface (=a3cm(x))
�b bulk value of � (=a3cbm)
�s surface value of �
 (x) polymer order parameter (=

√
�(x))

 b bulk value of polymer order parameter

1. Introduction

Polymers are long chain molecules which play important roles in industrial applications and in
biological processes. On a more fundamental level, polymers exhibit interesting behavior which can
be derived from the knowledge of their statistical mechanics properties. We review the basic mech-
anisms underlying the equilibrium properties of these macromolecules in solution and, in particular,
their behavior at surfaces and interfaces. The understanding of polymer systems progressed tremen-
dously from the late 1960s because of innovation in experimental techniques such as X-ray and
neutron di�raction and light scattering. Some techniques like ellipsometry, second harmonics gener-
ation (SHG), Brewster angle microscopy, surface force apparatus, atomic force microscopy (AFM)
and X-ray or neutron re�ectivity are especially appropriate to study polymers at interfaces. Of equal
merit was the advancement in theoretical methods ranging from �eld theoretical methods and scaling
arguments to numerical simulations.

The major progress in the �eld of polymer adsorption at liquid interfaces and solid surfaces is
even more recent. Even though several excellent books [1,2] and review articles [3–6] exist, we
feel that the present review is timely because we address recent progress in the �eld of chains at
interfaces, paying particular attention to charged chains. Charged polymers are interesting from the
application point of view, since they allow for a number of water-based formulations which are
advantageous for economical and ecological reasons. Recent years have seen a tremendous research
activity on charged polymers in bulk and at interfaces. Likewise, adsorption of biopolymers such as
DNA at planar or spherical substrates is an intermediate step in the fabrication of gene-technology
related structures, and therefore of great current interest. In addition to being charged, DNA is rather



R.R. Netz, D. Andelman / Physics Reports 380 (2003) 1–95 5

sti� on the nanoscopic length scale. On intermediate length scales, it can be well described as a
semi-�exible polymer, in contrast to most synthetic polymers, which are well represented by �exible
polymer models. Accordingly, we discuss the complexity of charged and semi-�exible chains in
addition to neutral and �exible ones. We also contrast the situation of physical adsorption of chains
with that of terminally attached chains (neutral or charged) to surfaces.

This review is focused on physical aspects of polymer adsorption at thermodynamical equilibrium
and summarizes the main theoretical and recent progress. We only outline theoretical calculations
and do not explain in detail theoretical and experimental techniques. Whenever possible we try
to explain principal concepts in simple terms. Experimental results are mentioned when they are
of direct relevance but this review should not be considered as an exhaustive review of various
experimental techniques and data.

The review starts by explaining well known facts about conformations of a single ideal chain as
well as self-avoiding chain and their behavior in solution (Section 2). We then examine the e�ect
of charges on the statistics of an isolated chain and of multi-chains in solution (Section 3). The rest
of the paper deals with adsorption in several distinct situations: a general introduction to adsorption
processes (Section 4), adsorption of a single neutral chain (Section 5) and of a single polyelectrolyte
chain (Section 6), mean �eld theories for adsorption of neutral (Section 7) and charged (Section
8) chains. Corrections to mean-�eld theories are considered in Sections 7 and 9. In Section 10
the interaction between two adsorption layers is presented, while adsorption on more complicated
substrates such as heterogeneous and curved interfaces are brie�y discussed in Sections 11 and
12. Finally, chains that are terminally anchored to the surface are mentioned in Section 13. These
polymer brushes are discussed both for neutral and charged chains.

Although this review is written as one coherent manuscript, expert readers can skip the �rst three
sections and concentrate on adsorption of neutral chains (Sections 4, 5, 7, 10, 12), adsorption of
charged chains (Sections 6, 8–12) and grafted polymer layers (brushes) (Section 13).

1.1. Types of polymers

The polymers considered here are taken as linear and long chains, as is schematically depicted in
Fig. 1a. We brie�y mention other, more complex, chain architectures. For example, branched chains
[7], Fig. 1b, appear in many applications. One special type of branched structures, Fig. 1f, is a chain
having a backbone (main chain) with repeated side branches. The chemical nature of the side and
main chain can be di�erent. This demonstrates the di�erence between homopolymers, formed from a
single repeat unit (monomer) and heteropolymers, formed from several chemical di�erent monomers.
The heteropolymer can be statistical, e.g. DNA, where the di�erent units repeat in a non-periodic or
random fashion, Fig. 1d. Another case is that of block copolymers built from several blocks each
being a homopolymer by itself. For example, an A–B–A–C block copolymer is a chain composed
of an A, a B, an A and a C block linked serially to form a quarto-block chain, Fig. 1e.
Synthetic polymers such as polystyrene and polyethylene are composed of �exible chains which

can be solubilized in a variety of organic solvents like toluene, cyclohexane, etc. These polymers
are highly insoluble in water. Another class of polymers are water soluble ones. They either have
strong dipolar groups which are compatible with the strong polarizability of the aqueous media (e.g.,
polyethylene oxide) or they carry charged groups.
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Fig. 1. Schematic view of di�erent polymer types: (a) linear homopolymers that are the main subject of this review;
(b) branched polymers; (c) charged polymers or polyelectrolytes (PEs), with a certain fraction of charged monomers; (d)
a disordered (hetero) copolymer with no speci�c order of the di�erent monomers: A, B, C, etc.; (e) a block copolymer.
For example, a quatro-block A–B–A–C is drawn, where each of the blocks is a homopolymer by itself; (f) a copolymer
composed of a backbone (dashed line) and side chains (solid line) of di�erent chemical nature. The backbone could for
example be hydrophilic and make the polymer water-soluble as a whole, while the side chain might be hydrophobic and
attract other hydrophobic solutes in the solution.

Charged polymers, also known as polyelectrolytes (PE), are shown schematically in Fig. 1c. They
are extensively studied not only because of their numerous industrial applications, but also from a
pure scienti�c interest [8–11]. One of the most important properties of PEs is their water solubility
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giving rise to a wide range of non-toxic, environmentally friendly and cheap formulations. On the
theoretical side, the physics of PEs combines the �eld of statistical mechanics of charged systems
with the �eld of polymer science and o�ers quite a number of surprises and challenges.

Two other concepts associated with PEs and water soluble polymers are associating polymers
(not discussed in this review) and the �exibility of the polymer chain. In cases when the copolymers
have both hydrophobic and hydrophilic groups (similarly to short-chain amphiphiles), they will
self-assemble in solution to form meso-structures such as lamellae, cylinders and spheres dispersed
in solution. The inside of these structures is where the hydrophobic chain sections are packed,
away from the water environment. In other cases, association of hydrophobic groups may lead to
inter-chain networking and drastically modify the visco-elasticity of the solution. Another concept
discussed at large in this review is the chain �exibility. The chains considered here are either �exible
or semi-�exible. Flexible chains are chains where it does not cost energy to bend them, while the
sti�ness of semi-�exible chains is an important property. For PEs the charge groups contribute
substantially to the chain sti�ness, and the chain conformational degrees of freedom are coupled
with the electrostatic ones.

2. Neutral polymer chains

2.1. Flexible chains

The statistical thermodynamics of �exible chains is well developed and the theoretical concepts
can be applied with a considerable degree of con�dence [7,12–15]. In contrast to other molecules
or particles, polymer chains contain not only translational and rotational degrees of freedom, but
also a vast number of conformational degrees of freedom. This fact plays a crucial role in determin-
ing their behavior in solution and at surfaces. When �exible chains adsorb on surfaces they form
di�usive adsorption layers extending away from the surface into the solution. This is in contrast to
semi-�exible or rigid chains, which can form dense and compact adsorption layers.

From the experimental point of view, the main parameters used to describe a polymer chain are
the polymerization index N , which counts the number of repeat units or monomers along the chain,
and the monomer size b, being the size of one monomer or the distance between two neighbor-
ing monomers. The monomer size ranges from a few Angstroms for synthetic polymers to a few
nanometers for biopolymers [12].

The simplest theoretical description of �exible chain conformations is achieved with the so-called
freely jointed chain (FJC) model, where a polymer consisting of N +1 monomers is represented by
N bonds de�ned by bond vectors rj with j = 1; : : : ; N . Each bond vector has a �xed length |rj|= a
corresponding to the Kuhn length, but otherwise is allowed to rotate freely, as is schematically
shown in Fig. 2a. This model of course only gives a coarse-grained description of real polymer
chains, but we will later see that by a careful adjustment of the Kuhn length a (which is related but
not identical to the monomer size b), an accurate description of the large-scale properties of real
polymer chains is possible. The main advantage is that due to the simplicity of the FJC model, all
interesting observables (such as chain size or distribution functions) can be calculated with relative
ease. Fixing one of the chain ends at the origin, the position of the (k + 1)th monomer is given by
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(c)

(b)

ϑ

(a)

a

b

Fig. 2. (a) Freely jointed chain (FJC) model, where N bonds of length a are connected to form a �exible chain. (b) Freely
rotating chain (FRC) model, which describes a polymer chain with a saturated carbon backbone. It consists of a chain of
N bonds of length b, with �xed bond angles #, re�ecting the chemical bond structure, but with freely rotating torsional
angles. (c) The simpli�ed model, appropriate for more advanced theoretical calculations, consists of a structureless line,
governed by some bending rigidity or line tension. This continuous model can be used when the relevant length scales
are much larger than the monomer size.

the vectorial sum

Rk =
k∑

j=1

rj : (2.1)

Because two arbitrary bond vectors are uncorrelated in this simple model, the thermal average over
the scalar product of two di�erent bond vectors vanishes, 〈rj · rk〉 = 0 for j �= k, while the mean
squared bond vector length is simply given by 〈r2j 〉=a2. It follows that the mean squared end-to-end
radius R2 is proportional to the number of monomers,

R2 ≡ 〈R2
N 〉= Na2 = La ; (2.2)

where the contour length of the chain is given by L=Na. The same result is obtained for the mean
quadratic displacement of a freely di�using particle and alludes to the same underlying physical
principle, namely the statistics of Markov processes.
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Fig. 3. Snapshot of a Monte-Carlo simulation of a neutral freely jointed chain (FJC) consisting of N = 100 monomers
with a diameter corresponding to the Kuhn length a. The theoretical end-to-end radius, R=10a, is indicated by the upper
horizontal bar.

In Fig. 3 we show a snapshot of a Monte-Carlo simulation of a freely jointed chain consisting of
100 non-interacting monomers, each being represented by a sphere of diameter a. The horizontal bar
has a length of 10a, which according to Eq. (2.2) is the average distance between the chain ends.
As can be seen in the �gure, the end-to-end radius gives a good idea of the typical chain size.

In the so-called freely rotating chain (FRC) model, di�erent chain conformations are produced
by torsional rotations of the polymer backbone bonds of length b at �xed bond angle #, as shown
schematically in Fig. 2b. This model is closer to real synthetic polymers than the FJC model,
but is also more complicated to calculate. In contrast to the FJC model, the correlation between
two neighboring bond vectors does not vanish and is given by 〈rj · rj+1〉 = b2 cos#. Correlations
between further-nearest neighbors are transmitted through the backbone and one thus obtains for the
bond-vector correlation function [7]

〈rj · rk〉= b2(cos#)|j−k| : (2.3)

The mean-squared end-to-end radius is for this model in the limit of long chains (N → ∞) given
by [7]

R2 � Nb2
1 + cos#
1− cos#

: (2.4)

We will now demonstrate that the simple result for the FJC model, Eq. (2.2), applies on length scales
which are large compared with the microscopic chain details also to the more complicated FRC
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model (which takes the detailed microscopic chain structure into account). To make the connection
between the two models, we observe that the FRC contour length is L = Nb cos(#=2). Using the
scaling relation R2 = aL (which we established for the FJC model) as a de�nition for the Kuhn
length a, we obtain for the FRC model

a= b
1 + cos#

cos(#=2)(1− cos#)
; (2.5)

where the Kuhn length a is now interpreted as an e�ective monomer size. For a typical saturated
carbon backbone one �nds a bond angle # ≈ 70◦ and thus obtains for the relation between the Kuhn
length and the monomer size a ≈ 2:5b. With a typical bond length of b ≈ 0:15 nm this results in a
Kuhn length of a ≈ 0:38 nm. Clearly, the Kuhn length a is always larger than the monomer size b.
We have thus shown that it is possible to use the simple FJC model also for more detailed chain
models if one interprets the Kuhn length a as an e�ective length which takes correlations between
chemical bonds into account. In the remainder of this review, we will in most cases use a �exible
chain model characterized by the Kuhn length a. Only in cases where the microscopic structure of
the polymer chains matters will we use more detailed models (and then have to distinguish between
the Kuhn length a, characterizing the large-scale properties of a chain, and the monomer size b).
In many theoretical calculations aimed at elucidating large-scale properties, the simpli�cation is

carried even a step further and a continuous model is used, as schematically shown in Fig. 2c. In
such models the polymer backbone is replaced by a continuous line and all microscopic details are
neglected.

The models discussed so far describe ideal Gaussian chains and do not account for interactions
between monomers which are not necessarily close neighbors along the backbone. Including these
interactions will give a di�erent scaling behavior for long polymer chains. The end-to-end radius,
R=

√
〈R2

N 〉, can be written more generally for N�1 as

R � aN� : (2.6)

For an ideal polymer chain (no interactions between monomers), Eq. (2.2) implies �=1=2. This holds
only for polymers where the attraction between monomers (as compared with the monomer–solvent
interaction) cancels the steric repulsion (which is due to the fact that the monomers cannot penetrate
each other). This situation can be achieved in the condition of “theta” solvents. More generally,
polymers in solution can experience three types of solvent conditions, with theta solvent condition
being intermediate between “good” and “bad” solvent conditions. The solvent quality depends mainly
on the speci�c chemistry determining the interaction between the solvent molecules and monomers.
It can be changed by varying the temperature.

In good solvents the monomer–solvent interaction is more favorable than the monomer–monomer
one. Single polymer chains in good solvents have “swollen” spatial con�gurations dominated by the
steric repulsion, characterized by an exponent � � 3=5 [12]. This spatial size of a polymer coil is
much smaller than the extended contour length L = aN but larger than the size of an ideal chain
aN 1=2. The reason for this peculiar behavior is entropy combined with the favorable interaction
between monomers and solvent molecules in good solvents, as we will see in the following section.
Similarly, for adsorption of polymer chains on solid substrates, the conformational degrees of freedom
of polymer coils lead to salient di�erences between the adsorption of polymers and small molecules.
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In the opposite case of “bad” (sometimes called “poor”) solvent conditions, the e�ective interaction
between monomers is attractive, leading to collapse of the chains and to their precipitation from
solution (phase separation between the polymer and the solvent). In this case, the polymer size, like
any space �lling object embedded in three-dimensional space, scales as N ∼ R3, yielding �= 1=3.

2.2. Chain swelling and chain collapse: Flory theory and blob formation

The standard way of taking into account interactions between monomers is the Flory theory, which
treats these interactions on a mean-�eld level [7,12–15]. Let us �rst consider the case of repulsive
interactions between monomers, which can be described by a positive second-virial coe�cient v2.
This corresponds to the aforementioned good-solvent condition. For pure hard-core interactions and
with no additional attractions between monomers, the second virial coe�cient (which corresponds to
the excluded volume) is of the order of a3, the monomer volume. The repulsive interaction between
monomers, which tends to swell the chain, is counteracted and balanced by the ideal chain elasticity,
which is brought about by the entropy loss associated with stretching the chain. The analogy with
an external stretching force is helpful: For a freely jointed chain, the stretching response due to an
external force f̂ (rescaled by the thermal energy kBT ) is R � a2Nf̂=3 for weak forces f̂�1=a [14].
Hence, a freely jointed chain acts like an ideal spring with a spring constant (rescaled by kBT ) of
3=(2a2N ). The temperature dependence of the spring constant tells us that the chain elasticity is
purely entropic. The origin is that the number of polymer con�gurations having an end-to-end radius
of the order of the unperturbed end-to-end radius is large. These con�gurations are entropically
favored over con�gurations characterized by a large end-to-end radius, for which the number of
possible polymer conformations is drastically reduced. The standard Flory theory [12] for a �exible
chain of radius R is based on writing the free energy F (in units of the thermal energy kBT ) as a
sum of two terms (omitting numerical prefactors)

F � R2

a2N
+ v2R3

(
N
R3

)2

; (2.7)

where the �rst term is the entropic elastic energy associated with swelling a polymer chain to a
radius R, proportional to the e�ective spring constant of an ideal chain, and the second term is the
second-virial repulsive energy proportional to the coe�cient v2, and the segment density squared. It
is integrated over the volume R3. The optimal radius R is calculated by minimizing this free energy
and gives the swollen radius

R ∼ a(v2=a3)1=5N� (2.8)

with �= 3=5. For purely steric interactions with v2 � a3 we obtain R ∼ aN�. For v2 ¡a3 one �nds
that the swollen radius Eq. (2.8) is only realized above a minimal monomer number Nsw � (v2=a3)−2

below which the chain statistics is unperturbed by the interaction and the scaling of the chain radius
is Gaussian and given by Eq. (2.2). A di�erent way of looking at this crossover from Gaussian
to swollen behavior is to denote a Gaussian coil of monomer number Nsw as a blob with size
Rsw = aN 1=2

sw � a4=v2, after which the swollen radius Eq. (2.8) can be rewritten as

R ∼ Rsw(N=Nsw)� : (2.9)

The swollen chain can be viewed as chain of N=Nsw impenetrable blobs, each with a spatial size
Rsw [14].
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In the opposite limit of negative second virial coe�cient, corresponding to the bad or poor solvent
regime, the polymer coil will be collapsed due to the attractions between monomers. In this case,
the attraction term in the free energy is balanced by the third-virial term in a low-density expansion
(where we assume that v3 ¿ 0),

F � v2R3

(
N
R3

)2

+ v3R3

(
N
R3

)3

: (2.10)

Minimizing this free energy with respect to the chain radius one obtains

R � (v3=|v2|)1=3N� : (2.11)

with �= 1=3. This indicates the formation of a compact globule, since the monomer density inside
the globule, cm ∼ N=R3, is independent of the chain length. The minimal chain length to observe
a collapse behavior is Ncol ∼ (v3=a3v2)2, and the chain radius Eq. (2.11) can be rewritten as R ∼
Rcol(N=Ncol)1=3, where the size of a Gaussian blob is Rcol ∼ aN 1=2

col . For not too long chains and
a second virial coe�cient not too much di�ering from zero, the interaction is irrelevant and one
obtains e�ective Gaussian or ideal behavior. It should be noted, however, that even small deviations
from the exact theta conditions (de�ned by strictly v2 = 0) will lead to chain collapse or swelling
for very long chains.

2.3. Semi-�exible chains

The freely rotating chain model exhibits orientational correlations between bonds that are not too
far from each other, see Eq. (2.3). These correlations give rise to a certain chain sti�ness, which plays
an important role for the local structure of polymers, and leads to more rigid structures. For synthetic
polymers with bond torsional degrees of freedom, this sti�ness is due to �xed bond angles and is
further enhanced by the hindered rotations around individual back-bone bonds [12], as schemati-
cally shown in Fig. 2b. This e�ect is even more pronounced for polymers with bulky side chains,
where, because of steric constraints, the persistence length can be of the order of a few nanometers
[12]. This sti�ness can be conveniently characterized by the persistence length ‘0, de�ned as the
length over which the normalized bond (tangent) vectors at di�erent locations on the chain are corr-
elated. In other words, the persistence length gives an estimate for the typical radius of curvature,
while taking into account thermal �uctuations. For the FRC model, the persistence length ‘0 is
de�ned by

〈rj · rk〉= b2e−|j−k|b cos(#=2)=‘0 : (2.12)

With the result Eq. (2.3), one obtains for the FRC model the persistence length

‘0 =
b cos(#=2)
|ln cos#| : (2.13)

For typical saturated carbon backbones with # ≈ 70◦ one obtains a persistence length of ‘0 ≈ 0:8b
which is thus of the order of the bond length. Clearly, as the bond angle goes down, the persistence
length increases dramatically.

Biopolymers with a more complex structure on the molecular level tend to be sti�er than
simple synthetic polymers. Some typical persistence lengths encountered in biological systems are
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‘0 ≈ 5 mm for tubulin [16], ‘0 ≈ 20 �m for actin [17,18], and ‘0 ≈ 50 nm for double-stranded
DNA [19]. Because some of these biopolymer are charged, we will discuss in Section 3.2 at length
the dependence of the persistence length on the electrostatic conditions. In some cases the main
contribution to the persistence length comes from the repulsion between charged monomers. In these
cases, it is important to include the e�ect of sti�ness into the theoretical description, even if the
bare or mechanical sti�ness is only slightly larger than the monomer size.

To describe the bending rigidity of neutral polymers, it is easier to use a continuum model, where
one neglects the discrete nature of monomers, as shown in Fig. 2c. In this approach the bending
energy (rescaled by the thermal energy, kBT ) of a sti� or semi-�exible polymer of contour length
L, which is parameterized by the space curve r(s), is given by [7]

‘0
2

∫ L

0
ds

(
d2r(s)
ds2

)2

; (2.14)

where d2r(s)=ds2 is the local curvature of the polymer. We assume here that the polymer segments
are non-expendable, i.e. the tangent vectors ṙ(s)=dr(s)=ds are always normalized, |ṙ(s)|=1. Clearly,
this continuum description will only be good if the persistence length is larger than the monomer
size b. For the semi-�exible polymer model, the correlations between tangent vectors exhibit a purely
exponential decay,

〈ṙ(s) · ṙ(s′)〉= e−|s−s′|=‘0 : (2.15)

From this result, the mean-squared end-to-end radius of a semi-�exible chain, described by the
bending energy Eq. (2.14), can be calculated and reads [7]

R2 = 2‘0L+ 2‘20(e
−L=‘0 − 1) ; (2.16)

where the persistence length is ‘0 and the total contour length of a chain is L. Two limiting behaviors
are obtained for R from Eq. (2.16): for long chains L�‘0, the chain behaves as a �exible one, R2 �
2‘0L; while for rather short chains, L�‘0, the chain behaves as a rigid rod, R � L. Comparison
with the scaling of the freely jointed chain model (having no persistence length, ‘0 = 0), Eq. (2.2),
shows that a semi-�exible chain can, for L�‘0, be described by a freely jointed chain model with
an e�ective Kuhn length of

a= 2‘0 ; (2.17)

and an e�ective number of segments

N =
L
2‘0

: (2.18)

In this case the Kuhn length takes into account the chain sti�ness. In Fig. 4 we show snapshots
taken from a Monte-Carlo simulation of a semi-�exible chain consisting of 100 polymer beads of
diameter b. The persistence length is varied from ‘0 = 2b (Fig. 4a), over ‘0 = 10b (Fig. 4b), to
‘0=100b (Fig. 4c). Comparison with the freely jointed chain model is given in Fig. 3 (a=b, ‘0=0).
It is seen that as the persistence length is increased, the chain structure becomes more expanded.
The average end-to-end radius R, Eq. (2.16), is shown as the bar on the �gure and gives a good
estimate on typical sizes of semi-�exible polymers.

The main point here is that even though the semi-�exible polymer model describes biopolymers
much better than the freely jointed model does, on large length scales both models coincide if the
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(a) (b)
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Fig. 4. Snapshots of Monte-Carlo simulations of a neutral and semi-�exible chain consisting of N = 100 monomers
with a diameter b. The theoretical end-to-end radius R is indicated by a straight bar. The persistence lengths used in
the simulations are: (a) ‘0=b = 2, leading according to Eq. (2.16) to R=b = 19:8, (b) ‘0=b = 10, leading to R=b = 42:4,
(c) ‘0=b= 100, leading to R=b= 85:8.

Kuhn length a of the freely jointed chain model is the e�ective length which is extracted from the
scaling of the end-to-end radius in the semi-�exible model, Eq. (2.16). When the small-scale behavior
is probed, as for example in the case of polymer adsorption with short-ranged potentials, see Section
6, the di�erence between the models matters and one has to use the semi-�exible model. On the
other hand, it should be kept in mind that the semi-�exible polymer model is an idealization, which
neglects the detailed architecture of the polymer at the molecular level. For synthetic polymers, a
freely rotating chain model with a bond length b and a bond angle # as shown in Fig. 2b is closer
to reality but is more complicated to handle theoretically [7].

2.4. Dilute, semi-dilute and concentrated solutions

It is natural to generalize the discussion of single chain behavior to that of many chains for dilute
monomer concentrations. The dilute regime is de�ned by cm ¡c∗m, for which cm denotes the monomer
concentration (per unit volume) and c∗m is the concentration where individual chains start to overlap.
Clearly, the overlap concentration is reached when the average bulk monomer concentration exceeds
the monomer concentration inside a polymer coil. To estimate the overlap concentration c∗m, we
simply note that the average monomer concentration inside a coil with radius R ∼ aN� is given by

c∗m � N
R3 ∼ N 1−3�a−3 : (2.19)

For ideal chains with � = 1=2 the overlap concentration scales as a3c∗m ∼ N−1=2 and thus decreases
slowly as the polymerization index N increases. For swollen chains with �=3=5, on the other hand,
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the overlap concentration scales as a3c∗m ∼ N−4=5 and thus decreases more rapidly with increasing
chain length. The crossover to the concentrated or melt-like regime occurs when the monomer con-
centration in the solution reaches the local monomer concentration inside a Gaussian blob, which is
for good solvent conditions given by (see the discussion before Eq. (2.9))

c∗∗m � Nsw=R3
sw � v2=a6 : (2.20)

It is seen that the semi-dilute regime, obtained for concentrations c∗m ¡cm ¡c∗∗m , spans for long
chains and under good solvent conditions a rather wide range of concentrations and is thus impor-
tant for typical applications.

For chains characterized by a negative second virial coe�cient, attractions between collapsed
single-chain globules lead to phase separation between a very dilute solution of single-polymer
globules and a dense melt-like phase of entangled polymer coils [14].

3. Charged polymer chains

3.1. Interactions between charged objects

A polyelectrolyte (PE) is a polymer where a fraction f of its monomers are charged. When
this fraction is small, f�1, the PE is weakly charged, whereas when f is close to unity, the
polyelectrolyte is strongly charged. There are two common ways to control f [11]. One way is to
polymerize a heteropolymer using strongly acidic and neutral monomers as building blocks. Upon
contact with water, the acidic groups dissociate into positively charged protons (H+) that bind
immediately to water molecules, and negatively charged monomers. Although this process e�ectively
charges the polymer molecules, the counterions make the PE solution electro-neutral on larger length
scales. The charge distribution along the chain is quenched (“frozen”) during the polymerization
stage, and it is characterized by the fraction of charged monomers on the chain, f. In the second
way, the PE is a weak polyacid or polybase. The e�ective charge of each monomer is controlled by
the pH of the solution. Moreover, this annealed fraction depends on the local electric potential. This
is in particular important for adsorption processes since the local electric �eld close to a strongly
charged surface can be very di�erent from its value in the bulk solution.

The counterions are attracted to the charged polymers via long-ranged Coulomb interactions, but
this physical association typically only leads to a rather loosely bound counterion cloud around
the PE chain. Because PEs are present in a background of a polarizable and di�usive counterion
cloud, there is a strong in�uence of the counterion distribution on the PE structure, as will be
discussed at length in this section. Counterions contribute signi�cantly towards bulk properties, such
as the osmotic pressure, and their translational entropy is responsible for the generally good water
solubility of charged polymers. In addition, the statistics of PE chain conformation is governed
by intra-chain Coulombic repulsion between charged monomers, resulting in a more extended and
swollen conformation of PEs as compared to neutral polymers.

For polyelectrolytes, electrostatic interactions provide the driving force for their salient features
and have to be included in any theoretical description. The reduced electrostatic interaction between
two point-like charges can be written as z1z2v(r) where

v(r) = ‘B=r (3.1)
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is the Coulomb interaction between two elementary charges in units of kBT and z1 and z2 are the
valencies (or the reduced charges in units of the elementary charge e). The Bjerrum length ‘B is
de�ned as

‘B =
e2

�kBT
; (3.2)

where � is the medium dielectric constant. It denotes the distance at which the Coulombic interaction
between two unit charges in a dielectric medium is equal to thermal energy (kBT ). It is a measure
of the distance below which the Coulomb energy is strong enough to compete with the thermal
�uctuations; in water at room temperatures, one �nds ‘B ≈ 0:7 nm.

The electrostatic interaction in a homogeneous medium depends only on the distance r between the
charges. The total electrostatic energy of a given distribution of charges is obtained from adding up
all pairwise interactions between charges according to Eq. (3.1). In principle, the equilibrium behavior
of an ensemble of charged particles (e.g. a salt solution) follows from the partition function, i.e.
the weighted sum over all di�erent microscopic con�gurations, which—via the Boltzmann factor—
depends on the electrostatic energy of each con�guration. In practice, however, this route is very
complicated for several reasons:

(i) The Coulomb interaction, Eq. (3.1), is long-ranged and couples many charged particles. Elec-
trostatic problems are typically many-body problems, even for low densities.

(ii) Charged objects in most cases are dissolved in water. Like any material, water is polarizable
and reacts to the presence of a charge with polarization charges. In addition, and this is by far a
more important e�ect, water molecules carry a permanent dipole moment that partially orients in
the vicinity of charged objects. Within linearized response theory, these polarization e�ects can be
incorporated by the dielectric constant of water, a procedure which of course neglects non-local and
non-linear e�ects. Note that for water, � ≈ 80, so that electrostatic interactions and self energies are
much weaker in water than in air (where � ≈ 1) or some other low-dielectric solvents. Still, the
electrostatic interactions are especially important in polar solvents because in these solvents, charges
dissociate more easily than in apolar solvents.

(iii) In biological systems and most industrial applications, the aqueous solution contains mobile
salt ions. Salt ions of opposite charge are drawn to the charged object and form a loosely bound
counterion cloud around it. They e�ectively reduce or screen the charge of the object. The e�ective
(screened) electrostatic interaction between two charges z1e and z2e in the presence of salt ions and
a polarizable solvent can be written as z1z2vDH(r), with the Debye–H�uckel (DH) potential vDH(r)
given (in units of kBT ) by

vDH(r) =
‘B
r
e−�r : (3.3)

The exponential decay is characterized by the screening length �−1, which is related to the salt
concentration csalt by

�2 = 8�z2‘Bcsalt ; (3.4)

where z denotes the valency of z : z salt. At physiological conditions the salt concentration is csalt ≈ 0:1 M
and for monovalent ions (z=1) this leads to �−1 ≈ 1 nm. This means that although the Coulombic
interactions are long-ranged, in physiological conditions they are highly screened above length scales
of a few nanometers, which results from multi-body correlations between ions in a salt solution.
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The Debye–H�uckel potential in Eq. (3.3) results from a linearized mean-�eld procedure, and
becomes inaccurate when (i) the number of correlated ions is small and (ii) when the typical
interaction between ions exceeds the thermal energy. In the following we estimate the validity of the
DH approximation using simple scaling arguments: The number of ions which are correlated in a
salt solution with concentration csalt is of the order of n ∼ �−3csalt, where one employs the screening
length �−1 as the scale over which ions are correlated. Using the de�nition �2 = 8�z2‘Bcsalt, one
obtains n ∼ (z2‘Bc

1=3
salt)

−3=2. The average distance between ions is roughly rsalt ∼ c−1=3
salt . The typical

electrostatic interaction between two ions in the solution, rescaled by the thermal energy, thus is
Wel ∼ z2‘B=rsalt ∼ z2‘Bc

1=3
salt and we obtain Wel ∼ n−2=3. Using these scaling arguments one obtains

that either (i) many ions are weakly coupled together (i.e. n�1 and Wel�1), or (ii) a few ions
interact strongly with each other (n � Wel � 1). In the �rst case, and in the absence of external
�elds, the approximations leading to the Debye–H�uckel approximation, Eq. (3.3), are valid. In the
second case, correlation e�ects and non-linear e�ects become important, as will be discussed at
various points in this review.

3.2. Isolated polyelectrolyte chains

We discuss now the scaling behavior of a single semi-�exible PE in the bulk, including chain
sti�ness and electrostatic repulsion between monomers. For charged polymers, the e�ective per-
sistence length is increased due to electrostatic repulsion between monomers. This e�ect modi�es
considerably not only the PE behavior in solution but also their adsorption characteristics.

The scaling analysis is a simple extension of previous calculations for �exible (Gaussian) PE’s
[20–23]. The semi-�exible polymer chain is characterized by a bare persistence length ‘0 and a linear
charge density 
. Using the monomer length b and the fraction of charged monomers f as parameters,
the linear charge density can be expressed as 
= f=b. Note that in the limit where the persistence
length is small and comparable to a monomer size, only a single length scale remains, ‘0 � a � b.
Many interesting e�ects, however, are obtained in the general case treating the persistence length
‘0 and the monomer size b as two independent parameters. In the regime where the electrostatic
energy is weak, and for long enough contour length L, L�‘0, a polymer coil will be formed with
a radius R unperturbed by the electrostatic repulsion between monomers. According to Eq. (2.16)
we get R2 � 2‘0L. To estimate when the electrostatic interaction will be su�ciently strong to swell
the polymer coil we recall that the electrostatic energy (rescaled by the thermal energy kBT ) of a
homogeneously charged sphere of total charge Z (in units of the elementary charge e) and radius R is

Wel =
3‘BZ2

5R
: (3.5)

The exact charge distribution inside the sphere only changes the prefactor of order unity and is not
important for the scaling arguments. For a polymer of length L and line charge density 
 the total
charge is Z = 
L. The electrostatic energy of a (roughly spherical) polymer coil is then

Wel � ‘B
2L3=2‘−1=2
0 : (3.6)

The polymer length Lel at which the electrostatic self energy is of order kBT , i.e. Wel � 1, is then

Lel � ‘0(‘B‘0
2)−2=3 ; (3.7)
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Fig. 5. Snapshots of Monte-Carlo simulations of a PE chain of N = 100 monomers of size b. In all simulations the
bare persistence length is �xed at ‘0=b = 1, and the screening length and the charge interactions are tuned such that
the electrostatic persistence length is constant and ‘OSF=b = 100 according to Eq. (3.11). The parameters used are:
(a) �−1=b =

√
50 and 
2‘B‘0 = 8, (b) �−1=b =

√
200 and 
2‘B‘0 = 2, (c) �−1=b =

√
800 and 
2‘B‘0 = 1=2, and

(d) �−1=b =
√
3200 and 
2‘B‘0 = 1=8. Noticeably, the weakly charged chains crumple at small length scales and show

a tendency to form electrostatic blobs.

and de�nes the electrostatic blob size or electrostatic polymer length. We expect a locally crumpled
polymer con�guration if Lel ¿‘0, i.e. if



√

‘B‘0 ¡ 1 ; (3.8)

because the electrostatic repulsion between two segments of length ‘0 is smaller than the thermal
energy and is not su�cient to align the two segments. This is in accord with more detailed calcu-
lations by Joanny and Barrat [22]. A recent general Gaussian variational calculation con�rms this
scaling result and in addition yields logarithmic corrections [23]. Conversely, for



√

‘B‘0 ¿ 1 ; (3.9)

electrostatic chain–chain repulsion is already relevant on length scales comparable to the persistence
length. The chain is expected to have a conformation characterized by an e�ective persistence length
‘e� , larger than the bare persistence length ‘0, i.e. one expects ‘e� ¿‘0.

This e�ect is visualized in Fig. 5, where we show snapshots of Monte-Carlo simulations for
charged chains consisting of 100 monomers of size b. The monomers are interacting solely via
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screened DH potentials as de�ned in Eq. (3.3). In all simulations the bare persistence length equals
the monomer size, ‘0 = b. The screening length �−1 and the linear charge density 
 are varied
such that the ratio 
=� is the same for all four simulations. The number of persistent segments in
an electrostatic blob can be written according to Eq. (3.7) as Lel=‘0 = (
2‘B‘0)−2=3 and yields for
Fig. 5a Lel=‘0 = 0:25, for Fig. 5b Lel=‘0 = 0:63, for Fig. 5c Lel=‘0 = 1:6, and for Fig. 5d Lel=‘0 = 4.
In other words, in Fig. 5d the electrostatic blobs consist of four persistent segments, and indeed this
weakly charged chain crumples at small length scales. On the other hand, in Fig. 5a the persistence
length is four times larger than the electrostatic blob length and therefore the chain is straight locally.
A typical linear charge density reached with synthetic PEs is one charge per two carbon bonds (or,
equivalently, one charge per monomer), and it corresponds to 
 ≈ 4 nm−1. Since for these highly
�exible synthetic PEs the bare persistence length is of the order of the monomer size, ‘0 ≈ b ≈
0:25 nm, the typical value of 
2‘B‘0 is roughly 
2‘B‘0 ≈ 3, and thus intermediate between the values
in Fig. 5a and b. Smaller linear charge densities can always be obtained by replacing some of the
charged monomers on the polymer backbone with neutral ones. In this case the crumpling observed
in Fig. 5d becomes relevant. On the other hand, increasing the bare sti�ness ‘0, for example by
adding bulky side chains to a synthetic PE backbone, increases the value of 
2‘B‘0 and, therefore,
increases the electrostatic sti�ening of the backbone. This is an interesting illustration of the fact
that electrostatic interactions and chain architecture (embodied via the persistence length) combine
to control the polymer con�gurational behavior.

The question now arises as to what are the typical chain conformations at much larger length
scales. Clearly, they will be in�uenced by the electrostatic repulsions between monomers. Indeed, in
the persistent regime, obtained for 


√
‘B‘0 ¿ 1, the polymer remains locally sti� even for contour

lengths larger than the bare persistence length ‘0 and the e�ective persistence length is given by

‘e� � ‘0 + ‘OSF : (3.10)

The electrostatic contribution to the e�ective persistence length, �rst derived by Odijk and indepen-
dently by Skolnick and Fixman, reads [24,25]

‘OSF =
‘B
2

4�2 ; (3.11)

and is calculated from the electrostatic energy of a slightly bent polymer using the linearized Debye–
H�uckel approximation, Eq. (3.3). It is valid only for polymer conformations which do not deviate
too much from the rod-like reference state and for weakly charged polymers (two conditions that are
often not simultaneously satis�ed in practice and therefore have led to criticism of the OSF result,
as will be detailed below). The electrostatic persistence length gives a sizable contribution to the
e�ective persistence length only for ‘OSF ¿‘0. This is equivalent to the condition



√

‘B‘0 ¿‘0� : (3.12)

The persistent regime is obtained for parameters satisfying both conditions (3.9) and (3.12) and
exhibits chains that do not crumple locally and are sti�ened electrostatically. Another regime called
the Gaussian regime is obtained in the opposite limit of 


√
‘B‘0 ¡‘0� and does not exhibit chain

sti�ening due to electrostatic monomer–monomer repulsions.
The e�ects of the electrostatic persistence length are visualized in Fig. 6, where we present

snapshots of a Monte-Carlo simulation of a charged chain consisting of 100 monomers of size b.
The bare persistence length is �xed at ‘0 = b, and the charge-interaction parameter is chosen to be
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(a)

(b)

(c)

Fig. 6. Snapshots of Monte-Carlo simulations of a PE chain consisting of N =100 monomers of size b. In all simulations,
the bare persistence length is �xed at ‘0=b = 1, and the charge-interaction parameter is chosen to be 
2‘B‘0 = 2. The
snapshots correspond to varying screening length of: (a) �−1=b =

√
2, leading to an electrostatic contribution to the

persistence length of ‘OSF=b=1, (b) �−1=b=
√
18, leading to ‘OSF=b=9, and (c) �−1=b=

√
200, leading to ‘OSF=b=100.

According to the simple scaling principle, Eq. (3.10), the e�ective persistence length in the snapshots (a)–(c) should be
similar to the bare persistence length in Fig. 4(a)–(c).


2‘Bb = 2 for all three simulations, close to the typical charge density obtained with fully charged
synthetic PEs. In Fig. 6 we show con�gurations for three di�erent values of the screening length,
namely (a) �−1=b=

√
2, leading to an electrostatic contribution to the persistence length of ‘OSF=b=1;

(b) �−1=b =
√
18, or ‘OSF=b = 9; and (c) �−1=b =

√
200, equivalent to an electrostatic persistence

length of ‘OSF=b=100. According to the simple scaling principle, Eq. (3.10), the e�ective persistence
length in the snapshots, Fig. 6a–c, should be similar to the bare persistence length in Fig. 4a–c, and
indeed, the chain structures in Figs. 6c and 4c are very similar. Figs. 6a and 4a are clearly di�erent,
although the e�ective persistence length is predicted to be quite similar. This deviation is mostly
due to self-avoidance e�ects which are present in charged chains and which will be discussed in
detail in Section 3.4.

For the case where the polymer crumples on length scales larger than the bare persistence length,
i.e. for Lel ¿‘0 or 


√
‘B‘0 ¡ 1, the electrostatic repulsion between polymer segments is not strong

enough to prevent crumpling on length scales comparable to ‘0, but can give rise to a chain sti�ening
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Gaussian

persistent

Gaussian

swollen

3/5

Fig. 7. Schematic view of the four scaling ranges in the Gaussian-persistent regime. On spatial scales smaller than Rel the
chain behavior is Gaussian; on length scales larger than Rel but smaller than ‘KK the Gaussian blobs are aligned linearly.
On larger length scales the chain is isotropically swollen with an exponent � = 1=2, and on even larger length scales
self-avoidance e�ects become important and the exponent changes to �= 3=5.

on larger length scales, as explained by Khokhlov and Khachaturian [21] and con�rmed by Gaussian
variational methods [23]. Fig. 7 schematically shows the PE structure in this Gaussian-persistent
regime, where the chain on small scales consists of Gaussian blobs of size Rel, each containing a
chain segment of length Lel. Within these blobs electrostatic interactions are not important. On larger
length scales electrostatic repulsion leads to a chain sti�ening, so that the PE forms a linear array of
electrostatic blobs. To quantify this e�ect, one de�nes an e�ective line charge density 
̃ of a linear
array of electrostatic blobs with blob size Rel �

√
‘0Lel,


̃ � 
Lel

Rel
� 


(
Lel

‘0

)1=2

: (3.13)
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1

1

Gaussian

Gaussian-
persistent

1

2/3
persistent

Fig. 8. Behavior diagram of a single semi-�exible PE in bulk solution with bare persistence length ‘0 and line charge
density 
, exhibiting various scaling regimes. High-salt concentration and small 
 correspond to the Gaussian regime,
where the electrostatic interactions are irrelevant. In the persistent regime, the polymer persistence length is increased,
and in the Gaussian-persistent regime the polymer forms a persistent chain of Gaussian blobs as indicated in Fig. 7. The
broken line indicates the Manning condensation, at which counterions condense on the polymer and reduce the e�ective
polymer line charge density. We use a log–log plot, and the various power-law exponents for the crossover boundaries
are denoted by numbers.

Combining Eqs. (3.13) and (3.11) gives the e�ective electrostatic persistence length for a string of
electrostatic blobs,

‘KK � ‘1=3B 
2=3

‘2=30 �2
: (3.14)

This electrostatic sti�ening is only relevant for the so-called Gaussian-persistent regime valid for
‘KK ¿Rel, or equivalently



√

‘B‘0 ¿ (‘0�)3=2 : (3.15)

When this inequality is inverted the Gaussian persistence regime crosses over to the Gaussian one.
The crossover boundaries (3.9), (3.12), (3.15) between the various scaling regimes are summa-

rized in Fig. 8. We obtain three distinct regimes. In the persistent regime, for 

√
‘B‘0 ¿‘0� and



√
‘B‘0 ¿ 1, the polymer takes on a rod-like structure with an e�ective persistence length given by

the OSF expression, and larger than the bare persistence length Eq. (3.11). In the Gaussian-persistent
regime, for 


√
‘B‘0 ¡ 1 and 


√
‘B‘0 ¿ (‘0�)3=2, the polymer consists of a linear array of Gaussian

electrostatic blobs, as shown in Fig. 7, with an e�ective persistence length ‘KK larger than the elec-
trostatic blob size and given by Eq. (3.14). Finally, in the Gaussian regime, for 


√
‘B‘0 ¡ (‘0�)3=2

and 

√
‘B‘0 ¡‘0�, the electrostatic repulsion does not lead to sti�ening e�ects at any length scale

(though the chain will be non-ideal).
The persistence length ‘KK was also obtained from Monte-Carlo simulations with parameters

similar to the ones used for the snapshot shown in Fig. 5d, where chain crumpling at small length
scales and chain sti�ening at large length scales occur simultaneously [26–29]. However, extremely
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long chains are needed in order to obtain reliable results for the persistence length, since the sti�ening
occurs only at intermediate length scales and, therefore, �tting of the tangent–tangent correlation
function is non-trivial. Whereas previous simulations for rather short chains point to a di�erent
scaling than in Eq. (3.14), with a dependence on the screening length closer to a linear one, in
qualitative agreement with experimental results [10], more recent simulations for very long chains
exhibit a persistence length in agreement with Eq. (3.14) [30,31]. The situation is complicated by
the fact that recent theories for the single PE chain make con�icting predictions, some con�rming
the simple scaling results described in Eqs. (3.11) and (3.14) [23,32,33], while others con�rming
Eq. (3.11) but disagreeing with Eq. (3.14) [22,34,35]. This issue is not resolved and still under
intense current investigation. For multivalent counterions �uctuation e�ects can even give rise to a
PE collapse purely due to electrostatic interactions [36–41], which is accompanied by a negative
contribution to the e�ective persistence length [42–46]. A related issue is the e�ective interaction
between highly charged parallel rods, which has been shown to become attractive in the presence
of multivalent counterions [47–51].

3.3. Manning condensation

A peculiar phenomenon occurs for highly charged PEs and is known as the Manning condensation
of counterions [52–55]. Strictly speaking, this phenomenon constitutes a true phase transition only
in the absence of any added salt ions. For a single rigid PE chain represented by an in�nitely long
and straight cylinder with a linear charge density larger than

‘B
z = 1 ; (3.16)

where z is the counterion valency, it was shown that counterions condense on the oppositely charged
cylinder in the limit of in�nite solvent dilution. Namely, in the limit where the inter-chain distance
tends to in�nity. This is an e�ect which is not captured by the linear Debye–H�uckel theory used in
the last section to calculate the electrostatic persistence length Eq. (3.11). A simple heuristic way to
incorporate the non-linear e�ect of Manning condensation is to replace the bare linear charge density

 by the renormalized one 
renorm=1=(z‘B) whenever ‘B
z¿ 1 holds. This procedure, however, is not
totally satisfactory at high-salt concentrations [56,57]. Also, real polymers have a �nite length, and
are neither completely straight nor in the in�nite dilution limit [58–60]. Still, Manning condensation
has an experimental signi�cance for polymer solutions [61–63] because thermodynamic quantities,
such as counterion activities [64] and osmotic coe�cients [65], show a pronounced signature of
Manning condensation. Locally, polymer segments can be considered as straight over length scales
comparable to the persistence length. The Manning condition Eq. (3.16) usually denotes a region
where the binding of counterions to charged chain sections begins to deplete the solution from free
counterions. Within the scaling diagram of Fig. 8, the Manning threshold (denoted by a vertical
broken line) is reached typically for charge densities larger than the one needed to straighten out the
chain. This holds for monovalent ions provided ‘0 ¿‘B, as is almost always the case. The Manning
condensation of counterions will therefore not have a profound in�uence on the local chain structure
since the chain is rather straight already due to monomer–monomer repulsion. A more complete
description of various scaling regimes related to Manning condensation, chain collapse and chain
swelling has recently been given in Ref. [66].
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3.4. Self-avoidance and polyelectrolyte chain conformations

Let us now consider how the self-avoidance of PE chains comes into play, concentrating on the
persistent regime de�ned by 


√
‘B‘0 ¿ 1. The end-to-end radius R of a strongly charged PE chain

shows three distinct scaling ranges. For a chain length L smaller than the e�ective persistence length
‘e� , which according to Eq. (3.10) is the sum of the bare and electrostatic persistence lengths, R
grows linearly with the length, R ∼ L. Self-avoidance plays no role in this case, because the chain
is too short to fold back on itself.

For much longer chains, L�‘e� , we envision a single polymer coil as a solution of separate
polymer pieces of length ‘e� , and treat their interactions using a virial expansion. The second
virial coe�cient v2 of a rod of length ‘e� and diameter d scales as v2 ∼ ‘2e�d [67,68]. The chain
connectivity is taken into account by adding the entropic chain elasticity as a separate term. The
standard Flory theory [12] (see Section 2.2) modi�ed to apply to a semi-�exible chain is based on
writing the free energy F (in units of kBT ) as a sum of two terms

F � R2

‘e�L
+ v2R3

(
L=‘e�
R3

)2

; (3.17)

where the �rst term is the entropic elastic energy associated with swelling a semi-�exible polymer
chain to a radius R and the second term is the second-virial repulsive energy proportional to the
coe�cient v2 and the segment density squared. It is integrated over the volume R3. The optimal
radius R is calculated by minimizing this free energy and gives the swollen radius

R ∼ (v2=‘e� )1=5L� ; (3.18)

with �= 3=5 which is the semi-�exible analogue of Eq. (2.8). This radius is only realized above a
minimal chain length L¿Lsw � ‘7e� =v

2
2 ∼ ‘3e� =d

2. For elongated segments with ‘e��d, or, equiva-
lently, for a highly charged PE, we obtain an intermediate range of chain lengths ‘e� ¡L¡Lsw for
which the chain is predicted to be Gaussian and the chain radius scales as

R ∼ ‘1=2e� L1=2 : (3.19)

For charged chains, the e�ective rod diameter d is given in low-salt concentrations by the screening
length, i.e. d ∼ �−1 plus logarithmic corrections [67,68]. The condition to have a Gaussian scaling
regime, Eq. (3.19), thus becomes ‘e���−1. For the case 


√
‘B‘0 ¡ 1, where the chain crumples and

locally forms Gaussian blobs, a similar calculation to the one outlined here leads to the condition
‘KK ¿�−1 in order to see a Gaussian regime between the persistent and the swollen one. Within
the persistent and the Gaussian-persistent scaling regimes depicted in Fig. 8 the e�ective persistence
length is dominated by the electrostatic contribution and given by Eqs. (3.11) and (3.14), respectively,
which in turn are always larger than the screening length �−1. It follows that a Gaussian scaling
regime, Eq. (3.19), always exists between the persistent regime where R ∼ L and the asymptotically
swollen scaling regime, Eq. (3.18). This situation is depicted in Fig. 7 for the Gaussian-persistent
scaling regime, where the chain shows two distinct Gaussian scaling regimes at the small and large
length scales. This multi-hierarchical scaling structure is only one of the many problems one faces
when trying to understand the behavior of PE chains, be it experimentally, theoretically, or by
simulations.

A di�erent situation occurs when the polymer backbone is under bad-solvent conditions, in which
case an intricate interplay between electrostatic chain swelling and short-range collapse occurs [69].
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Quite recently, this interplay was theoretically shown to lead to a Rayleigh instability in the form of
a necklace structure consisting of compact globules connected by stretched chain segments [70–74].
Small-angle X-ray scattering on solvophobic PEs in a series of polar organic solvents of various
solvent quality could qualitatively con�rm these theoretical predictions [75].

3.5. Dilute polyelectrolyte solutions

In accordance with our discussion for neutral chains in Section 2.4, the dilute regime is de�ned by
cm ¡c∗m, where cm denotes the monomer concentration (per unit volume) and c∗m is the concentration
where individual chains start to overlap. Using Eq. (2.19), for rigid polymers with �=1 the overlap
concentration scales as c∗m ∼ a−3N−2 and decreases strongly as N increases. This means that the
dilute regime for semi-�exible PE chains corresponds to extremely low monomer concentrations.
For example taking a Kuhn length a ≈ 0:25 nm (corresponding to the projected length of two
carbon bonds) and a polymerization index of N = 104, the overlap concentration becomes c∗m ≈
6× 10−7 nm−3 ≈ 10−3 mM, which is a very small concentration.

The osmotic pressure (rescaled by kBT ) in the dilute regime in the limit cm → 0 is given by

� =
fcm
z

+
cm
N

; (3.20)

and consists of the ideal pressure of non-interacting counterions (�rst term) and polymer coils
(second term). Note that since the second term scales as N−1, it is quite small for large N and
can be neglected. Hence, the main contribution to the osmotic pressure comes from the counterion
entropy. This entropic term explains also why charged polymers can be dissolved in water even
when their backbone is quite hydrophobic. Precipitation of the PE chains will also mean that the
counterions are con�ned within the precipitate. The entropy loss associated with this con�nement is
too large and keeps the polymers dispersed in solution. In contrast, for neutral polymers there are no
counterions in solution. Only the second term in the osmotic pressure exists and contributes to the low
osmotic pressure of these polymer solutions. In addition, this explains the trend towards precipitation
even for very small attractive interactions between neutral polymers: The entropic pressure scale as
cm=N , while the enthalpic pressure which favors precipitation scales as −c2m with no additional N
dependence, thus dominating the entropic term for large N [14].

3.6. Semi-dilute polyelectrolyte solutions

In the semi-dilute concentration regime, cm ¿c∗m, di�erent polymer coils are strongly overlapping,
but the polymer solution is still far from being concentrated. This means that the volume fraction
of the monomers in solution is much smaller than unity, a3cm�1. In this concentration range,
the statistics of counterions and polymer �uctuations are intimately connected. One example where
this feature is particularly prominent is furnished by neutron and X-ray scattering from semi-dilute
PE solutions [76–82]. The structure factor S(q) shows a pronounced peak, which results from a
competition between the connectivity of polymer chains and the electrostatic repulsion between
charged monomers, as will be discussed below. An important length scale, schematically indicated in
Fig. 9, is the mesh-size or correlation length �b, which measures the length below which entanglement
e�ects between di�erent chains are unimportant. The mesh size can be viewed as the polymer (blob)
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Fig. 9. Schematic view of the PE chain structure in the semi-dilute concentration range. The mesh size �b is about equal
to the persistence length ‘sdOSF and to the screening length �−1 (if no salt is added to the system).

scale below which single-chain statistics are valid. A semi-dilute solution can be roughly thought of
as being composed of a close-packed array of polymer blobs of size �b.
The starting point for the present discussion is the screened interaction between two charges

immersed in a semi-dilute PE solution containing charged polymers, their counterions and, possibly,
additional salt ions. Screening in this case is produced not only by the ions, but also by the charged
chain segments which can be easily polarized and shield any free charges.

Using the random-phase approximation (RPA), the e�ective Debye–H�uckel (DH) interaction can
be written in Fourier space as [83,84]

vRPA(q) =
1 + v2cmS0(q)

cmf2S0(q) + v−1
DH(q) + v2cmv−1

DH(q)S0(q)
; (3.21)

recalling that cm is the average density of monomers in solution and f is the fraction of charged
monomers on the PE chains. The second virial coe�cient of non-electrostatic monomer–monomer
interactions is v2 and the single-chain form factor (discussed below) is denoted by S0(q). In the
case where no chains are present, cm = 0, the RPA expression reduces to vRPA(q) = vDH(q), the
Fourier-transform of the Debye–H�uckel potential of Eq. (3.3), given by

vDH(q) =
4�‘B

q2 + �2 : (3.22)
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As before, �−1 is the DH screening length, which is due to all mobile ions. We can write �2=�2
salt +

4�‘Bfcm, where �2
salt =8�z2‘Bcsalt describes the screening due to added z:z salt of concentration csalt,

and the second term describes the screening due to the counterions of the PE monomers. Within the
same RPA approximation the monomer–monomer structure factor S(q) of a polymer solution with
monomer density cm is given by [83,84]

S−1(q) = f2vDH(q) + S−1
0 (q)=cm + v2 : (3.23)

The structure factor (or scattering function) depends only on the form factor of an isolated, non-
interacting polymer chain, S0(q), the second virial coe�cient v2, the fraction f of charged monomers,
and the interaction between monomers, which in the present case is taken to be the Debye–H�uckel
potential vDH(q). The structure factor of a non-interacting semi-�exible polymer is characterized,
in addition to the monomer length b, by its persistence length ‘e� . In general, this form factor is
a complicated function which cannot be written down in closed form [15,85]. However, one can
separate between three di�erent ranges of wavenumbers q, and within each range the form factor
shows a rather simple scaling behavior, namely

S−1
0 (q) �




N−1 for q2 ¡ 6=Nb‘e� ;

q2b‘e� =6 for 6=Nb‘e� ¡q2 ¡ 36=�2‘2e� ;

qb=� for 36=�2‘2e� ¡q2 :

(3.24)

For small wavenumbers the polymer acts like a point scatterer, while in the intermediate wavenumber
regime the polymer behaves like a �exible, Gaussian polymer, and for the largest wavenumbers the
polymer can be viewed as a sti� rod.

One of the most interesting features of semi-dilute PE solutions is the fact that the structure factor
S(q) shows a pronounced peak. For weakly charged PEs, the peak position scales as q ∼ c1=4m with
the monomer density [79], in agreement with the above random-phase approximation (RPA) [83,84]
and other theoretical approaches [86,87]. We now discuss the scaling of the characteristic scattering
peak within the present formalism. The position of the peak follows from the inverse structure factor,
Eq. (3.23), via 9S−1(q)=9q= 0, which leads to the equation

q2 + �2
salt + 4�‘Bfcm =

(
8�q‘Bf2cm
9S−1

0 (q)=9q

)1=2

: (3.25)

In principle, there are two distinct scaling behaviors possible for the peak, depending on whether
the chain form factor of Eq. (3.24) exhibits �exible-like or rigid-like scaling [88]. We concentrate
now on the �exible case, i.e. the intermediate q-range in Eq. (3.24). A peak is only obtained if the
left-hand side of Eq. (3.25) is dominated by the q-dependent part, i.e. if q2 ¿�2

salt + 4�‘Bfcm. In
this case, the peak of S(q) scales as

q∗ �
(
24�‘Bf2cm

b‘e�

)1=4

; (3.26)

in agreement with experimental results.
In Fig. 10a we show density-normalized scattering curves for a PE solution characterized by

the persistence length ‘e� = 1 nm (taken to be constant and thus independent of the monomer
concentration), with monomer length b=0:38 nm (as appropriate for Poly-DADMAC), polymerization
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Fig. 10. (a) RPA prediction for the rescaled structure factor S(q)=cm of a semi-dilute PE solution with persistence length
‘e� = 1 nm, monomer length b=0:38 nm, polymerization index N =500 and charge fraction f=0:5 in the salt-free case.
The monomer densities are (from bottom to top) cm =1 M; 0:3 M; 10 mM; 3 mM; 1 mM; 0:3 mM. (b) For the same series
of cm values as in (a) the structure factor is multiplied by the wavenumber q. The semi-�exibility becomes more apparent
because for large q the curves tend towards a constant.

index N = 500, charge fraction f = 0:5 and with no added salt. As the monomer density decreases
(bottom to top in the �gure), the peak moves to smaller wavenumbers and sharpens, in agreement
with previous implementations of the RPA. In Fig. 10b we show the same data in a di�erent
representation. Here we clearly demonstrate that the large-q region already is dominated by the 1=q
behavior of the single-chain structure factor, S0(q). Since neutron scattering data easily extend to
wavenumbers as high as q ∼ 5 nm−1, the sti�-rod like behavior in the high q-limit, exhibited on
such a plot, will be important in interpreting and �tting experimental data even at lower q-values.

In a semi-dilute solution there are three di�erent, and in principle, independent length scales: The
mesh size �b, the screening length �−1, and the persistence length ‘e� . In the absence of added salt,
the screening length scales as

�−1 ∼ (‘Bfcm)−1=2 : (3.27)

Assuming that the persistence length is larger or of the same order of magnitude as the mesh
size, as is depicted in Fig. 9, the polymer chains can be thought of as straight segments between
di�erent cross-links. Denoting the number of monomers inside a correlation blob as g, this means
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that �b ∼ bg. The average monomer concentration scales as cm ∼ g=�3b, from which we conclude that

�b ∼ (bcm)−1=2 : (3.28)

Finally, the persistence length within a semi-dilute PE solution can be calculated by considering the
electrostatic energy cost for slightly bending a charged rod. In PE solutions, it is important to include
in addition to the screening by salt ions also the screening due to charged chain segments. This can
be calculated by using the RPA interaction, Eq. (3.21). Since the screening due to polymer chains
is scale dependent and increases for large separations, a q-dependent instability is encountered and
leads to a persistence length [88]

‘sdOSF ∼ (bcm)−1=2 ; (3.29)

where the ‘sd’ superscript stands for ‘semi-dilute’. This result is a generalization of the OSF result
for a single chain, Eq. (3.11), and applies to semi-dilute solutions. Comparing the three lengths,
we see that

�b ∼ ‘sdOSF ∼
√

‘Bf
b

�−1 : (3.30)

Since the prefactor
√

‘Bf=b for synthetic fully charged polymers is roughly of order unity, one
�nds that for salt-free semi-dilute PE solutions, all three length-scales scale in the same way with
cm, namely as ∼ c−1=2

m . This scaling relation has been found �rst in experiments [76–78] and was later
con�rmed by theoretical calculations [89,90]. The screening e�ects due to neighboring PE chains,
which form the basis for the reduction of the electrostatic PE sti�ness in a semi-dilute solution, have
also been observed in computer simulations [91–94].

4. General considerations on adsorption

4.1. Adsorption and depletion

Polymers can adsorb spontaneously from solution onto surfaces if the interaction between the
polymer and the surface is more favorable than that of the solvent with the surface. For example,
a charged polymer like poly-styrene-sulfonate (PSS) is soluble in water but will adsorb on various
hydrophobic surfaces and on the water/air interface [95]. This is the case of equilibrium adsorption
where the concentration of the polymer monomers increases close to the surface with respect to
their concentration in the bulk solution. We discuss this phenomenon at length both on the level of
a single polymer chain (valid only for extremely dilute polymer solutions), Sections 5 and 6, and for
polymers adsorbing from (semi-dilute) solutions, Sections 7 and 8. In Fig. 11a we show schematically
the volume fraction pro�le �(x) of monomers as a function of the distance x from the adsorbing
substrate. In the bulk, namely far away from the substrate surface, the volume fraction of the
monomers is �b, whereas at the surface, the corresponding value is �s ¿�b. The theoretical models
address questions in relation to the polymer conformations at the interface, the local concentration
of polymer in the vicinity of the surface and the total amount of adsorbing polymer chains. In turn,
the knowledge of the polymer interfacial behavior is used to calculate thermodynamical properties
like the surface tension in the presence of polymer adsorption.
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Fig. 11. Schematic pro�le of the monomer volume fraction �(x) as a function of the distance x from a �at substrate as
appropriate (a) for the case of adsorption, where the substrate attracts monomers, leading to an increase of the polymer
concentration close to the surface; and, (b) for the case of depletion, where the substrate repels the monomers leading
to a depression of the polymer concentration close to the surface. The bulk volume fraction, i.e., the monomer volume
fraction in�nitely far away from the surface is denoted by �b, and �s denotes the surface volume fraction right at the
substrate surface.

The opposite case of depletion can occur when the monomer–surface interaction is less favorable
than the solvent–surface interaction, as entropy of mixing will always disfavor adsorption. This
is, e.g., the case for polystyrene in toluene which is depleted from a mica substrate [96]. The
depletion layer is de�ned as the layer adjacent to the surface from which the polymer is depleted.
The concentration in the vicinity of the surface is lower than the bulk value, as shown schematically
in Fig. 11b.

4.2. Surface characteristics

Clearly, any adsorption process will be sensitive to the type of surface and its internal structure.
As a starting point for adsorption problems we assume that the solid surface is atomically smooth,
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water

water
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Fig. 12. Di�erent possibilities of substrates: (a) the prototype, a �at, homogeneous substrate; (b) a corrugated, rough
substrate. Note that experimentally, every substrate exhibits a certain degree of roughness on some length scale; (c) a
spherical adsorption substrate, such as a colloidal particle. If the colloidal radius is much larger than the polymer size,
curvature e�ects (which means the deviation from the planar geometry) can be neglected; (d) a �at but chemically hetero-
geneous substrate; (e) a liquid/liquid “soft” interface. For example between water and oil; (f) a lipid bilayer (membrane)
which can have both shape undulations and lateral composition variations.

�at, and homogeneous, as shown in Fig. 12a. This ideal solid surface is impenetrable to the chains
and imposes on them a surface interaction. The surface potential can be either short-ranged, af-
fecting only monomers which are in direct contact with the substrate or in close vicinity of the
surface. The surface can also have a longer range e�ect, like van der Waals, or electrostatic interac-
tions if it is charged. Interesting extensions beyond ideal surface conditions are expected in several
cases: (i) rough or corrugated surfaces, such as depicted in Fig. 12b; (ii) surfaces that are curved,
e.g., adsorption on spherical colloidal particles, see Fig. 12c; (iii) substrates which are chemically
inhomogeneous, i.e., which show some lateral organization, as shown schematically in Fig. 12d;
(iv) polymer adsorbing on “soft” and “�exible” interfaces between two immiscible �uids or at the
liquid/air surface, Fig. 12e; and, (v) surfaces that have internal degrees of freedom like surfactant
monolayers or amphiphilic bilayer (membrane), Fig. 12f. We brie�y mention those situations in
Sections 11 and 12.
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Fig. 13. The di�erent adsorption mechanisms discussed in this chapter: (a) adsorption of a homopolymer, where each
monomer has the same interaction with the substrate. The ‘tail’, ‘train’ and ‘loop’ sections of the adsorbing chain are
shown; (b) grafting of an end-functionalized polymer via a chemical or a physical bond, and; (c) adsorption of a diblock
copolymer where one of the two block is attached to the substrate surface, while the other is not.

4.3. Surface–polymer interactions

Equilibrium adsorption of polymers is only one of the methods used to create a change in the
polymer concentration close to a surface. For an adsorbed polymer, it is interesting to look at the
detailed conformation of a single polymer chain at the substrate. One distinguishes polymer sections
that are bound to the surface (trains), sections that form loops, and end sections that can form
dangling tails. This is schematically depicted in Fig. 13a.

We mention two other methods to produce polymer layers at surfaces for polymers which do not
adsorb spontaneously on a given surface.

(i) In the �rst method, the polymer is chemically attached (grafted) to the surface by one of
the chain ends, as shown in Fig. 13b. In good solvent conditions the polymer chains look like
“mushrooms” on the surface when the distance between grafting points is larger than the typical
size of the chains. In some cases, it is possible to induce a much higher grafting density, resulting
in a polymer “brush” extending in the perpendicular direction from the surface, as is discussed in
detail in Section 13.

(ii) A variant on the grafting method is to use a diblock copolymer made out of two distinct
blocks, as shown in Fig. 13c. The �rst block is insoluble and is attracted to the substrate. Thus,
it acts as an “anchor” �xing the chain to the surface; it is drawn as a thick line in Fig. 13c. It
should be long enough to cause irreversible �xation on the surface. The other block is a soluble
one (the “buoy”), forming the brush layer (or “mushroom”). For example, �xation on hydrophobic
surfaces from a water solution can be made using a polystyrene–polyethylene oxide (PS–PEO)
diblock copolymer. The PS block is insoluble in water and attracted towards the substrate, whereas
the PEO forms the brush layer. The process of diblock copolymer �xation has a complex dynamics
during the formation stage but is very useful in applications [97]. A related application is to employ
a polyethylene glycol (PEG) polymer connected to a lipid (PEG–lipid) chain and use the lipid to
anchor the PEG chain onto a lipid membrane [98].

There are a variety of other adsorption phenomena not discussed in this review. For example the
in�uence of di�erent polymer topologies on the adsorption characteristics. In Ref. [99] the adsorption
of star polymers, where a number of polymer chains are connected to one center, is discussed. The
adsorption of ring polymers has also received considerable attention [100,101]. Another important
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class of polymers is made up of random copolymers, which are used to manipulate the interfacial
properties of a variety of systems. The adsorption of such random copolymers has been studied at
solid substrates [102–104] and at penetrable interfaces [105–109].

5. Adsorption of a single neutral chain

Let us consider now the interaction of a single polymer chain with a solid substrate. The main
e�ects particular to the adsorption of polymers (as opposed to the adsorption of simple molecules)
are due to the reduction of conformational states of the polymer at the substrate, which is caused
by the impenetrability of the substrate for monomers [110–115]. The second factor determining the
adsorption behavior is the substrate–monomer interaction. Typically, for the case of an adsorbing
substrate, the interaction potential V (x) (measured in units of kBT ) between the substrate and a
single monomer has a form similar to the one shown in Fig. 14, where x measures the distance of
the monomer from the substrate surface,

V (x) �




∞ for x¡ 0 ;

−V0 for 0¡x¡B ;

−wx−
 for x¿B :

(5.1)

The separation of V (x) into three parts is done for convenience. It consists of a hard wall at x= 0,
which embodies the impenetrability of the substrate, i.e., V (x) = ∞ for x¡ 0. For positive x we

x

V(x)

-V0

B

-wx−τ

Fig. 14. A typical surface potential felt by a monomer as a function of the distance x from an adsorbing surface. First
the surface is impenetrable. Then, the attraction is of strength V0 and range B. For separations larger than B, typically a
long-ranged tail exists and is modelled by −wx−
.
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Fig. 15. Schematic drawing of single-chain adsorption. (a) In the limit of strong coupling, the polymer decorrelates into
a number of blobs (shown as dotted circles) and the chain is con�ned to a layer thickness D, of the same order of
magnitude as the potential range B; (b) in the case of weak coupling, the width of the polymer layer D is much larger
than the interaction range B and the polymer forms large blobs, within which the polymer is not perturbed by the surface.

assume the potential to be given by an attractive well of depth V0 and width B. At large distances,
x¿B, the potential can be modelled by a long-ranged attractive tail decaying as V (x) ∼ −wx−
.

For the important case of (non-retarded) van-der-Waals interactions between the substrate and
the polymer monomers, the potential shows a decay governed by the exponent 
 = 3 and can be
attractive or repulsive, depending on the solvent, the chemical nature of the monomers and the
substrate material. The decay power 
 = 3 follows from the van-der-Waals pair interaction, which
decays as the inverse sixth power with distance, by integrating over the three spatial dimensions of
the substrate, which is supposed to be a semi-in�nite half-space [116].
The strength of the potential well is measured by V0, i.e., by comparing the potential depth with

the thermal energy kBT . For strongly attractive potentials, i.e., for V0 large or, equivalently, for
low temperatures, the polymer is strongly adsorbed and the thickness of the adsorbed layer, D,
approximately equals the potential range B. The resulting polymer structure is shown in Fig. 15a,
where the width of the potential well, B, is denoted by a broken line.

For weakly attractive potentials, or for high temperatures, we anticipate a weakly adsorbed poly-
mer layer, with a di�use layer thickness D much larger than the potential range B. This structure is
depicted in Fig. 15b. For both cases shown in Fig. 15, the polymer conformations are unperturbed
on a spatial scale of the order of D; on larger length scales, the polymer is broken up into decorre-
lated polymer blobs [14,15], which are denoted by dotted circles in Fig. 15. The idea of introducing
polymer blobs is related to the fact that very long and �exible chains have di�erent spatial arrange-
ment at small and large length scales. Within each blob the short range interaction is irrelevant,
and the polymer structure inside the blob is similar to the structure of an unperturbed polymer far
from the surface. Since all monomers are connected, the blobs themselves are linearly connected and
their spatial arrangement represents the behavior on large length scales. In the adsorbed state, the
formation of each blob leads to an entropy loss of the order of one kBT (with a numerical prefactor
of order unity that is neglected in this scaling argument), so the total entropy loss of a chain of
N monomers is Frep ∼ N=g in units of kBT , where g denotes the number of monomers inside
each blob.

Using the scaling relation D � ag� for the blob size dependence on the number of monomers
g, Eq. (2.8), the entropy penalty for the con�nement of a polymer chain to a width D above the
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surface can be written as [117]:

Frep � N
( a
D

)1=�
: (5.2)

The adsorption behavior of a polymer chain results from a competition between the attractive po-
tential V (x), which tries to bind the monomers to the substrate, and the entropic repulsion Frep,
which tries to maximize entropy, and favors a delocalized state where a large fraction of monomers
is located farther away from the surface.

It is of interest to compare the adsorption of long-chain polymers with the adsorption of small
molecular solutes. Small molecules adsorb onto a surface only if there is a bulk reservoir with
non-zero concentration in equilibrium with the surface. An in�nite polymer chain N → ∞ behaves
di�erently as it remains adsorbed also in the limit of zero bulk concentration. This corresponds
to a true thermodynamic phase transition in the limit N → ∞ [118]. For �nite polymer length,
however, the equilibrium adsorption resembles that of small molecules. Only a non-zero bulk polymer
concentration will lead to adsorption of �nite-length polymer chains on the substrate. Indeed, as all
real polymers are of �nite length, the adsorption of single polymers is never observed in practice.
However, for fairly long polymers, the desorption of a single polymer is almost a ‘true’ phase
transition, and corrections due to �nite (but long) polymer length are often below experimental
resolution.

5.1. Mean-�eld regime

Fluctuations of the local monomer concentration are of importance for polymers at surfaces because
of the large number of possible chain conformations. These �uctuations are treated theoretically
using �eld-theoretic or transfer-matrix techniques. In a �eld-theoretic formalism, the problem of
accounting for di�erent polymer conformations is converted into a functional integral over di�erent
monomer-concentration pro�les [15]. Within transfer-matrix techniques, the Markov-chain property
of ideal polymers is exploited to re-express the conformational polymer �uctuations as a product of
matrices [119].

However, there are cases where �uctuations in the local monomer concentration become
unimportant. Then, the adsorption behavior of a single polymer chain is obtained using simple
mean-�eld theory arguments. Mean-�eld theory is a very useful approximation applicable in
many branches of physics, including polymer physics. In a nutshell, each monomer is placed in a
“�eld”, generated by the external potential plus the averaged interaction with all the other
monomers.

The mean-�eld theory can be justi�ed for two cases: (i) a strongly adsorbed polymer chain, i.e., a
polymer chain which is entirely con�ned inside the potential well; and, (ii) the case of long-ranged
attractive surface potentials. To proceed, we assume that the adsorbed polymer layer is con�ned
with an average thickness D, as depicted in Fig. 15a or b. Within mean-�eld theory, the polymer
chain feels an average of the surface potential, 〈V (x)〉, which is replaced by the potential evaluated
at the average distance from the surface, 〈x〉 � D=2. Therefore, 〈V (x)〉 � V (D=2). Further stringent
conditions when such a mean-�eld theory is valid are detailed below. The full free energy of one
chain, F, of polymerization index N , can be expressed as the sum of the repulsive entropic term,
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Eq. (5.2), and the average potential

F � N
( a
D

)1=�
+ NV (D=2) : (5.3)

Let us consider �rst the case of a strongly adsorbed polymer, con�ned to a potential well of depth
∼ V0. In this case the potential energy per monomer becomes V (D=2) � −V0. Comparing the
repulsive entropic term with the potential term, we �nd the two terms to be of equal strength for a
well depth V ∗

0 � (a=D)1=�. Hence, the strongly adsorbed state, which is depicted in Fig. 15a, should
be realized for a high attraction strength V0 ¿V ∗

0 . For intermediate attraction strength, V0 ≈ V ∗
0 , the

adsorbed chain will actually be adsorbed in a layer of width D larger than the potential width B, as
shown in Fig. 15b, which will be discussed further below. Since the potential depth V0 is measured
in units of kBT , it follows that at high temperatures it becomes increasingly di�cult to con�ne
the chain. This can be seen from expressing the bare potential depth as Ṽ 0 = kBTV0, so that the
critical potential depth becomes Ṽ ∗

0 � kBT (a=D)1=� and thus increases linearly with temperature.
In fact, for an ideal chain, with � = 1=2, the resulting scaling relation for the critical well depth,
V ∗
0 ∼ (a=D)2, agrees with exact transfer-matrix predictions for the adsorption threshold in a square-

well potential [120].
We turn now to the case of a weakly adsorbed polymer layer. The potential depth is smaller than

the threshold, i.e., V0 ¡V ∗
0 , and the stability of the weakly adsorbed polymer chain, depicted in

Fig. 15b, has to be examined. The thickness D of this polymer layer follows from the minimization
of the free energy, Eq. (5.3), with respect to D, where we use the asymptotic form of the surface
potential, Eq. (5.1), for large separations. The result is

D �
(
a1=�

w

)�=(1−�
)

: (5.4)

Under which circumstances is the prediction Eq. (5.4) correct, at least on a qualitative level? It turns
out that the prediction for D, Eq. (5.4), obtained within the simple mean-�eld theory, is correct if
the attractive tail of the substrate potential in Eq. (5.1) decays for large values of x slower than
the entropic repulsion in Eq. (5.2) [121]. In other words, the mean-�eld theory is valid for weakly
adsorbed polymers only for 
¡ 1=�. This can already be guessed from the functional form of the
layer thickness, Eq. (5.4), because for 
¿ 1=� the layer thickness D goes to zero as w diminishes.
Clearly an unphysical result. For ideal polymers (theta solvent, � = 1=2), the validity condition is

¡ 2, whereas for swollen polymers (good solvent conditions, � = 3=5), it is 
¡ 5=3. For most
interactions (including van der Waals interactions with 
 = 3) this condition on 
 is not satis�ed,
and �uctuations are in fact important, as is discussed in the next section.

There are two notable exceptions. The �rst is for charged polymers close to an oppositely charged
surface, in the absence of salt ions. Since the attraction of the polymer to an in�nite, planar and
charged surface is linear in x, the interaction is described by Eq. (5.1) with an exponent 
 = −1,
and the inequality 
¡ 1=� is satis�ed. For charged surfaces, Eq. (5.4) predicts the thickness D to
increase to in�nity as the temperature increases or as the attraction strength w (proportional to the
surface charge density) decreases. The resultant exponents for the scaling of D follow from Eq.
(5.4) and are D ∼ w−1=3 for ideal chains, and D ∼ w−3=8 for swollen chains [122,123]. This case
will be considered in more detail in Section 6.

A second example where the mean-�eld theory can be used is the adsorption of polyampholytes
on charged surfaces [124,125]. Polyampholytes are polymers consisting of negatively and positively
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charged monomers. In cases where the total charge on such a polymer adds up to zero, it might seem
that the interaction with a charged surface should vanish. However, it turns out that local charge
�uctuations (i.e., local spontaneous dipole moments) lead to a strong attraction of polyampholytes
to charged substrates. In the absence of salt this attractive interaction has an algebraic decay with
an exponent 
 = 2 [124]. On the other hand, in the presence of salt, the e�ective interaction is
exponentially screened, yielding a decay faster than the �uctuation repulsion, Eq. (5.2). Nevertheless,
the mean-�eld theory, embodied in the free energy expression Eq. (5.3), can be used to predict the
adsorption phase behavior within the strongly adsorbed case (i.e., far from any desorption transition)
[126–129].

5.2. Fluctuation dominated regime

Here we consider the weakly adsorbed case for substrate potentials which decay (for large sepa-
rations from the surface) faster than the entropic repulsion Eq. (5.2), i.e., 
¿ 1=�. This applies, e.g.,
to van-der-Waals attractive interaction between the substrate and monomers, screened electrostatic
interactions, or any other short-ranged potential. In this case, �uctuations play a decisive role. In
fact, for ideal chains, it can be rigorously proven (using transfer-matrix techniques) that all poten-
tials decaying faster than x−2 for large x have a continuous adsorption transition at a �nite critical
temperature T ∗ [121]. This means that the thickness of the adsorbed polymer layer diverges as

D ∼ (T ∗ − T )−1 (5.5)

for T → T ∗ [130]. The power law divergence of D is universal. Namely, it does not depend on the
speci�c functional form and strength of the potential as long as they satisfy the above condition.

The case of non-ideal chains is much more complicated [131]. First progress has been made by
de Gennes who recognized the analogy between the partition function of a self-avoiding chain and
the correlation function of an n-component spin model in the zero-component (n → 0) limit [132].
The adsorption behavior of non-ideal chains has been treated by �eld-theoretic methods using the
analogy to surface critical behavior of magnets (again in the n → 0 limit) [2,133]. The resulting
behavior is similar to the ideal-chain case and shows an adsorption transition at a �nite temperature,
and a continuous increase towards in�nite layer thickness characterized by a power law divergence
as function of T − T ∗ [133].

The complete behavior for ideal and swollen chains can be described using scaling ideas in the
following way. The entropic loss due to the con�nement of the chain to a region of thickness D
close to the surface is again given by Eq. (5.2). Assuming that the adsorption layer is much thicker
than the range of the attractive potential V (x), the attractive potential can be assumed to be localized
at the substrate surface V (x) � V (0). The attractive free energy of the chain due to the substrate
surface can then be written as [134]

Fatt � −
̃
(T ∗ − T )

T
Nf1 =−
1a2Nf1 ; (5.6)

where f1 is the probability to �nd a monomer at the substrate surface and 
̃ is a dimensionless
interaction parameter. Two surface excess energies are typically being used: 
1 = 
̃(T ∗ − T )=Ta2 is
the excess energy per unit area, while 
1a2 is the (dimensionless) excess energy per monomer at the
surface. Both are positive for the attractive case (adsorption) and negative for the depletion case.

38 R.R. Netz, D. Andelman / Physics Reports 380 (2003) 1–95

The dependence of 
1 on T in Eq. (5.6) causes the attraction to vanish at a critical temperature,
T = T ∗, in accord with our expectations.

The contact probability for a swollen chain with the surface, f1, can be calculated as follows
[135]. In order to force the chain of polymerization index N to be in contact with the surface, one
of the chain ends is pinned to the substrate. The number of monomers which are in contact with the
surface can be calculated using �eld-theoretic methods and is given by N’, where ’ is called the
surface crossover exponent [2,133]. The fraction of bound monomers follows to be f1 ∼ N’−1, and
thus goes to zero as the polymer length increases, for ’¡ 1. Now instead of speaking of the entire
chain, we refer to a ‘chain of blobs’ (see Fig. 15) adsorbing on the surface, each blob consisting of
g monomers. We proceed by assuming that the size of an adsorbed blob D scales with the number
of monomers per blob g similarly as in the bulk, D ∼ ag�, as is indeed con�rmed by �eld theoretic
calculations. The fraction of bound monomers can be expressed in terms of D and is given by

f1 ∼
(
D
a

)(’−1)=�

: (5.7)

Combining the entropic repulsion, Eq. (5.2), and the substrate attraction, Eqs. (5.6)–(5.7), the total
free energy is given by

F � N
( a
D

)1=� − N

̃(T ∗ − T )

T

(
D
a

)(’−1)=�

: (5.8)

Minimization with respect to D leads to the �nal result

D � a
[

̃(T ∗ − T )

T

]−�=’

� a
(
a2
1

)−�=’
: (5.9)

For ideal chains, one has ’= �= 1=2, and thus we recover the prediction from the transfer-matrix
calculations, Eq. (5.5). For non-ideal chains, the crossover exponent ’ is in general di�erent from
the swelling exponent �. However, extensive Monte Carlo computer simulations [133] and recent
�eld-theoretic calculations [136] point to a value for ’ close to �, such that the adsorption exponent
�=’ appearing in Eq. (5.9) is close to unity, for polymers embedded in three-dimensional space.

A further point which has been calculated using �eld theory is the behavior of the monomer
volume fraction �(x) close to the substrate. Rather general arguments borrowed from the theory of
critical phenomena suggest a power-law behavior for �(x) at su�ciently small distances from the
substrate [133,135,137]

�(x) � (x=a)−m�s ; (5.10)

recalling that the monomer density is related to �(x) by cm(x) = �(x)=a3.
In the following, we relate the so-called proximal exponent m with the two other exponents

introduced above, � and ’. First note that the surface value of the monomer volume fraction,
�s = �(x ≈ a), for one adsorbed blob follows from the number of monomers at the surface per
blob, which is given by f1g, and the cross-section area of a blob, which is of the order of D2. The



R.R. Netz, D. Andelman / Physics Reports 380 (2003) 1–95 39

surface volume fraction is given by

�s ∼ f1ga2

D2 ∼ g’−2� : (5.11)

Using the scaling prediction Eq. (5.10), we see that the monomer volume fraction at the blob center,
x � D=2, is given by �(D=2) ∼ g’−2�(D=a)−m, which (again using D ∼ ag�) can be rewritten as
�(D=2) � g’−2�−m�.

On the other hand, at a distance D=2 from the surface, the monomer volume fraction should have
decayed to the average monomer volume fraction a3g=D3 ∼ g1−3� inside the blob since the statistics
of the chain inside the blob is like for a chain in the bulk. By direct comparison of the two volume
fractions, we see that the exponents ’ − 2� − m� and 1 − 3� have to match in order to have a
consistent result, yielding

m=
’+ �− 1

�
: (5.12)

For ideal chain (theta solvents), one has ’ = � = 1=2. Hence, the proximal exponent vanishes,
m = 0. This means that the proximal exponent has no mean-�eld analog, explaining why it was
discovered only within �eld-theoretic calculations [2,133]. In the presence of correlations (good
solvent conditions) one has ’ � � � 3=5 and thus m � 1=3.
Using D � ag� and Eq. (5.9), the surface volume fraction, Eq. (5.11), can be rewritten as

�s ∼
(
D
a

)(’−2�)=�

∼ (
a2
1

)(2�−’)=’ � a2
1 ; (5.13)

where in the last approximation appearing in Eq. (5.13) we used the fact that ’ � �. The last result
shows that the surface volume fraction within one blob can become large if the adsorption energy per
monomer, a2
1, measured in units of kBT , is of order unity. Experimentally, this is often the case,
and additional interactions (such as multi-body interactions) between monomers at the surface have
to be taken into account. Note that the polymer concentration in the adsorbed layer can become
so high that a transition into a glassy state is induced. This glassy state depends on the details
of the molecular interaction, which are not considered here. It should be kept in mind that such
high-concentration e�ects can slow down considerably the adsorption dynamics while prolonging
equilibration times [138].
After having discussed the adsorption behavior of a single chain, a word of caution is in order.

Experimentally, one never looks at single chains adsorbed to a surface. First, this is due to the fact
that one always works with polymer solutions, where there is a large number of polymer chains
contained in the bulk reservoir, even when the bulk monomer (or polymer) concentration is quite
low. Second, even if the bulk polymer concentration is very low, and in fact so low that polymers
in solution barely interact with each other, the surface concentration of polymer is enhanced relative
to that in the bulk. Hence, adsorbed polymers at the surface usually do interact with neighboring
chains, due to the higher polymer concentration at the surface [137].
Nevertheless, the adsorption behavior of a single chain serves as a basis and guideline for the

more complicated adsorption scenarios involving many-chain e�ects. It will turn out that the scaling
of the adsorption layer thickness D and the proximal volume fraction pro�le, Eqs. (5.9) and (5.10),
are not a�ected by the presence of other chains. This �nding as well as other many-chain e�ects on
polymer adsorption is the subject of Section 7.
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6. Adsorption of a single polyelectrolyte chain

After reviewing bulk properties of PE solutions we address the complete adsorption diagram of a
single semi-�exible PE on an oppositely charged substrate. In contrast to the adsorption of neutral
polymers, the resulting phase diagram shows a large region where the adsorbed polymer is �attened
out on the substrate and creates a dense adsorption layer.

The results on single PE adsorption summarized in this section are most relevant to the adsorp-
tion of highly charged synthetic PEs from dilute solutions [139–144] or the adsorption of rather
sti� charged biopolymers such as DNA [145–147]. In all these experiments, the adsorbed phases
can be quite dilute, and the description of a single adsorbing polymer is a good starting point. Re-
peated adsorption of anionic and cationic PEs can lead to well characterized multilayers on planar
[148–151] and spherical substrates [152,153]. The adsorption of a single PE chain has been treated
theoretically employing a variety of methods [122,154–156]. The adsorption process results from a
subtle balance between electrostatic repulsion between charged monomers, leading to chain sti�en-
ing, and electrostatic attraction between the substrate and the polymer chain. It poses a much more
complicated problem than the corresponding adsorption of neutral polymers.

The adsorption of a single semi-�exible and charged chain on an oppositely charged plane [157]
can be treated as a generalization of the adsorption of �exible polymers [122]. A PE characterized
by a linear charge density 
, is subject to an electrostatic potential created by 	, the homogeneous
surface charge density (per unit area). Because this potential is attractive for an oppositely charged
substrate, we consider it as the driving force for the adsorption. E�ects due to bad solvent [158]
and more complex interactions are neglected. One example for the latter are interactions due to
the dielectric discontinuity at the substrate surface and to the impenetrability of the substrate for
salt ions. 1

Within the linearized DH theory, the electrostatic potential of a homogeneously charged plane is
in units of kBT

Vplane(x) = 4�‘B	�−1e−�x : (6.1)

Assuming that the polymer is adsorbed over a layer of width D smaller than the screening length
�−1, the electrostatic attraction force per monomer unit length can be written as

f̂ att =−4�‘B	
 : (6.2)

For simplicity, we neglect non-linear e�ects due to counterion condensation on the PE (as obtained
by the Manning theory, see Section 3.3) and on the surface (as obtained within the Gouy–Chapman
theory). Although these e�ects are important for highly charged system [159], most of the important
features of single PE adsorption already appear on the linearized Debye–H�uckel level.

Because of the con�nement in the adsorbed layer, the polymer feels an entropic repulsion. If
the layer thickness D is much smaller than the e�ective persistence length of the polymer, ‘e� , as
depicted in Fig. 16a, a new length scale, the so-called de�ection length �, enters the description of
the polymer statistics. The de�ection length � measures the average distance between two contact

1 An ion in solution has a repulsive interaction from the surface when the solution dielectric constant is higher than
that of the substrate. This e�ect can lead to desorption for highly charged PE chains. On the contrary, when the substrate
is a metal there is a possibility to induce PE adsorption on non-charged substrates or on substrates bearing charges of the
same sign as the PE. See Ref. [157] for more details.
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Fig. 16. (a) Schematic picture of the adsorbed polymer layer when the e�ective persistence length is larger than the layer
thickness, ‘e� ¿D. The distance between two contacts of the polymer with the substrate, the so-called de�ection length,
scales as � ∼ D2=3‘1=3e� . (b) Adsorbed layer for the case when the persistence length is smaller than the layer thickness,
‘e� ¡D. In this case the polymer forms a random coil with many loops and a description in terms of a �exible polymer
model becomes appropriate.

points of the polymer chain with the substrate. As shown by Odijk, the de�ection length scales as
� ∼ D2=3‘1=3e� and is larger than the layer thickness D but smaller than the persistence length ‘e�
[160]. The entropic repulsion follows in a simple manner from the de�ection length by assuming
that the polymer loses roughly a free energy of one kBT per de�ection length.
On the other hand, if D¿‘e� , as shown in Fig. 16b, the polymer forms a random coil with many

loops within the adsorbed layer. The chain can be viewed as an assembly of decorrelated blobs,
each of a chain length of L ∼ D2=‘e� , within which the polymer obeys Gaussian statistics. The
decorrelation into blobs has an entropic cost of roughly one kBT per blob. The entropic repulsion
force per polymer unit length is thus [160]

f̂ rep ∼
{

D−5=3‘−1=3
e� for D�‘e� ;

‘e�D−3 for D�‘e� ;
(6.3)

where we neglected a logarithmic correction factor which is not important for our scaling arguments.
As shown in the preceding section, the e�ective persistence length ‘e� depends on the screening
length and the line charge density; in essence, one has to keep in mind that ‘e� is larger than ‘0
for a wide range of parameters because of electrostatic sti�ening e�ects. 2

The equilibrium layer thickness follows from equating the attractive and repulsive forces,
Eqs. (6.2) and (6.3). For rather sti� polymers and small layer thickness, D¡�−1 ¡‘e� , we obtain

D ∼
(
‘B	
‘

1=3
e�

)−3=5
: (6.4)

2 The situation is complicated by the fact that the electrostatic contribution to the persistence length is scale dependent
and decreases as the chain is bent at length scales smaller than the screening length. This leads to modi�cations of the
entropic con�nement force, Eq. (6.3), if the de�ection length is smaller than the screening length. As can be checked
explicitly, all results reported here are not changed by these modi�cations.
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For a layer thickness corresponding to the screening length, D ≈ �−1, scaling arguments predict a
rather abrupt desorption transition [157]. This is in accord with previous calculations [161–165] and
simulations [166] for a semi-�exible polymer bound by short-ranged (square-well) potentials. Setting
D ∼ �−1 in Eq. (6.4), we obtain an expression for the adsorption threshold (for �‘e� ¿ 1)

	∗ ∼ �5=3


‘B‘
1=3
e�

: (6.5)

For 	¿	∗ the polymer is adsorbed and localized over a layer with a width smaller than the screening
length (and with the condition ‘e� ¿�−1 also satisfying D¡‘e� , indicative of a �at layer). As 	 is
decreased, the polymer abruptly desorbs at the threshold 	=	∗. In the Gaussian regime, the e�ective
persistence length ‘e� is given by the bare persistence length ‘0 and the desorption threshold is
obtained by replacing ‘e� by ‘0 in Eq. (6.5), i.e.

	∗ ∼ �5=3


‘B‘
1=3
0

: (6.6)

In the persistent regime, we have ‘e� ∼ ‘OSF with ‘OSF given by Eq. (3.11). The adsorption threshold
follows from Eq. (6.5) as

	∗ ∼ �7=3


5=3‘4=3B

: (6.7)

Finally, in the Gaussian-persistent regime, we have an e�ective line charge density from Eq. (3.13)
and a modi�ed persistence length, Eq. (3.14). For the adsorption threshold we obtain from Eq. (6.5)

	∗ ∼ �7=3‘5=90


5=9‘7=9B

: (6.8)

Let us now consider the opposite limit, ‘e� ¡�−1. 3 If the layer thickness is larger than the
persistence length but smaller than the screening length, ‘e� ¡D¡�−1, the prediction for D obtained
from balancing Eqs. (6.2) and (6.3) becomes

D ∼
(

‘e�
‘B	


)1=3

; (6.9)

which is in accord with our mean-�eld result in Eq. (5.4) for a linear potential characterized by

=−1 and an ideal polymer chain with �= 1=2. From the expression Eq. (6.9) we see that D has
the same size as the screening length �−1 for

	∗ ∼ ‘e��3


‘B
: (6.10)

This in fact denotes the location of a continuous adsorption transition at which the layer grows to
in�nity [157]. The scaling results for the adsorption behavior of a �exible polymer, Eqs. (6.9) and
(6.10), are in agreement with previous results [155].

3 From Eq. (6.4) we see that the layer thickness D is of the same order as ‘e� for ‘B	
‘2e� ∼ 1, at which point the
condition D�‘e� used in deriving Eq. (6.4) breaks down.
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Fig. 17. Adsorption scaling diagram shown on a log–log plot for (a) strongly charged surfaces, � = 	‘3=20 ‘1=2B ¿ 1 and
for (b) weakly charged surfaces �¡ 1. We �nd a desorbed regime, an adsorbed phase where the polymer is �at and
dense, and an adsorbed phase where the polymer shows loops. It is seen that a fully charged PE is expected to adsorb
as a �at layer, whereas charge-diluted PEs can form coiled layers with loops and dangling ends. The broken lines denote
the scaling boundaries of PE chains in the bulk as shown in Fig. 8. The numbers on the lines indicate the power law
exponents of the crossover boundaries between the regimes.

In Fig. 17 we show the desorption transitions and the line at which the adsorbed layer crosses
over from being �at, D¡‘e� , to being crumpled or coiled, D¿‘e� . The underlying PE behavior
in the bulk, as shown in Fig. 8, is denoted by broken lines. We obtain two di�erent phase diagrams,
depending on the value of the parameter

�= 	‘3=20 ‘1=2B : (6.11)

For strongly charged surfaces, �¿ 1, we obtain the phase diagram as in Fig. 17a, and for weakly
charged surfaces, �¡ 1, as in Fig. 17b. We see that strongly charged PEs, obeying 


√
‘0‘B ¿ 1,

always adsorb in �at layers. The scaling of the desorption transitions is in general agreement with
recent computer simulations of charged PEs [167]. Assuming an image-charge repulsion between
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the charged monomers and the substrate, as relevant for low-dielectric substrates, some of the phase
boundaries in Fig. 17 are eliminated, as explained in Ref. [157]. However, note that not all substrates
are low-dielectric materials, so that the full phase structure in Fig. 17 might be relevant to some
experiments.

7. Neutral polymer adsorption from solution

7.1. The mean-�eld approach: ground state dominance

In this section we look at the equilibrium behavior of many chains adsorbing on (or equivalently
depleting from) a surface in contact with a bulk reservoir of chains at equilibrium. The polymer
chains in the reservoir are assumed to be in a semi-dilute concentration regime de�ned by cm ¿c∗m,
where cm denotes the monomer concentration (per unit volume) and c∗m is the overlap-concentration
Eq. (2.19).

As in the previous section, the adsorbing surface is taken as an ideal and smooth plane. Neglecting
lateral concentration �uctuations (which will be considered in Section 9), one can reduce the problem
to an e�ective one-dimensional problem, where the monomer concentration depends only on the
distance x from the surface, cm = cm(x). The two boundary values are: cbm = cm(x → ∞) in the bulk,
while csm = cm(x = 0) on the surface.

In addition to the monomer concentration cm, it is more convenient to work with the monomer
volume fraction: �(x)=a3cm(x) where a is the Kuhn length which characterizes the e�ective monomer
size. While the bulk value (far away from the surface) is �xed by the concentration in the reservoir,
the value on the surface at x = 0 is self-adjusting in response to a given surface interaction. The
simplest phenomenological surface interaction is linear in the surface polymer concentration. The
resulting contribution to the surface free energy (per unit area) is

Fs =−
1�s ; (7.1)

where �s = a3csm and a positive (negative) value of 
1 = 
̃(T − T ∗)=Ta2, de�ned in Eq. (5.6),
enhances adsorption (depletion) of the chains on (from) the surface. However, Fs represents only
the local reduction in the interfacial free energy due to the adsorption. In order to calculate the full
interfacial free energy, it is important to note that monomers adsorbing on the surface are connected
to other monomers belonging to the same polymer chain. The latter accumulate in the vicinity of the
surface. Hence, the interfacial free energy does not only depend on the surface concentration of the
monomers but also on their concentration in the vicinity of the surface. Due to the polymer �exibility
and connectivity, the entire adsorbing layer can have a considerable width. The total interfacial free
energy of the polymer chains will depend on this width and is quite di�erent from the interfacial
free energy for simple molecular liquids.

There are several theoretical frameworks to treat this polymer adsorption. One of the simplest
methods which yet gives reasonable qualitative results is the Cahn–de Gennes approach [168,169].
In this approach, it is possible to write down a continuum functional which describes the contribution
to the free energy of the polymer chains in the solution. This procedure was introduced by Edwards
in the 1960s [112] and was applied to polymers at interfaces by de Gennes [169]. Below we
present such a continuum version which can be studied analytically. Another approach is a discrete
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one, where the monomers and solvent molecules are put on a lattice. The latter approach is quite
useful in computer simulations and numerical self consistent �eld (SCF) studies and is reviewed
elsewhere [1].

In the continuum approach and using a mean-�eld theory, the bulk contribution to the adsorption
free energy is written in terms of the local monomer volume fraction �(x), neglecting all kinds
of monomer–monomer correlations. The total reduction in the surface tension �F (interfacial free
energy per unit area and in units of kBT ) is then

�F =−
1�s +
∫ ∞

0
dx

[
G(�)

(
d�
dx

)2

+ Fb(�)− Fb(�b) + �p(�− �b)

]
; (7.2)

where 
1 was de�ned in Eq. (7.1). The sti�ness function G(�) represents the energy cost of
local concentration �uctuations and its form is speci�c to long polymer chains. For low polymer
concentration it can be written as [14]:

G(�) =
1
a3

(
a2

24�

)
: (7.3)

The other terms in Eq. (7.2) come from the Cahn–Hilliard free energy of mixing of the polymer
solution, �p being the polymer chemical potential, and [12]

Fb(�) =
1
a3

(
�
N

log�+
1
2
ṽ2�2 +

1
6
ṽ3�3 + · · ·

)
; (7.4)

where N is the polymerization index. In the following, we neglect the �rst term in Eq. (7.4)
(translational entropy), as can be justi�ed in the long chain limit, N�1. The second and third
dimensionless virial coe�cients are ṽ2=v2=a3 and ṽ3=v3=a6, respectively. Good, bad and theta solvent
conditions are achieved, respectively, for positive, negative or zero ṽ2. We concentrate hereafter only
on good solvent conditions, ṽ2 ¿ 0, in which case the higher order ṽ3-term can be safely neglected.
In addition, the local monomer density is assumed to be small enough, in order to justify the
omission of higher virial coe�cients. Note that for small molecules the translational entropy always
acts in favor of desorbing from the surface. As was discussed in the Section 1, the vanishing small
translational entropy for polymers results in a stronger adsorption (as compared with small solutes)
and makes the polymer adsorption much more of an irreversible process.

The key feature in obtaining Eq. (7.2) is the so-called ground state dominance, where for long
enough chains N�1, only the lowest energy eigenstate (ground state) of a di�usion-like equation
is taken into account. This approximation gives us the leading behavior in the N → ∞ limit [118].
It is based on the fact that the weight of the �rst excited eigenstate is smaller than that of the
ground state by an exponential factor: exp(−N �E) where �E=E1−E0 ¿ 0 is the di�erence in the
eigenvalues between the two eigenstates. Clearly, close to the surface more details on the polymer
conformations can be important. The adsorbing chains have tails (end-sections of the chains that
are connected to the surface by only one end), loops (mid-sections of the chains that are connected
to the surface by both ends), and trains (sections of the chains that are adsorbed on the surface),
as depicted in Fig. 13a. To some extent it is possible to get pro�les of the various chain segments
even within mean-�eld theory, if the ground state dominance condition is relaxed as is discussed
further below.
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Taking into account all those simplifying assumptions and conditions, the mean-�eld theory for
the interfacial free energy can be written as

�F =−
1�s +
1
a3

∫ ∞

0
dx

[
a2

24�

(
d�
dx

)2

+
1
2
ṽ2(�(x)− �b)2

]
; (7.5)

where the monomer bulk chemical potential �p is given by �p = 9f(�)=9�|b = ṽ2�b.
It is also useful to de�ne the total amount of monomers per unit area which take part in the

adsorption layer. This is the so-called surface excess �; it is measured experimentally using, e.g.,
ellipsometry, and is de�ned as

� =
1
a3

∫ ∞

0
dx[�(x)− �b] : (7.6)

(A di�erent quantity, not used in our review, is the so-called adsorbed amount, which measures
the total amount of polymers per unit area that have at least one monomer in contact with the
substrate.) The next step is to minimize the free energy functional (7.5) with respect to both �(x)
and �s = �(0). For the following algebraic manipulations, it is more convenient to re-express Eq.
(7.5) in terms of the square root of the monomer volume fraction,  (x) = �1=2(x) and  s = �1=2

s

�F =−
1 2
s +

1
a3

∫ ∞

0
dx

[
a2

6

(
d 
dx

)2

+
1
2
ṽ2( 2(x)−  2

b )
2

]
: (7.7)

Minimization of Eq. (7.7) with respect to  (x) and  s leads to the following pro�le equation and
boundary condition

a2

6
d2 
dx2

= ṽ2 ( 2 −  2
b ) ;

1
 s

d 
dx

∣∣∣∣
s

=−6a
1 =− 1
2D

: (7.8)

The second equation sets a boundary condition on the logarithmic derivative of the monomer volume
fraction, d log�=dx|s =2 −1 d =dx|s =−1=D, where the strength of the surface interaction 
1 can be
expressed in terms of a length D ≡ 1=(12a
1). Note that exactly the same scaling of D on 
1=T is
obtained in Eq. (5.9) for the single chain behavior if one sets �= ’= 1=2 (ideal chain exponents).
This is strictly valid at the upper critical dimension (d = 4) and is a very good approximation in
three dimensions.

The pro�le equation (7.8) can be integrated once, yielding

a2

6

(
d 
dx

)2

=
1
2
ṽ2( 2 −  2

b )
2 : (7.9)

The above di�erential equation can now be solved analytically for adsorption (
1 ¿ 0) and depletion
(
1 ¡ 0).

We �rst present the results in more detail for polymer adsorption and then repeat the main �ndings
for polymer depletion.
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7.1.1. The adsorption case
Setting 
1 ¿ 0 as is applicable for the adsorption case, the �rst-order di�erential equation (7.9)

can be integrated and together with the boundary condition Eq. (7.8) yields

�(x) = �b coth2
(
x + x0
�b

)
; (7.10)

where the length �b = a(3ṽ2�b)−1=2 is the Edwards correlation length characterizing the exponential
decay of concentration �uctuations in the bulk [14,112]. (See also the discussion in Section 7.2).
The length x0 is not an independent length since it depends on D and �b, as can be seen from the
boundary condition Eq. (7.8)

x0 =
�b

2
arcsinh

(
4D
�b

)
= �b arccoth(

√
�s=�b) : (7.11)

Furthermore, �s can be directly related to the surface interaction 
1 and the bulk value �b

�b

2D
=

6a2
1√
3ṽ2�b

=

√
�b

�s

(
�s

�b
− 1

)
: (7.12)

In order to be consistent with the semi-dilute concentration regime, the correlation length �b should
be smaller than the size of a single chain, R = aN�, where � = 3=5 is the Flory exponent in good
solvent conditions. This sets a lower bound on the polymer concentration in the bulk, cm ¿c∗m.
So far three length scales have been introduced: the Kuhn length or monomer size a, the adsorbed-

layer width D, and the bulk correlation length �b. It is more convenient for the discussion to consider
the case where those three length scales are quite separated: a�D��b. Two conditions must be
satis�ed. On one hand, the adsorption parameter is not large, 12a2
1�1 in order to have D�a. On
the other hand, the adsorption energy is large enough to satisfy 12a2
1�

√
3ṽ2�b in order to have

D��b. The latter inequality can be regarded also as a condition for the polymer bulk concentration.
The bulk correlation length is large enough if indeed the bulk concentration (assumed to be in the
semi-dilute concentration range) is not too large. Roughly, let us assume in a typical case that the
three length scales are well separated: a is of the order of a few Angstroms, D of the order of a
few dozens of Angstroms, and �b of the order of a few hundred Angstroms.

When the above two inequalities are satis�ed, three spatial regions of adsorption can be di�eren-
tiated: the proximal, central, and distal regions, as is outlined below. In addition, as soon as �b�D,
x0 � 2D, as follows from Eq. (7.11).

(i) Close enough to the surface, x ∼ a, the adsorption pro�le depends on the details of the short
range interactions between the surface and monomers. Hence, this region is not universal. In
the proximal region, for a�x�D, corrections to the mean-�eld theory analysis (which assumes
the concentration to be constant) are presented below similarly to the treatment of the single
chain section. These corrections reveal a new scaling exponent characterizing the concentration
pro�le. They are of particular importance close to the adsorption/desorption transition.

(ii) In the distal region, x��b, the excess polymer concentration decays exponentially to its bulk
value

�(x)− �b � 4�be−2x=�b ; (7.13)
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Fig. 18. (a) The schematic monomer volume fraction pro�le for the case of adsorption from a semi-dilute solution; we
distinguish a layer of molecular thickness x ∼ a where the polymer density depends on details of the interaction with the
substrate and the monomer size, the proximal region a¡x¡D where the decay of the density is governed by a universal
power law (which cannot be obtained within mean-�eld theory), the central region for D¡x¡�b with a self-similar
pro�le, and the distal region for �b ¡x, where the monomer volume fraction relaxes exponentially towards its bulk value
�b. (b) The density pro�le for the case of depletion, where the concentration close to the surface is �s and relaxes to its
bulk value, �b, at a distance of the order of the bulk correlation length �b.

as follows from Eq. (7.10). This behavior is very similar to the decay of �uctuations in the
bulk with �b being the correlation length.

(iii) Finally, in the central region (and with the assumption that �b is the largest length scale in the
problem), D�x��b, the pro�le is universal and from Eq. (7.10) it can be shown to decay with
a power law

�(x) =
1
3ṽ2

(
a

x + 2D

)2

: (7.14)

A sketch of the di�erent scaling regions in the adsorption pro�le is given in Fig. 18a. Included in
this �gure are corrections in the proximal region, which is discussed further below.

A special consideration should be given to the formal limit of setting the bulk concentration to
zero, �b → 0 (and equivalently �b → ∞), which denotes the limit of an adsorbing layer in contact
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with a polymer reservoir of vanishing concentration. It should be emphasized that this limit is not
consistent with the assumption of a semi-dilute polymer solution in the bulk. Still, some information
on the polymer density pro�le close to the adsorbing surface, where the polymer solution is locally
semi-dilute [137], can be obtained. Formally, we take the limit �b → ∞ in Eq. (7.10), and the
limiting expression, given by Eq. (7.14), does not depend on �b. The pro�le in the central region
decays algebraically. In the case of zero polymer concentration in the bulk, the natural cuto� is
not �b but rather R, the coil size of a single polymer in solution. Hence, the distal region loses its
meaning and is replaced by a more complicated scaling regime [170]. The length D can be regarded
as the layer thickness in the �b → ∞ limit in the sense that a �nite fraction of all the monomers are
located in this layer of thickness D from the surface. Another observation is that �(x) ∼ 1=x2 for
x�D. This power law is a result of the mean-�eld theory and its modi�cation is discussed below.
It is now possible to calculate within the mean-�eld theory the two physical quantities that are

measured in many experiments: the surface tension reduction �F and the surface excess �.
The surface excess, de�ned in Eq. (7.6), can be calculated in a close form by inserting Eq. (7.10)

into Eq. (7.6),

� =
1√
3ṽ2a2

(�1=2
s − �1=2

b ) =
�b�b

a3

(√
�s

�b
− 1

)
: (7.15)

For strong adsorption, we obtain from Eq. (7.12) that �s � (a=2D)2=3ṽ2��b, and Eq. (7.15)
reduces to

� =
1

3ṽ2a2

( a
D

)
∼ 
1 ; (7.16)

while the surface volume fraction scales as �s ∼ 
21. As can be seen from Eqs. (7.16) and (7.14),
the surface excess as well as the entire pro�le does not depend (to leading order) on the bulk
concentration �b. We note again that the strong adsorption condition is always satis�ed in the
�b → 0 limit. Hence, Eq. (7.16) can be obtained directly by integrating the pro�le in the central
region, Eq. (7.14).

Finally, let us calculate the reduction in surface tension for the adsorbing case. Inserting the
variational equations (7.8) in Eq. (7.5) yields

�F =−
1�s +
√
3ṽ2
9a2

�3=2
s

[
1− 3

(
�b

�s

)
+ 2

(
�b

�s

)3=2
]

: (7.17)

The surface term in Eq. (7.17) is negative while the second term is positive. For strong adsorption
this reduction of �F does not depend on �b and reduces to

�F ∼ −(a2
1)3
1
a2

+ O(
4=31 ) ; (7.18)

where the leading term is just the contribution of the surface monomers.

7.1.2. The depletion case
We highlight the main di�erences between the polymer adsorption and polymer depletion. Keeping

in mind that 
1 ¡ 0 for depletion, the solution of the same pro�le equation (7.9), with the appropriate
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boundary condition results in

�(x) = �b tanh2
(
x + x0
�b

)
; (7.19)

which is schematically plotted in Fig. 18b. The limit �b → 0 cannot be taken in the depletion case
since depletion with respect to a null reservoir has no meaning. However, we can, alternatively, look
at the strong depletion limit, de�ned by the condition �s��b. Here we �nd

�(x) = 3ṽ2�2
b

(
x + 2D

a

)2

: (7.20)

In the same limit, we �nd for the surface volume fraction �s ∼ �2
b


−2
1 , and the exact expression for

the surface excess Eq. (7.15) reduces to

� =− 1
a2

√
�b

3ṽ2
� −�b�b

a3
: (7.21)

The negative surface excess can be directly estimated from a pro�le varying from �b to zero over
a length scale of order �b.

The dominating behavior for the surface tension can be calculated from Eq. (7.5) where both
terms are now positive. For the strong depletion case we get

�F � 1
a2

(
a
�b

)3

∼ �3=2
b : (7.22)

7.2. Beyond mean-�eld theory: scaling arguments for good solvents

One of the mean-�eld theory results that should be corrected is the scaling of the correlation
length with �b. In the semi-dilute regime, the correlation length can be regarded as the average
mesh size created by the overlapping chains. It can be estimated using very simple scaling arguments
[14] similar to our derivation of the overlap concentration in Eq. (2.19). The volume fraction of
monomers inside a coil formed by a subchain consisting of g monomers embedded in d dimensional
space is �b ∼ g1−d� where � is the Flory exponent. The spatial scale of this subchain is given by
�b ∼ ag�. Combining these two relations we obtain the general scaling of the correlation length

�b � a��=(1−d�)
b ; (7.23)

and for good solvent condition and d= 3

�b � a�−3=4
b : (7.24)

This relation corrects the mean-�eld theory result �b ∼ �−1=2
b which can be obtained from, e.g., Eq.

(7.5), and also directly from Eq. (7.23) by setting d=4 and inserting the Gaussian exponent �=1=2.

7.2.1. Scaling for polymer adsorption
We repeat here an argument due to de Gennes [169]. The main idea is to assume that the relation

Eq. (7.23) holds locally: �(x) = [�(x)=a]−4=3, where �(x) is the local “mesh size” of the semi-dilute
polymer solution. Since there is no other length scale in the problem beside the distance from the
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surface, x, the correlation length �(x) should scale as the distance x itself, �(x) � x leading to the
pro�le

�(x) �
(a
x

)4=3
: (7.25)

We note that this argument holds only in the central region D�x��b. It has been con�rmed
experimentally using neutron scattering [171] and neutron re�ectivity [172]. Eq. (7.25) satis�es the
distal boundary condition: x → �b, �(x) → �b, but for x¿�b we expect the regular exponential
decay behavior of the distal region, Eq. (7.13). De Gennes also proposed (without a rigorous proof)
a convenient expression for �(x), which has the correct crossover from the central to the mean-�eld
proximal region [169]

�(x) = �s

(
4
3D

x + 4
3D

)4=3

�
(

a
x + 4

3D

)4=3

: (7.26)

Note that the above equation reduces to Eq. (7.25) for x�D. The extrapolation of Eq. (7.26)
also gives the correct de�nition of D: D−1 = − d log�=dx|s. In addition, �s is obtained from the
extrapolation to x = 0 and scales as

�s = �(x = 0) =
( a
D

)4=3
: (7.27)

For strong adsorption (�s��b), we have

�s �
( a
D

)4=3 ∼ 
21 ;

D � a
(

1
a2
1

)3=2

∼ 
−3=2
1 ;

� � a−2 (a2
1)1=2 ∼ 
1=21 ;

�F � − 1
a2

�3=2
s ∼ −
31 : (7.28)

It is interesting to note that although D and � have di�erent scaling with the surface interaction

1 in the mean-�eld theory and scaling approaches, �s and �F have the same scaling using both
approaches. This is a result of the same scaling �s ∼ 
21, which, in turn, leads to �F � 
1�s ∼ 
31.

7.2.2. Scaling for polymer depletion
For polymer depletion similar arguments led de Gennes [169] to propose the following scaling

form for the central and mean-�eld proximal regions, a¡x¡�b,

�(x) = �b

(
x + 5

3D
�b

)5=3

; (7.29)
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where the depletion thickness is �b − D whereas in the strong depletion regime (�s��b)

�s � �b

(
D
�b

)5=3

∼ �9=4
b 
−5=2

1 ;

D = a
(
a2
1

)−3=2
;

� � −�ba−3(�b − D) ∼ �1=4
b ;

�F � 1
a2

�3=2
b : (7.30)

Note that the above scaling of the surface tension with the bulk concentration, �b is the same as
that obtained by the mean-�eld theory approach in Section 7.1.2, Eq. (7.22).

7.3. Proximal region corrections

So far we did not address any corrections in the proximal region: a¡x¡D for the many chain
adsorption. In the mean-�eld theory picture the pro�le in the proximal region is featureless and
saturates smoothly to its extrapolated surface value, �s ¿ 0. However, in relation to surface critical
phenomena which is in particular relevant close to the adsorption–desorption phase transition (the
so-called ‘special’ transition), the polymer pro�le in the proximal region has a scaling form with
another exponent m.

�(x) � �s

(a
x

)m
; (7.31)

where m = (’ + � − 1)=� is the proximal exponent, Eq. (5.12). This is similar to the single chain
treatment in Section 5.

For good solvents, one has m � 1=3, as was derived using analogies with surface critical phenom-
ena, exact enumeration of polymer con�gurations, and Monte-Carlo simulations [133]. It is di�erent
from the exponent 4=3 of the central region.

With the proximal region correction, the polymer pro�le can be written as [135]

�(x) �




�s for 0¡x¡a ;

�s

(a
x

)1=3
for a¡x¡D ;

�s

(a
x

)1=3
(

D
x + D

)
for D¡x¡�b ;

(7.32)

where

�s =
a
D

: (7.33)

The complete adsorption pro�le is shown schematically in Fig. 18a. By minimization of the free
energy with respect to the layer thickness D it is possible to show that D is proportional to 1=
1

D ∼ 
−1
1 ; (7.34)

in accord with the exact �eld-theoretic results for a single chain as discussed in Section 5.
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The surface concentration, surface excess and surface tension have the following scaling [135]:

�s � a
D

∼ 
1 ;

� � a−3D
( a
D

)4=3 ∼ 
1=31 ;

�F � −
21a
2 ∼ 
21 : (7.35)

Note the di�erences in the scaling of the surface tension and surface excess in Eq. (7.35) as
compared with the results obtained with no proximity exponent (m = 0) in the previous section,
Eq. (7.28).

At the end of our discussion of polymer adsorption from solutions, we would like to add that
for the case of adsorption from dilute solutions, there is an intricate crossover from the single-chain
adsorption behavior, as discussed in Section 5, to the adsorption from semi-dilute polymer solutions,
as discussed in this section [137]. Since the two-dimensional adsorbed layer has a higher local
polymer concentration than the bulk, it is possible that the adsorbed layer forms a two-dimensional
semi-dilute state, while the bulk is a truly dilute polymer solution. Only for extremely low bulk
concentration or for very weak adsorption energies the adsorbed layer has a single-chain structure
with no chain crossings between di�erent polymer chains.

7.4. Loops and tails

It has been realized quite some time ago that the so-called central region of an adsorbed polymer
layer is characterized by a rather broad distribution of loop and tail sizes [1,173,174]. A loop is
de�ned as a chain region located between two points of contact with the adsorbing surface, and a tail
is de�ned as the chain region between the free end and the closest contact point to the surface, while
a train denotes a chain section which is tightly bound to the substrate (see Fig. 13a). The relative
statistical weight of loops and tails in the adsorbed layer is clearly of importance to applications. For
example, it is expected that polymer loops which are bound at both ends to the substrate are more
prone to entanglements with free polymers than tails and, thus, lead to enhanced friction e�ects. It
was found in detailed numerical mean-�eld theory calculations that the external part of the adsorbed
layer is dominated by dangling tails, while the inner part is mostly built up by loops [1,173].

Recently, an analytical theory was formulated which correctly takes into account the separate
contributions of loops and tails and which thus goes beyond the ground state dominance assumption
made in ordinary mean-�eld theories. The theory predicts that a crossover between tail-dominated
and loop-dominated regions occurs at some distance x∗ � aN 1=(d−1) [175] from the surface, where
d is the dimension of the embedding space. It is well known that mean-�eld theory behavior can
formally be obtained by setting the embedding dimensionality equal to the upper critical dimension,
which is for self-avoiding polymers given by d = 4 [15]. Hence, the above expression predicts a
crossover in the adsorption behavior at a distance x∗ � aN 1=3. For good-solvent conditions in three
dimensions (d = 3); x∗ � aN 1=2. In both cases, the crossover occurs at a separation much smaller
than the size of a free polymer R ∼ aN� where, according to the classical Flory argument [12],
�= 3=(d+ 2).
A further rather subtle result of these improved mean-�eld theories is the occurrence of a

depletion hole, i.e., a region at a certain separation from the adsorbing surface where the monomer
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concentration is smaller than the bulk concentration [175]. This depletion hole results from an inter-
play between the depletion of free polymers from the adsorbed layer and the slowly decaying density
pro�le due to dangling tails. It occurs at a distance from the surface comparable with the radius
of gyration of a free polymer, but also shows some dependence on the bulk polymer concentration.
In a di�erent formulation, the interfacial free energy of an adsorbed layer consisting of �nite-length
polymers has been calculated for the full concentration range from dilute to dense solutions [176].
These and other e�ects, related to the occurrence of loops and tails in the adsorbed layer, have been
recently reviewed [177].

8. Adsorption of polyelectrolytes—mean �eld

In Section 6 we have been reviewing the behavior of single PE chains close to a charged wall (or
surface). This will be now extended to include adsorption of PE from bulk (semi-dilute) solutions
having a bulk concentration cbm. As before the chains are assumed to have a fraction f of charged
monomers, each carrying a charge e resulting in a linear charge density, 
 = f=b. The interesting
case of polyampholytes having negative and positive charges is not considered in this section. The
solution can also contain salt (small ions) of concentration csalt which is directly related to the
Debye–H�uckel screening length, �−1. For simplicity, the salt is assumed throughout this section to
be monovalent (z = 1).

We will consider adsorption only onto a single �at and charged surface. Clearly the most important
quantity is the pro�le of the polymer concentration, cm(x) = �(x)=a3, as function of x, the distance
from the surface. Another useful quantity mentioned already in Section 7 is the polymer surface
excess (per unit area)

� =
∫ ∞

0
[cm(x)− cbm] dx =

1
a3

∫ ∞

0
[�(x)− �b] dx : (8.1)

Related to the surface excess � is the amount of charges (in units of e) carried by the adsorbing
PE chains, f�. In some cases the adsorbed polymer layer carries a higher charge (per unit area)
than the charged surface itself, f�¿	, and the surface charge is overcompensated by the PE as we
will see later. This does not violate global charge neutrality in the system because of the presence
of counterions in solution.

In many experiments, the total amount of polymer surface excess � is measured as a function
of the bulk polymer concentration, pH and/or ionic strength of the bulk solution [178–185]. (For
reviews see, e.g. Refs. [1,186–188].) More recently, spectroscopy [180] and ellipsometry [184] have
been used to measure the width of the adsorbed PE layer. Other techniques such as neutron scattering
can be employed to measure the entire pro�le cm(x) of the adsorbed layer [172,189].

Electrostatic interactions play a crucial role in the adsorption of PEs [1,186,187]. Besides the
fraction f of charged monomers, the important parameters are the surface charge density (or surface
potential in case of conducting surfaces), the amount of salt (ionic strength of low molecular weight
electrolyte) in solution and, in some cases, the solution pH.

For PEs the electrostatic interactions between the monomers themselves (same charges) are always
repulsive, leading to an e�ective sti�ening of the chain [22,23]. Hence, this interaction will favor the
adsorption of single polymer chains, because their con�gurations are already quite extended [157],
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but it will oppose the formation of dense adsorption layers close to the surface [1]. If the PE chains
and the surface are oppositely charged, the electrostatic interactions between them will enhance
the adsorption. In addition, the presence of salt has a subtle e�ect. It simultaneously screens the
monomer–monomer repulsive interactions as well as the attractive interactions between the oppositely
charged surface and polymer. Presence of multivalent salt ions (not considered in this section) makes
the PE adsorption even more complex.

Two limiting adsorbing cases can be discussed separately: (i) a non-charged surface on which
the chains like to adsorb due to, e.g., van-der-Waals attraction. Here the interaction between the
surface and the chain does not have an electrostatic component. However, as the salt screens the
monomer–monomer electrostatic repulsion, it leads to enhancement of the adsorption. (ii) The surface
is charged but does not interact with the polymer besides the electrostatic interaction. This is called
the pure electro-sorption case. At low-salt concentration, the polymer charge completely compensates
the surface charge. At high-salt concentration some of the compensation is done by the salt, leading
to a decrease in the amount of adsorbed polymer. In some cases, over-compensation of the surface
charges by the polymer charges can also occur (as is reviewed below in Section 8.5), where the PE
chains form a condensed layer and reverse the sign of the total surface charge. This is used, e.g., to
build a multi-layered structure of cationic and anionic PEs—a process that can be continued for few
dozen or even few hundred times [150,153]. The phenomenon of over-compensation is discussed in
Refs. [157,190–193] but is still not well understood.
In practice, electrostatic and other types of interactions with the surface can occur in parallel,

making the analysis more complex. In spite of the di�culties to treat theoretically PE’s in solution
because of the delicate interplay between the chain connectivity and the long range nature of electro-
static interactions [8,14,194,195], several simple approaches treating adsorption exist. One approach
is a discrete multi-Stern layer model [196–200], where the system is placed on a lattice whose sites
can be occupied by a monomer, a solvent molecule or a small ion. The electrostatic potential is
determined self-consistently (mean-�eld theory) together with the concentration pro�les of the poly-
mer and the small ions. In another approach, the electrostatic potential and the PE concentration are
treated as continuous functions [155,191,201–206]. These quantities are obtained from two coupled
di�erential equations derived from the total free energy of the system. In some cases the salt concen-
tration is considered explicitly [202,203], while in other works, (e.g., in Refs. [155,157]) it induces
a screened Coulombic interaction between the monomers and the substrate. We will review the main
results of the continuum approach, presenting numerical solutions of the mean �eld equations and
scaling arguments.

8.1. Mean-�eld theory and its pro�le equations

The charge density on the polymer chains is assumed to be continuous and uniformly distributed
along the chains. Further treatments of the polymer charge distribution (annealed and quenched
models) can be found in Refs. [203,205]. Within mean-�eld approximation, the free energy of the
system can be expressed in terms of the local electrostatic potential U (r), the local monomer con-
centration cm(r) and the local concentration of positive and negative ions c±(r). The mean-�eld
approximation means that the in�uence of the charged surface and the inter and intra-chain interac-
tions can be expressed in term of an external potential which will determine the local concentration
of the monomers, cm(r). This external potential depends both on the electrostatic potential and on
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the excluded volume interactions between the monomers and the solvent molecules. The excess free
energy with respect to the bulk can then be calculated using another important approximation, the
ground state dominance. This approximation is used often for neutral polymers [14] (see Section 7)
and is valid for very long polymer chains, N�1. As before, we introduce the (dimensionless) poly-
mer order parameter  (r), where  (r)=

√
�(r)=

√
a3cm(r), and express the adsorption free energy

F (in units of kBT ) in terms of  and U [201–206]

F=
∫

dr{Fpol(r) + Fions(r) + Fel(r)} : (8.2)

The polymer contribution is

Fpol(r) =
a2

6
|∇ |2 + 1

2
ṽ2( 4 −  4

b )− �p( 2 −  2
b ) ; (8.3)

where the �rst term is the polymer elastic energy. Throughout this section we restrict ourselves to
�exible chains described by a Kuhn length a. The second term is the excluded volume contribution
where the dimensionless second virial coe�cient ṽ2 is positive and of order unity. The case of
negative virial coe�cients (bad-solvent condition) has been treated in Ref. [207]. The last term
couples the system to a polymer reservoir via a chemical potential �p, and  b =

√
�b is related to

the bulk monomer concentration, cbm = �b=a3.
The entropic contribution of the small (monovalent) ions is

Fions(r) =
∑
i=±

[ci ln ci − ci − csalt ln csalt + csalt]− �i(ci − csalt) ; (8.4)

where ci(r) and �i are, respectively, the local concentration and the chemical potential of the i=±
ions, while csalt is the bulk concentration of salt.

Finally, the electrostatic contributions (per kBT ) are

Fel(r) =
[
fe 2U + ec+U − ec−U − �

8�
|∇U |2

]/
kBT : (8.5)

The �rst three terms are the electrostatic energies of the monomers (carrying f fractional charge
per monomer), the positive ions and the negative ions, respectively. The last term is the self-energy
of the electric �eld, where � is the dielectric constant of the solution. Note that the electrostatic
contribution, Eq. (8.5), is equivalent to the well known result: (�=8�kBT )

∫
dr|∇U |2 plus surface

terms. This can be seen by substituting the Poisson–Boltzmann equation (as obtained below) into
Eq. (8.5) and then integrating by parts.

Minimization of the free energy Eqs. (8.2)–(8.5) with respect to c±;  and U yields a Boltzmann
distribution for the density of the small ions, c±(r)=csalt exp(∓eU=kBT ), and two coupled di�erential
equations for  and U :

∇2U (r) =
8�e
�

csalt sinh(eU=kBT )− 4�e
�

(f 2 − f 2
b e

eU=kBT ) ; (8.6)

a2

6
∇2 (r) = ṽ2( 3 −  2

b  ) + f eU=kBT : (8.7)
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Eq. (8.6) is a generalized Poisson–Boltzmann equation including the free ions as well as the charged
polymers. The �rst term represents the salt contribution and the second term is due to the charged
monomers and their counterions. Eq. (8.7) is a generalization of the self-consistent �eld equation of
neutral polymers Eq. (7.8) [14]. In the bulk, the above equations are satis�ed by setting U → 0 and
 →  b.

8.2. Constant Us: the low-salt limit

8.2.1. Numerical solutions of mean-�eld equations
When the surface is taken as ideal, i.e., �at and homogeneous, the solutions of the mean-�eld equa-

tions depend only on the distance x from the surface. The surface imposes boundary conditions on
the polymer order parameter  (x) and the electrostatic potential U (x). Due to global electroneutrality,
all charge carriers in solution should exactly balance the surface charges. The Poisson–Boltzmann
equation (8.6), the self-consistent �eld equation (8.7) and the boundary conditions uniquely deter-
mine the polymer concentration pro�le and the electrostatic potential. In all cases of interest, these
two coupled non-linear equations can only be solved numerically.

We present now numerical pro�les obtained for surfaces with a constant potential Us:

U |x=0 = Us : (8.8)

The boundary conditions for  (x) depend on the nature of the short range non-electrostatic interaction
of the monomers and the surface. For simplicity, we take a non-adsorbing surface and require that
the monomer concentration will vanish there:

 |x=0 = 0 : (8.9)

We note that the boundary conditions chosen in Eqs. (8.8) and (8.9) model the particular situation of
electrostatic attraction at constant surface potential in competition with a steric (short range) repulsion
of non-electrostatic origin. Possible variations of these boundary conditions include surfaces with a
constant surface charge (discussed below) and surfaces with a non-electrostatic short range attractive
(or repulsive) interaction with the polymer [190,209]. Far from the surface (x → ∞) both U and  
reach their bulk values and their derivatives vanish: U ′|x→∞ = 0 and  ′|x→∞ = 0.

The numerical solutions of the mean-�eld equations (8.6), (8.7) together with the boundary con-
ditions discussed above are presented in Fig. 19, for several di�erent physical parameters in the
low-salt limit. The polymer is positively charged and is attracted to the non-adsorbing surface held
at a constant negative potential. The aqueous solution contains a small amount of monovalent salt
(csalt = 0:1 mM). The reduced concentration pro�le �(x)=�b is plotted as a function of the distance
from the surface x. Di�erent curves correspond to di�erent values of the reduced surface potential
us ≡ eUs=kBT , the charge fraction f and the Kuhn length a. Although the spatial variation of the
pro�les di�ers in detail, they all have a single peak which can be characterized by its height and
width. This observation serves as a motivation to using scaling arguments.

8.2.2. Scaling arguments
The numerical pro�les of the previous section indicate that it may be possible to obtain simple

analytical results for the PE adsorption by assuming that the adsorption is characterized by one
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Fig. 19. Adsorption pro�les obtained by numerical solutions of Eqs. (8.6), (8.7) for several sets of physical parameters
in the low-salt limit. The monomer volume fraction �(x) scaled by its bulk value �b =  2

b is plotted as a function of the
distance x from the surface. The di�erent curves correspond to: f = 1, a = 5 �A and us = eUs=kBT =−0:5 (solid curve);
f = 0:1, a = 5 �A and us = −0:5 (dots); f = 1, a = 5 �A and us = −1:0 (short dashes); f = 1, a = 10 �A and us = −0:5
(long dashes); and f = 0:1, a= 5 �A and us =−1:0 (dot-dash line). For all cases cbm = �ba3 = 10−6 �A−3, ṽ2 = 50 �A3=a3,
� = 80, T = 300 K and csalt = 0:1 mM. Adapted from Ref. [206].

dominant length scale D. Hence, we write the polymer order parameter pro�le in the form

 (x) =
√

�Mh(x=D) ; (8.10)

where h(x=D) is a dimensionless function normalized to unity at its maximum and �M sets the scale
of polymer adsorption, such that  (D) =

√
�M . The free energy can now be expressed in terms of

D and �M , while the exact form of h(x=D) a�ects only the numerical prefactors.
As discussed below, the scaling form Eq. (8.10), which describes the density pro�le as a func-

tion of a single scaling variable x=D, is only valid as long as �−1 and D are not of the same
order of magnitude. Otherwise, the scaling function h should be a function of both �x and x=D.
We concentrate now on the limiting low-salt regime, D��−1, where Eq. (8.10) can be justi�ed. In
the other extreme of high-salt, D��−1, the adsorption crosses over to a depletion, as is discussed
below (Sections 8.3 and 8.4). Note that the latter limit is in agreement with the single-chain adsorp-
tion (Section 6), where in the high-salt limit and for weakly charged chains, the PE desorbs from
the wall.

In the low-salt regime the e�ect of the small ions can be neglected and the free energy (per unit
surface area), Eqs. (8.2)–(8.5), can be evaluated using the scaling form Eq. (8.10) and turns out to
be given by (see also Refs. [202,206])

F � 1
6aD

�M − f|us|�M
D
a3

+ 4�lBf2�2
M

D3

a6
+

1
2
ṽ2�2

M
D
a3

: (8.11)
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In what follows we drop prefactors of order unity from the various terms. The �rst term of Eq. (8.11)
is the elastic energy characterizing the response of the polymer to concentration inhomogeneities.
The second term accounts for the electrostatic attraction of the polymers to the charged surface. The
third term represents the Coulomb repulsion between adsorbed monomers. The last term represents
the excluded volume repulsion between adsorbed monomers, where we assume that the monomer
concentration near the surface is much larger than the bulk concentration �M��b. (The opposite
limit, �M 6�b, is consistent with depletion and will be discussed separately in the high-salt regime.)

In the low-salt regime and for strong enough PEs the electrostatic interactions are much stronger
than the excluded volume ones. Neglecting the latter interactions and minimizing the free energy
with respect to D and �M gives

D2 � a2

f|us| ∼
1

f|Us| (8.12)

and

�M � a|us|2
4�lB

∼ |Us|2 ; (8.13)

recalling that us= eUs=kBT . These expressions are valid as long as (i) D��−1 and (ii) the excluded
volume term in Eq. (8.11) is negligible. Condition (i) translates into csalt�f|us|=(8�lBa2). For
|us| � 1; a=5 �A and lB = 7 �A this limits the salt concentration to csalt=f�0:4 M. Condition (ii) on
the magnitude of the excluded volume term can be shown to be equivalent to f�ṽ2a|us|=lB. These
requirements are consistent with the numerical data presented in Fig. 19.

We recall that the pro�les presented in Fig. 19 were obtained from the numerical solution of Eqs.
(8.6) and (8.7), including the e�ect of small ions and excluded volume. The scaling relations are
veri�ed by plotting in Fig. 20 the same sets of data as in Fig. 19 using rescaled variables as de�ned in
Eqs. (8.12), (8.13). Namely, the rescaled electrostatic potential U (x)=us and polymer concentration
�(x)=�M ∼ �(x)=|us|2 are plotted as functions of the rescaled distance x=D ∼ xf1=2|us|1=2=a. The
di�erent numerical data roughly collapse on the same curve, which demonstrates that the scaling
results in Eqs. (8.12), (8.13) are valid for a whole range of parameters in the low-salt regime.

In many experiments the total amount of adsorbed polymer per unit area (surface excess) � is
measured as function of the physical characteristics of the system such as the charge fraction f,
the pH of the solution or the salt concentration csalt (see, e.g. Refs. [178–185]). While in the next
section we give general predictions for a wide range of salt concentration, we comment here on the
low-salt limit, where the scaling expressions, Eqs. (8.10), (8.12) and (8.13), yield

� =
1
a3

∫ ∞

0
[�(x)− �b] dx � D

a3
�M � |us|3=2

lBaf1=2 ∼ |Us|3=2
f1=2 : (8.14)

This scaling prediction for the adsorbed amount �(f) compares favorably with the numerical
results shown in Fig. 21a, adapted from Ref. [208], for the low-salt limit (solid line corresponds
to csalt = 1:0 mM, and dashed line to 10 mM). As a consequence of Eq. (8.14), � decreases with
increasing charge fraction f. Similar behavior was also reported in experiments [181]. This e�ect is
at �rst glance quite puzzling because as the polymer charge increases, the chains are subject to a
stronger attraction to the surface. On the other hand, the monomer–monomer repulsion is stronger and
indeed, in this regime, the monomer–monomer Coulomb repulsion scales as (f�M )2, and dominates
over the adsorption energy that scales as f�M .
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Fig. 20. Rescaled pro�les of PE adsorption in the low-salt regime con�rming the scaling relations, Eqs. (8.12), (8.13).
(a) The rescaled electrostatic potential U (x)=|Us| as a function of the rescaled distance x=D. (b) The rescaled monomer
volume fraction �(x)=�M as a function of the same rescaled distance. The pro�les are taken from Fig. 19 (with the
same notation). The numerical prefactors of a piecewise linear h(x=D) pro�le were used in the calculation of D and �M .
Adapted from Ref. [206].

8.3. Adsorption behavior in the presence of �nite salt

The full dependence of � on csalt and f, as obtained from the numerical solutions of the
mean-�eld equations with �xed Us boundary condition [208], is presented in Fig. 21. Our results
are in agreement with numerical solutions of discrete lattice models (the multi-Stern layer theory)
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Fig. 21. (a) Surface excess of polyelectrolyte adsorption, �, as function of the chain charged fraction f, for constant
surface potential and for several csalt concentrations: 1:0 mM (solid line), 10 mM (dashed line), 0:1 M (dash-dot line),
0:5 M (dots). As the salt concentration increases, the peak in � shifts to higher f values and disappears for csalt = 0:5 M.
The depletion–adsorption transition is de�ned to occur for � = 0. (b) Surface excess as function of salt concentration,
csalt , for constant surface potential and for several f values: f=0:03 (dots), 0.1 (dashes), 0.3 (dot-dash), 1.0 (solid line).
� is almost independent of csalt for low-salt concentrations in the adsorption region. It is then followed by a strong descent
into a depletion region. The other parameters used here are: us =−1:0, cbm =�ba3 =10−6 �A−3, v2 = ṽ2a3 =50 �A3, a=5 �A,
T = 300 K, � = 80. Adapted from Ref. [208].

[1,186,187,196–200]. In Fig. 21a the dependence of � on f is shown for several salt concentrations
ranging from low-salt conditions, csalt = 1:0 mM, all the way to high salt, csalt = 0:5 M. For low
enough f; �¡ 0 indicates depletion (as is discussed below). As f increases, a crossover to the
adsorption region, �¿ 0, is seen. In the adsorption region, a peak in �(f) signals the maximum
adsorption amount at constant csalt. As f increases further, beyond the peak, � decreases as f−1=2

for low-salt concentrations, in agreement with Eq. (8.14). Looking at the variation of � with salt, as
csalt increases, the peak in �(f) decreases and shifts to higher values of f. For very large amount
of salt, e.g., csalt = 0:5 M, the peak occurs in the limit f → 1, and only an increase in �(f) is seen
from the negative depletion values (small f) towards the peak at f → 1.

In Fig. 21b, we plot �(csalt) for several f values: 0.03, 0.1, 0.3 and 1.0. For low enough salt
condition, the surface excess is almost independent of csalt. In this adsorption regime, the surface
excess is well characterized by the scaling result of the previous section, Eq. (8.14), � ∼ f−1=2. As
the amount of salt increases above some threshold, the adsorption regime crosses over to depletion
quite sharply, signaling the adsorption–depletion transition. The salt concentration at the transition,
c∗salt, increases with the charge fraction f.

8.4. Adsorption–depletion crossover in high-salt conditions

In the scaling discussion in Section 8.2.2, it was assumed implicitly that the PE chains are ad-
sorbing to the surface. Namely, the electrostatic interaction with the surface is strong enough so that
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Fig. 22. Numerical monomer density pro�les exhibiting the transition from adsorption to depletion. The dashed line
corresponds to f=0:12, the dot-dash line to f=0:1, the solid line to f=0:09, and the dotted line to f=0:08. From the
condition �=0 the adsorption–depletion transition is found to occur for f � 0:09, corresponding to c∗salt � 0:16|us|f=lBa2.
All pro�les have us =−0:5, csalt =70 mM, cbm =�ba3 =10−6 �A−3, v2 = ṽ2a3 =50 �A3, a=5 �A; T =300 K, �=80. Adapted
from Ref. [208].

it overcomes any compression and entropy loss of the polymers in the adsorbing layer. This is not
correct for highly screened systems (high salt) and weakly charged PEs.

The numerical PE pro�les obtained from solving Eqs. (8.6)–(8.7) [208] demonstrating the
adsorption–depletion transition (which is not a sharp transition but rather a crossover) are pre-
sented in Fig. 22. The pro�les were obtained by solving numerically the di�erential equations for
several values of f in a range including the adsorption–depletion transition. For salt concentration
of about c∗salt � 0:16usf=(lBa2) (solid line in Fig. 22 with f = 0:09), the �gure demonstrates the
disappearance of the peak in the concentration pro�le. Our way of identifying this crossover is by
looking at the surface excess, �. The place where �=0 indicates an adsorption–depletion transition,
separating positive � in the adsorption regime from negative ones in the depletion regime.

The numerical phase diagrams displaying the adsorption–depletion transition are presented in
Fig. 23, where the line of vanishing surface excess, � = 0, is located in the (f; csalt) plane while
�xing us (Fig. 23a), and in the (|us|; csalt) plane while �xing f (Fig. 23b). From the �gure it
is apparent that the adsorption–depletion transition line �ts quite well a line of slope 1.0 in both
Fig. 23a and b plotted on a log–log scale. Namely, c∗salt ∼ f for �xed us, and c∗salt ∼ us for �xed f.

These scaling forms of c∗salt at the adsorption–depletion transition can be reproduced by using
simpli�ed scaling arguments, similar to the single-polyelectrolyte adsorption situation in Section 6.
There we found that the exact scaling of the desorption transition is recovered by de�ning desorption
to occur when the prediction for the adsorption layer thickness D reaches the screening length �−1.
The condition for adsorption is thus �D¡ 1. Using the scaling for D, Eq. (8.12), and the de�nition
of �, we �nd the adsorption–depletion transition to occur at the salt concentration

c∗salt �
usf
lB a2

: (8.15)
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Fig. 23. Numerically calculated crossover diagram from adsorption to depletion on a log–log scale for constant surface
potential conditions. In (a) the (f; csalt) parameter plane is presented for constant us =−1:0. The least-mean-square �t has
a slope of 1:00± 0:02, in excellent agreement with the scaling arguments, c∗salt ∼ f. In (b) the (us; csalt) parameter plane
is presented, for constant f = 0:1. The least-mean-square �t has a slope of 1:04 ± 0:02, in good agreement with scaling
arguments, c∗salt ∼ us. All pro�les have cbm = �ba3 = 10−6 �A−3, v2 = ṽ2a3 = 50 �A3, a= 5 �A; T = 300 K, � = 80. Adapted
from Ref. [208].

in the case of a �xed surface potential. This explains the numerical results of Fig. 23a and b. We
mention the analogous results for �xed surface charge as well as the phenomenon of overcompen-
sation in the next subsection.

8.5. Adsorption of PEs for constant surface charge and its overcompensation

We turn now to a di�erent electrostatic boundary condition of constant surface charge density and
look at the interesting phenomenon of charge overcompensation by the PE chains in relation to ex-
periments for PE adsorption on �at surfaces, as well as on charged colloidal particles [150,152,153].
What was observed in experiments is that PEs adsorbing on an oppositely charged surface can over-
compensate the original surface charge. Because the PEs create a thin layer close to the surface,
they can act as an e�ective absorbing surface to a second layer of PEs having an opposite charge
compared to the �rst layer. Repeating the adsorption of alternating positively and negatively charged
PEs, it is possible to create a multilayer structure of PEs at the surface. Although many experi-
ments and potential applications for PE multilayers exist, the theory of PE overcompensation is only
starting to be developed [157,190,191,193,205,206,209].
The scaling laws presented for constant Us can be used also for the case of constant surface

charge. A surface held at a constant potential Us will induce a surface charge density 	 (in units of
e). The two quantities are related by: dU=dx =−4�	e=� at x = 0. We will now consider separately
the two limits: low salt D��−1, and high salt D¿ �−1.

As will be explained in Section 9, an alternative mechanism for overcharging is produced by
lateral correlations between adsorbed PEs, which in conjunction with screening by salt ions leads to
strongly overcharged surfaces [157,193].

8.5.1. Low-salt limit: D��−1

Assuming that there is only one length scale characterizing the potential behavior in the vicinity
of the surface, as demonstrated in Fig. 20, the surface potential Us and the surface charge 	 are
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related by Us ∼ 	eD=�. In the low-salt limit we �nd from Eq. (8.12)

D ∼ (f	lB)−1=3 (8.16)

in accord with the single-chain result Eq. (6.9). Let us de�ne two related concepts via the e�ective
surface charge density de�ned as �	 ≡ f� − 	, which is sum of the adsorbed polymer charge
density f� and the charge density 	 of the bare substrate. For �	=0 the adsorbed polymer charge
exactly compensates the substrate charge. If �	 is positive the PE overcompensates the substrate
charge, more polymer adsorbs than is needed to exactly cancel the substrate charge. If �	 is positive
and reaches the value �	= 	 it means that the PE charge is f�=2	 and leads to an exact charge
inversion of the substrate charge. In this case, the e�ective surface charge consisting of the substrate
charge plus the PE layer has a charge density which is exactly opposite to the original substrate
charge density 	.

Do we obtain overcompensation or even charge inversion in the low-salt limit within mean-�eld
theory? Using scaling arguments this is not clear since one �nds that �	 ∼ f� ∼ 	. Namely each
of the two terms in �	 scales linearly with 	, and the occurrence of overcompensation or charge
inversion will depend on numerical prefactors (which are di�cult to obtain using scaling arguments)
determining the relative sign of the two opposing terms. However, if we look on the numerical
solution for the mean-�eld electrostatic potential, Fig. 20, we see indeed that all plotted pro�les
have a maximum of U (x) as function of x. An extremum in U means a zero local electric �eld.
Or equivalently, using Gauss law, this means that the integrated charge density from the surface to
this special extremum point (including surface charges) is exactly zero. At this point the charges in
solution exactly compensate the surface charges. For larger distances from the surface, the adsorption
layer overcompensates the substrate charge.

8.5.2. High-salt limit: D¿ �−1 and depletion
When we include salt in the solution and look at the high-salt limit, the only length characterizing

the exponential decay of U close to the surface is the Debye–H�uckel screening length. Hence, using
dU=dx|s ∼ −	e=� yields Us ∼ 	e=�� or us ∼ 	‘B=�. Inserting this relation into the adsorption
threshold for constant surface potential, Eq. (8.15), we obtain for the crossover between adsorption
and depletion

c∗salt � 	2=3f2=3l−1=3
B a−4=3 ∼ 	2=3f2=3 ; (8.17)

in accord with Refs. [154,155,195] and as con�rmed by the numerical studies of Eqs. (8.6) and (8.7)
with constant 	 boundary conditions. More details can be found in Ref. [208]. We note that the
same threshold is obtained by equating the adsorption layer thickness in the constant-surface-charge
ensemble, Eq. (8.16), with the screening length �−1.

We end this section with a short comment on the relation between the semi-dilute and single-chain
adsorption behaviors. By construction of the scaling argument, the desorption threshold obtained here
in the semi-dilute regime for �xed surface charge, Eq. (8.17), is the same as the single-chain desorp-
tion transition, Eq. (6.10). It is important to point out that this equivalence is perfectly con�rmed by
our numerical solutions of the full mean-�eld equations. Therefore, it follows that multi-chain e�ects
(within mean-�eld level) do not modify the location of the single-polyelectrolyte chain adsorption
transition.
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Fig. 24. Schematic top views of the di�erent adsorbed surface phases considered. (a) Disordered uncrumpled phase, with
an average mesh size �s smaller than the persistence length, exhibiting an average density of chain crossings of ∼ 1=�2s .
(b) Disordered crumpled phase, with a mesh size �s larger than the persistence length. (c) Lamellar phase, with a lamellar
spacing �s smaller than the persistence length.

9. Lateral correlation e�ects in polyelectrolyte adsorption

In this section we go beyond the mean-�eld approach by considering lateral correlation e�ects (for
recent reviews on related subjects see [210,211]). The mean-�eld theories discussed before average
the polymer pro�le in the lateral direction and only consider a spatially varying pro�le in the direction
perpendicular to the substrate. Although mean-�eld equations can in principle be formulated which
take also lateral order into account, this would be very involved and complicated. In this section we
generalize the discussion of the single PE chain adsorption from Section 6 and consider the e�ect
of interactions between di�erent adsorbed polymers on a simple scaling level. In order to do so, we
assume that the adsorption energy is strong enough such that the polymers essentially lie �at on the
substrate. Lateral correlations are large enough to locally induce the polymers to form some type of
ordered lattice. Due to the formation of two-dimensionally ordered adsorbed layers, the local chain
structure becomes important and we therefore describe the PE chains as semi-�exible polymers in
this section.

We follow here the original ideas of Ref. [157], which were subsequently elaborated by Nguyen
et al. [193]. To understand the idea, consider Fig. 24, where schematic top views of di�erent adsorbed
phases are shown. A strongly adsorbed, �at polymer phase can form a disordered surface pattern
with many chain crossings, characterized by a certain mesh size �s which corresponds to the average
distance between chain crossings. We distinguish two di�erent cases: if the e�ective persistence
length ‘e� is larger than the mesh size, we obtain a disordered uncrumpled phase, as depicted
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schematically in Fig. 24a; if the e�ective persistence length is smaller than the mesh size, we expect
a phase which is crumpled between consecutive chain crossings, as depicted in Fig. 24b. We also
anticipate a lamellar phase where di�erent polymer strands are parallel locally, characterized by an
average lamellar spacing �s, as shown in Fig. 24c. The lamellar phase is stabilized either by steric or
by electrostatic repulsions between neighboring polymers; we will in fact encounter both stabilization
mechanisms for di�erent values of the parameters.

We now calculate the free energy and other characteristics of these adsorbed phases. In all the
following calculations, we assume that we are inside the adsorbed regime of a single polymer, as
discussed in Section 6. We basically assume, later on, that the desorption transitions obtained for
the single-chain case also apply to the case of many-chain adsorption. As was shown in Ref. [157],
to obtain the complete phase diagram it is su�cient to consider the lamellar phase depicted in
Fig. 24c, since the other phase morphologies are metastable or degenerate. We assume that the dis-
tance between neighboring polymer strands, �s, is much smaller than the e�ective persistence length,
�s ¡‘e� (this assumption is checked self-consistently at the end). Since the possible conformations
of the adsorbed polymers are severely restricted in the lateral directions, we have to include, in
addition to the electrostatic interactions, a repulsive free energy contribution coming from steric
interactions between sti� polymers [160]. This is the same type of entropic repulsion that was used
in Section 6 to estimate the pressure inducing desorption from a substrate. The total free energy
density is given by

Flam � −2�‘B	

�s�

+
1

‘1=3e� �5=3s
ln
(
‘e�
�s

)
+ Frep ; (9.1)

where the �rst term comes from the electrostatic attraction to the oppositely charged surface (which
for consistency is taken to be penetrable to ions), the second term is the Odijk entropic repulsion
[160] and Frep is the electrostatic repulsion of a lamellar array.

To obtain the electrostatic repulsive energy, we �rst note that the reduced potential created by a
charged line with line charge density 
= f=b at a distance �s is within the Debye–H�uckel approxi-
mation given by

Vline(�s) = 

∫ ∞

−∞
ds vDH(

√
�2s + s2) = 2‘B
K0[��s] ; (9.2)

with the Debye–H�uckel potential vDH de�ned in Eq. (3.3). K0 denotes the modi�ed Bessel function.
The repulsive electrostatic free energy density of an array of parallel lines with a nearest-neighbor
distance of �s and line charge density 
 can thus be written as

Frep =
2‘B
2

�s

∞∑
j=1

K0[j�s�] : (9.3)

This expression is also accurate for rods of �nite radius d as long as d��s holds. In the limit
�s��1, when the distance between strands is much smaller than the screening length, the sum can
be transformed into an integral and we obtain

Frep � 2‘B
2

�s

∫ ∞

0
ds K0[s�s�] =

�‘B
2

�2s�
: (9.4)
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This expression neglects e�ects due to the presence of a solid substrate. For example, and as discussed
in Ref. [157], for a low-dielectric substrate the electrostatic interactions are enhanced by a factor of
two close to the substrate surface, a rather small e�ect which will be neglected in the following.
Since the average adsorbed surface charge density is given by 	ads = 
=�s, it follows that the self
energy Eq. (9.4) in the limit �s��1 is given by Frep � �‘B	2

ads�
−1 and thus is identical to the self

energy of a totally smeared-out charge distribution [157]. In this case, lateral correlations therefore
do not matter.

In the opposite limit, �s��1, when the polymers are much farther apart than the screening length,
the sum in Eq. (9.3) is dominated by the �rst term and (using the asymptotic expansion of the
Bessel function) the free energy density (in units of kBT ) becomes

Frep �
√
2�‘B
2e−�s�

�3=2s �1=2
: (9.5)

In this limit, it is important to note that the smeared-out repulsive energy Eq. (9.4) is much
larger and thus considerably overestimates the actual electrostatic repulsion between polymer strands.
Conversely, this reduction of the electrostatic repulsion between polymers results in an enormous
overcharging of the substrate, as we will see shortly.

In order to determine the equilibrium distance between the polymer strands, we balance the elec-
trostatic attraction term, the �rst term in Eq. (9.1), with the appropriate repulsion term. There are
three choices to do this. For d¡�−1 ¡�∗s ¡�s (with some crossover length �∗s to be determined
later on), the electrostatic repulsion between the polymers is irrelevant (i.e. the last term in Eq.
(9.1) can be neglected), and the lamellar phase is sterically stabilized in this case. The equilibrium
lamellar spacing is given by

�s ∼
[

�


	‘B‘
1=3
e�

ln
(

	‘B‘e�

�

)]3=2

: (9.6)

In all what follows, we neglect the logarithmic cofactor.
For d¡�−1 ¡�s ¡�∗s , the steric repulsion between the polymers is irrelevant (i.e. the second

term in Eq. (9.1) can be neglected). The free energy is minimized by balancing the electrostatic
adsorption term, the �rst term in Eq. (9.1), with the electrostatic repulsion term appropriate for the
case �s�¿ 1, Eq. (9.5), which leads to the electrostatically stabilized lamellar spacing

�s ∼ �−1 ln
[
�
	

]
: (9.7)

The adsorbed charge density then follows from 	ads ∼ 
=�s as

	ads ∼ 	

�	−1

ln(
�	−1)
(9.8)

(note that in the previous section the adsorbed charge density was obtained as the product of the
surface amount � and the charged-monomer fraction f, 	ads = f�). Therefore, the electrostatically
stabilized lamellar phase shows charge reversal as long as the spacing �s is larger than the screening
length. As we will see, this is always the case. The crossover between the sterically stabilized
lamellar phase, described by Eq. (9.6), and the lamellar phase which is stabilized by electrostatic
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repulsion, Eq. (9.7), occurs when the predictions for �s become simultaneously equal to the crossover
spacing �∗s , leading to a crossover for a surface charge density of (without logarithmic cofactors)

	 ∼ �5=3


‘1=3e� ‘B
: (9.9)

For 	 larger than the crossover value in Eq. (9.9) the distance between neighboring polymer strands
is smaller than �∗s and the electrostatic stabilization mechanism is at work, for 	 smaller than the
crossover value in Eq. (9.9) the lamellar spacing �s is larger than the characteristic crossover length
�∗s and the Odijk repulsion dominates. One notes that the transition Eq. (9.9) is, on the scaling level,
the same as the adsorption threshold in Eq. (6.5) and it is therefore not clear a priori whether the
sterically stabilized lamellar phase exits. However, we note that additional non-electrostatic adsorp-
tion forces will stabilize the sterically stabilized lamellar phase which should therefore occur in a
�nite range of parameters [157]. The electrostatically stabilized lamellar phase crosses over to the
charge-compensated phase when �s as given by Eq. (9.7) becomes of the order of the screening
length �−1. In the charge-compensated phase, the lamellar spacing is obtained by balancing the
electrostatic adsorption energy with the repulsion in the smeared-out limit Eq. (9.4) and is given by

�s � 

	

: (9.10)

In this case the adsorbed surface charge density 	ads = 
=�s exactly neutralizes the substrate charge
density,

	ads ∼ 	 : (9.11)

The crossover between the charged-reversed phase and charge-compensated phase is obtained by
matching Eqs. (9.7) and (9.10), leading to a threshold surface charge density of

	 ∼ 
� : (9.12)

Finally, taking into account that the polymers have some width d, there is an upper limit for
the amount of polymer that can be adsorbed in a single layer. Clearly, the lateral distance between
polymers in the full phase is given by

�s � d (9.13)

and thus the adsorbed surface charge density in the full phase reads

	ads =


d

: (9.14)

The crossover between the full phase and the compensated phase is obtained by comparing
Eqs. (9.10) and (9.13), leading to

	 ∼ 
=d : (9.15)

In Fig. 25 we show the adsorption diagram, for strongly charged polymers, de�ned by 

√
‘B‘0 ¿ 1,

as a function of the substrate charge density 	 and the inverse screening length �. The electrostatically
stabilized lamellar phase shows strong charge reversal as described by Eq. (9.8). At slightly larger
surface charge densities we predict a charge-compensated phase which is not full (i.e. �s ¡d)
for a range of surface charge densities as determined by Eqs. (9.12) and (9.15). At even larger
substrate charge density, the adsorbed polymer phase becomes close packed, i.e. �s = d. We note
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Fig. 25. Complete adsorption phase diagram as a function of the substrate charge density 	 and the inverse screening
length �. Note that we use logarithmic scales on both axes. We �nd a desorbed regime, an adsorbed lamellar phase
stabilized by electrostatic repulsions (which is strongly overcharged) and a lamellar phase which is stabilized by steric
repulsion between polymer strands, an adsorbed charge-compensated phase, and a full phase, where the substrate charge
cannot be compensated with a single adsorption layer because the layer is close-packed.

that since the full phase is not charge reversed, the full phase can consist of a second adsorbed layer
(or even more layers). It should however be clear that close to charge compensation the e�ective
substrate charge density an additional layer feels is so small that the condition for adsorption is
not met. At low substrate charge densities the distance between adsorbed polymer strands becomes
so large that the entropic repulsion between polymers dominates the electrostatic repulsion, and
�nally, at even lower charge densities, the polymers desorb. One notes that the transition between
the electrostatically and sterically stabilized adsorbed phases, Eq. (9.9), has the same scaling form
(disregarding logarithmic factors) as the desorption transition of semi-�exible polymers, Eq. (6.5).
We have shifted the desorption transition to the right, though, because typically there are attractive
non-electrostatic interactions as well, which tend to stabilize adsorbed phases. This is also motivated
by the fact that the sterically stabilized phase has been seen in experiments on DNA adsorption, as
will be discussed below. The critical charge density 	∗ where the full phase, the electrostatically
and the sterically stabilized phases meet at one point, is given by 	∗ =1=(d5=3‘1=3e� 
‘B). In the phase
diagram we have assumed that the charge density threshold for the full phase, 	 ∼ 
=d, satis�es the
inequality 
=d¿	∗, which for a fully charged PE at the Manning threshold, 
 = 1=‘B, amounts to
the condition ‘e� ¿‘3B=d

2, which is true for a large class of PEs.
The most important result of our discussion is that in the electrostatically stabilized phase the

substrate charge is strongly reversed by the adsorbed polymer layer. This can give rise to a charge-
oscillating multilayer formation if the adsorption of oppositely charged polymer is done in a second
step. The general trend that emerges is that charge reversal is more likely to occur for intermediate
salt concentrations and rather low substrate charge density. For too high-salt concentration and too
low substrate charge density, on the other hand, the polymer does not adsorb at all. In essence, the
salt concentration and the substrate charge density have to be tuned to intermediate values in order
to create charge multilayers.
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In experiments on DNA adsorbed on oppositely charged substrates one typically observes a lamel-
lar phase [145,146]. In one experiment, the spacing between DNA strands was found to increase
with increasing salt concentration [145]. One theoretical explanation invokes an e�ective interaction
between neighboring DNA strands mediated by elastic deformations of the membrane, which forms
the substrate in these experiments [212]. In the sterically stabilized regime, the distance between
adsorbed polymers increases as �s ∼ �3=2 with the salt concentration, see Eq. (9.6), which o�ers an
alternative explanation for the experimental �ndings. It would be interesting to redo DNA adsorp-
tion experiments on rigid substrates, where the elastic coupling to the membrane is absent. For high
enough substrate charge densities and by varying the salt concentration one should be able to see the
crossover from the electrostatically stabilized phase, Eq. (9.7), where the DNA spacing decreases
with added salt, to the sterically stabilized phase, Eq. (9.6), where the DNA spacing increases with
added salt.

Between the two limiting cases, di�usive mean-�eld adsorption pro�le with no lateral correlations
(as treated in Section 8), and a �at, two-dimensional adsorption layer with short-ranged lateral
correlations (as discussed in this section), there clearly exists a continuous crossover.

10. Interaction between two adsorbed layers

One of the many applications of polymers lies in their in�uence on the interaction between
colloidal particles suspended in a solvent [97]. Depending on the details of substrate–polymer inter-
actions and properties of polymers in solution, the e�ective interaction between colloids in a polymer
solution can be attractive or repulsive, explaining why polymers are widely used as �occulants and
stabilizers in industrial processes [97]. The various regimes and e�ects obtained for the interaction
of polymer solutions between two surfaces have recently been reviewed [213]. It transpires that
force-microscope experiments done on adsorbed polymer layers form an ideal tool for investigating
the basic mechanisms of polymer adsorption, colloidal stabilization and �occulation.

10.1. Non-adsorbing polymers

Let us �rst discuss brie�y the relatively simple case when the polymers do not adsorb on the
surface of the colloidal particles but are repelled from it. For low concentration of polymer, i.e.
below the overlap concentration c∗m, the depletion of polymer around the colloidal particles induces
a strong attraction between the colloidal particles. The range of this attraction is about the same
as the radius of an isolated polymer and can lead to polymer-induced �occulation [214,215]. The
e�ects of polymer excluded volume can be taken into account in analytical theories [216,217], while
Monte-Carlo simulations in the grand-canonical ensemble con�rm the existence and characteristics
of these depletion-induced attractive forces [218]. At polymer concentration higher than the overlap
concentration, the depletion zones around the particles become of the order of the mesh-size in the
solution. The attraction in this case is predicted to set in at separations equal to or smaller than the
mesh-size [219]. The force apparatus was used to measure the interaction between depletion layers
[96], as realized with polystyrene in toluene, which is a good solvent for polystyrene but does not
favor the adsorption of polystyrene on mica surfaces. Surprisingly, the resultant depletion force is
too weak to be detected.
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10.2. Adsorbing neutral polymers

(i) Equilibrium adsorption in good solvents: The case when polymers adsorb on the colloidal sur-
face is much more complicated, and many cases have to be distinguished. If the polymer concentra-
tion is rather high and under good-solvent conditions, polymers show the experimentally well-known
tendency to stabilize colloids against �occulation, i.e., to induce an e�ective repulsion between the
colloidal particles and to hinder them from coming close enough to each other so that van-der-Waals
attractions will induce �occulation [97]. We should also mention that in other applications, small
polymer concentrations and high-molecular weight polymers are used in the opposite sense as �oc-
culants, to induce binding between unwanted sub-micron particles and, thereby, removing them from
solution. It follows that adsorbing polymers can have di�erent e�ects on the stability of colloidal
particles, depending on the detailed parameters.

Hereafter, we assume that the polymers form an adsorbed layer around the colloidal particles, with
a typical thickness much smaller than the particle radius, and curvature e�ects can be neglected. In
that case, the e�ective interaction between the colloidal particles with adsorbed polymer layers can be
traced back to the interaction energy between two planar substrates covered with polymer adsorption
layers. In the case when the approach of the two particles is slow and the adsorbed polymer chains
are in full equilibrium with the chains in solution, the interaction between two opposing adsorbed
layers is predominantly attractive [220,221], mainly because polymers form bridges between the two
surfaces. Recently, it has been shown that there is a small repulsive component to the interaction
at large separations [222,223]. For the case of diblock copolymers, the force between two surfaces
depends in a subtle way on the relative a�nities of the blocks to the surfaces [224].

The typical equilibration times of polymers are extremely long. This holds in particular for ad-
sorption and desorption processes, and is due to the slow di�usion of polymers and their rather high
adsorption energies. Note that the adsorption energy of a polymer can be much higher than kBT
even if the adsorption energy of a single monomer is small because many monomers of a single
chain can be attached to the surface. Therefore, for the typical time scales of colloid contacts, the
adsorbed polymers are not in equilibrium with the polymer solution.

(ii) Constrained equilibrium: This is also the case for most of the experiments done with a
surface-force apparatus, where two polymer layers adsorbed on crossed mica cylinders are brought
in contact. In all these cases one has a constrained equilibrium situation, where the polymer con-
�gurations and thus the density pro�le can adjust only with the constraint that the total adsorbed
polymer excess stays constant. This case has been �rst considered by de Gennes [220] who found
that two fully saturated adsorbed layers will strongly repel each other if the total adsorbed amount of
polymer is not allowed to decrease. The repulsion is mostly due to osmotic pressure and originates
from the steric interaction between the two opposing adsorption layers. It was experimentally veri�ed
in a series of force-microscope experiments on polyethylene-oxide layers in water (which is a good
solvent for PEO) [225].

(iii) Undersaturated layers: In other experiments, the formation of the adsorption layer is stopped
before the layer is fully saturated. The resulting adsorption layer is called undersaturated. If two
of those undersaturated adsorption layers approach each other, a strong attraction develops, which
only at smaller separation changes to an osmotic repulsion [226]. The theory developed for such
non-equilibrium conditions predicts that any surface excess lower than the one corresponding to full
equilibrium will lead to attraction at large separations [227,228]. Similar mechanisms are valid for
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colloidal suspensions, if the total surface available for polymer adsorption is large compared to the
total amount of polymer in solution. In this case, the adsorption layers are undersaturated, and the
resulting attraction is utilized in applications of polymers as �occulation agents [97].

(iv) Bad solvent conditions: Another distinct mechanism leading to attractive forces between
adsorption layers was investigated in experiments with dilute polymer solutions in bad solvents.
As an example we mention polystyrene in cyclohexane below the theta temperature [229]. The
subsequently developed theory [230] showed that the adsorption layers attract each other since the
local concentration in the outer part of the adsorption layers is enhanced over the dilute solution
and lies in the unstable two-phase region of the bulk phase diagram. Similar experiments have been
repeated at the theta temperature [231].

(v) Dynamic e�ects: Additional e�ects that have been considered are the dynamical approach
between two surfaces bearing adsorbed polymer layers, which is controlled by the �ow of solvent
through the polymer network a�xed to the surfaces [232].

10.3. Adsorbing charged polymers

More complicated e�ects are obtained for the interaction between two charged surfaces in the
presence of oppositely charged PEs. Experimentally, this situation is encountered when one tries to
�occulate or stabilize charge-stabilized dispersions by the addition of oppositely charged PEs [97]. In
the absence of added PEs, two similarly charged surfaces repel each other over a range of the order
of the screening length in the case of added salt. This can be calculated on the mean-�eld level [191]
and agrees quantitatively with Monte-Carlo simulations and experimental results for monovalent salt
[233,234]. For divalent or trivalent salt mean-�eld theory becomes inaccurate and attractive forces
are generated by ion–ion correlations [233,234]. Attractive forces between the surfaces can result,
at some separation range, even on a mean �eld level [191] from a combination of electrostatic
interactions between all charged species and the adsorption energies of PE chains on the surfaces.

In simulations [235,236] and mean-�eld theories [191,235,237,238] it has been found that the
predominant e�ect of added PEs is an attraction between the surfaces, due to bridging between
the surfaces and screening of the surface repulsion. Like in the case of neutral polymers between
adsorbing surfaces, the force between the surfaces depends on the adsorbed amount. Salt can be
used to control the amount of adsorbed polymers, and it also has an important e�ect on the net
force. Since the adsorbed amount for highly charged PEs increases with added salt, the force be-
comes less attractive in this case and, for large salt concentration, is purely repulsive. For small
salt concentrations, on the other hand, the attraction is strongest. Clearly, in the case of constrained
equilibrium, i.e. when the amount of adsorbed polymer is �xed as the plate separation changes,
the force acquires an additional repulsive component as the plates approach each other, due to the
force needed to compress the polymer layer. For larger separations and for undersaturated polymer
layers, on the other hand, the forces are attractive. The precise crossover between attraction due to
undersaturation (at large separation) to repulsion due to oversaturation (at small separations) depends
on the adsorbed amount. This can be experimentally controlled for example by the total amount of
added PE.

Measurements of the disjoining pressure in thin liquid �lms of PE solutions as a function of
�lm thickness demonstrated an oscillatory pressure [95,239–241] with a period of the oscillation of
the order of the peak position in the bulk structure factor (which was discussed in Section 3.6).
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Theoretically, those oscillations have been seen in mean-�eld calculations [204] as well as more
elaborate integral-equation calculations [242].
An e�ect which is missed by mean-�eld theories is the so-called mosaic-binding of charged

surfaces in the presence of a very low concentration of oppositely charged PE [97]. In this case
the adsorbed layers of the separate surfaces are very undersaturated. Individual polymer coils form
isolated patches on the substrate, where the local surface charge is reversed. The substrate shows a
mosaic pattern of oscillating charge patches. If two of those patterned surfaces approach each other,
the patterns will readjust in order to match oppositely charged patches, resulting in a very strong,
irreversible binding [97].

11. Polymer adsorption on heterogeneous surfaces

Polymer adsorption can be coupled in a subtle way with lateral changes in the chemical composi-
tion or density of the surface. Such a surface undergoing lateral rearrangements at thermodynamical
equilibrium is called an annealed surface [243,244]. A Langmuir monolayer of insoluble surfactant
monolayers at the air/water interface is an example of such an annealed surface. As function of the
temperature change, a Langmuir monolayer can undergo a phase transition from a high-temperature
homogeneous state to a low-temperature demixed state, where domains of dilute and dense regions
coexist. Alternatively, the transition from a dilute phase to a dense one may be induced by compress-
ing the monolayer at constant temperature, in which case the adsorbed polymer layer contributes to
the pressure [245]. The domain boundary between the dilute and dense phases can act as nucleation
site for adsorption of bulky molecules [246].
The case where the insoluble surfactant monolayer interacts with a semi-dilute polymer solution

solubilized in the water subphase was considered in some detail. The phase diagrams of the mixed
surfactant/polymer system were investigated within the framework of mean-�eld theory [247]. The
polymer enhances the �uctuations of the monolayer and induces an upward shift of the critical
temperature. The critical concentration is increased if the monomers are more attracted (or at least
less repelled) by the surfactant molecules than by the bare water/air interface. In the case where
the monomers are repelled by the bare interface but attracted by the surfactant molecules (or vice
versa), the phase diagram may have a triple point. The location of the polymer desorption transition
line (i.e., where the substrate–polymer interaction changes from being repulsive to being attractive)
appears to have a big e�ect on the phase diagram of the surfactant monolayer [247].
A similar e�ect is seen with DNA which adsorbs on a mixed lipid bilayer consisting of cationic

and neutral lipid molecules [147]. Experimentally, it is seen that the negatively charged DNA attracts
the positively charged lipid molecules and leads to a local demixing of the membrane [147]. Theoret-
ically, this can be studied by formulating the Poisson–Boltzmann theory for a single charged cylinder
(which models the rigid DNA molecule) at some distance from a surface with mobile charged lipids
of a given density and size [248]. For low-salt concentrations, the charged DNA leads to a strong
accumulation of cationic lipids in its vicinity. Depending on the size of the lipid heads, this lipid
concentration pro�le can extend far away from the cylinder. For high-salt concentrations on the other
hand, this accumulation e�ect is much weaker due to screening. Similar e�ects have been studied
for periodic arrays of adsorbed DNA cylinders [249,250] which describe experimental results for
bulk DNA–cationic lipid complexes [146].
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The adsorption of DNA on laterally structured substrates was recently characterized by direct
AFM visualization [251]. Patches of positively charged lipids were embedded in a matrix of negative
surface potential, and the size of the cationic surface patches was varied from the micrometer down
to the nanometer scale. DNA adsorption was found to depend both on the average surface charge
density and on the size of positively charged patches. Similar phenomena were studied theoretically
using o�-lattice Monte-Carlo simulations [252,253].

12. Polymer adsorption on curved and �uctuating interfaces

12.1. Neutral polymers

The adsorption of polymers on rough substrates is of high interest to applications. One example
is the reinforcement of rubbers by �ller particles such as carbon black or silica particles [254].
Theoretical models considered sinusoidal surfaces [255], rough and corrugated substrates [256,257].
In all cases, enhanced adsorption was found and rationalized in terms of the excess surface available
for adsorption.

The adsorption on macroscopically curved bodies, such as spheres and cylinders, leads to modi�ed
adsorption pro�les [258]. Of considerable interest is the e�ective interaction between two colloidal
particles covered by adsorption layers [259]. Another application is obtained for the adsorption of
polymers on �exible interfaces or membranes [243,260,261]. Here one interesting aspect concerns
the polymer-induced contribution to the elastic bending moduli of the �exible surface. The elastic
energy of a liquid-like membrane can be expressed in terms of two bending moduli, � and �G. The
elastic energy (per unit area) is

�
2
(c1 + c2 − 2c0)2 + �Gc1c2 ; (12.1)

where � and �G are the elastic and Gaussian bending moduli, respectively. The principle curvatures of
the surface are given by c1 and c2, and c0 is the spontaneous curvature. Quite generally, in presence
of adsorbing polymers �G turns out to be positive and thus favors the formation of surfaces with
negative Gaussian curvature. An ‘egg-carton’ structure is an example to such a multi-saddle surface.
On the other hand, the e�ective � is reduced, leading to a more deformable and �exible surface
due to the adsorbed polymer layer [243,262,263]. The spontaneous curvature c0 is only non-zero
if the adsorption pro�le is di�erent on both sides of the membrane [260]. This can be achieved,
for example, by incubating vesicle solutions with polymers, so that the vesicle interior is devoid
of polymers (neglecting polymer translocation through the membrane which is indeed a rather slow
process). If the polymers do not adsorb on the membrane, the spontaneous curvature is such that
the membrane bends towards the polymer solution [216,217]. If, on the other hand, the polymers do
adsorb on the membrane, the membrane bends away from the polymer solution with a continuous
crossover between the two cases as the adsorption strength is varied [264].

12.2. Charged polymers

Of particular interest is the adsorption of strongly charged polymers on oppositely charged cylin-
ders [265–267] and spheres [268–273], because these are geometries encountered in many colloidal
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Fig. 26. Numerically determined adsorption diagram for a negatively charged semi-�exible polymer of length L= 50 nm,
linear charge density 
= 6 nm−1, persistence length ‘0 = 30 nm, interacting with an oppositely charged sphere of radius
Rsp = 5 nm. Shown is the main transition from the unwrapped con�guration (at the bottom) to the wrapped con�guration
(at the top) as a function of sphere charge Z and inverse Debye–H�uckel screening length �. Wrapping is favored at
intermediate salt concentrations. The parameters are chosen for the problem of DNA–histone complexation. Adapted from
Ref. [275].

science applications and in bio-cellular processes. When the curvature of the small colloidal particles
is large enough, it can lead to a much more pronounced e�ect for PE adsorption as compared with
neutral polymer. This is mainly due to the fact that the electrostatic energy of the adsorbed PE layer
depends sensitively on curvature [269,272–274]. Bending a charged polymer around a small sphere
costs a large amount of electrostatic energy, which will disfavor adsorption of long, strongly charged
PE at too low-salt concentration.

In Fig. 26 we show the adsorption phase diagram of a single sti� PE of �nite length which
interacts with an oppositely charged sphere of charge Z (in units of e). The speci�c parameters
were chosen as appropriate for the complexation of DNA (a negatively charged, relatively sti�
biopolymer) with positively charged histone proteins, corresponding to a DNA length of L=50 nm,
a chain persistence length of ‘0 =30 nm, and a sphere radius of Rsp =5 nm. The phase diagram was
obtained by minimization of the total energy including bending energy of the DNA, electrostatic
attraction between the sphere and the DNA, and electrostatic repulsion between the DNA segments
[275]. All interactions are represented by screened Debye–H�uckel potentials of the form of Eq. (3.3).
Fluctuations of the DNA shape are unimportant for such sti� polymers. Therefore, the ground-state
analysis performed is an acceptable approximation.

We show in Fig. 26 the main transition between an unwrapped state, at low sphere charge Z , and
the wrapped state, at large sphere charge Z . It is seen that at values of the sphere charge between
Z = 10 and 130 the wrapping only occurs at intermediate values of the inverse screening length
� ∼ c1=2salt. At low-salt concentrations (lower left corner in the phase diagram), the self-repulsion be-
tween DNA segments prevents wrapping, while at large salt concentrations (lower right corner in the
diagram), the electrostatic attraction is not strong enough to overcome the mechanical bending en-
ergy of the DNA molecule. These results are in good agreement with experiments on DNA/histone
complexes [276]. Interestingly, the optimal salt concentration, where a minimal sphere charge is
needed to wrap the DNA, occurs at physiological salt concentration, for �−1 ≈ 1 nm. For colloidal
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particles of larger size and for �exible synthetic polymers, con�gurational �uctuations become im-
portant. They have been treated using a mean-�eld description in terms of the average monomer
density pro�le around the sphere [268,270].

13. Grafted polymer chains

The discussion so far assumed that all monomers of a polymer are alike, showing the same
tendency to adsorb to the substrate surface. For industrial and technological applications, one is
often interested in end-functionalized polymers. These are polymers which attach with one end only
to the substrate, as is depicted in Fig. 13b, while the rest of the polymer is not particularly attracted
to (or even repelled from) the grafting surface. Hence, it attains a random-coil structure in the
vicinity of the surface. Another possibility of block copolymer grafting, as shown in Fig. 13c, will
be brie�y discussed below as well.

The motivation to study such terminally attached polymers lies in their enhanced power to stabilize
particles and surfaces against �occulation. Attaching a polymer by its end to the surface opens up
a much more e�ective route to stable surfaces. Bridging and creation of polymer loops on the same
surface, as encountered in the case of homopolymer adsorption (and leading to attraction between
two particle surfaces and destabilization, see Section 10), do not occur if the main-polymer section
is chosen such that it does not adsorb to the surface.

Experimentally, the end-adsorbed polymer layer can be built in several di�erent ways, depending
on the application in mind. First, one of the polymer ends can be chemically bound to the grafting
surface, leading to a tight and irreversible attachment [189] shown schematically in Fig. 13b. The
second possibility consists of physical adsorption of a specialized end-group which favors interaction
with the substrate. For example, polystyrene chains have been used which contain a zwitterionic end
group that adsorbs strongly on mica sheets [277].
Physical grafting is also possible with a suitably chosen diblock copolymer (Fig. 13c), e.g., a

polystyrene–polyvinylpyridine (PS–PVP) diblock in the solvent toluene at a quartz substrate [278].
Toluene is a selective solvent for this diblock. The PVP (polyvinylpyridine) block is strongly ad-
sorbed to the quartz substrate and forms a collapsed anchor, while the PS (polystyrene) block is
under good-solvent conditions. It does not adsorb to the substrate and remains solubilized in the
solvent. General adsorption scenarios for diblock copolymers have been theoretically discussed, both
for selective and non-selective solvents, with special consideration to the case when the asymmetry
of the diblock copolymer, i.e., the length di�erence between the two blocks, is large [279].
Another experimental realization is possible with diblock copolymers which are anchored at the

liquid–air [280] or at a liquid–liquid interface of two immiscible liquids [281]. This scenario o�ers
the advantage that the surface pressure can be directly measured. A well studied example is that
of a diblock copolymer of polystyrene–polyethylene oxide (PS–PEO). The PS block is shorter and
functions as an anchor at the air/water interface because it is immiscible in water. The PEO block is
miscible in water but because of attractive interaction with the air/water interface it forms a quasi-two
dimensional layer at very low surface coverage. As the surface pressure increases and the area per
polymer decreases, the PEO block is expelled from the surface and forms a quasi polymer ‘brush’.

In the following we simplify the discussion by assuming that the polymers are irreversibly grafted
at one of their chain ends to the substrate. We limit the discussion to good solvent conditions and
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Fig. 27. For grafted chains, one distinguishes between: (a) the mushroom regime, where the distance between chains, �−1=2,
is larger than the size of a polymer coil; and, (b) the brush regime, where the distance between chains is smaller than the
unperturbed coil size. Here, the chains are stretched away from the surface due to repulsive interactions between monomers.
The brush height D scales linearly with the polymerization index, D ∼ N , and thus is larger than the unperturbed coil
radius R ∼ aN�.

absence of any attractive interactions between the polymer chains and the surface. The important
new system parameter is the grafting density (or area per chain) �, which is the inverse of the
average area available for each polymer at the surface. For small grafting densities, �¡�∗, the
polymer chains will be far apart from each other and hardly interact, as schematically shown in
Fig. 27a. The overlap grafting density for chains in good solvent conditions (swollen chains) is
�∗ ∼ a−2N−6=5, where N is the polymerization index [282].

For large grafting densities, �¿�∗, the chains begin to overlap. Since we assume the solvent
to be good, monomers repel each other. The lateral separation between the polymer coils is �xed
by the grafting density, so that the polymers extend away from the grafting surface in order to
avoid each other, as depicted in Fig. 27b. The resulting structure is called a polymer ‘brush’, with
a vertical height D which greatly exceeds the unperturbed coil radius [282,283]. Similar stretched
structures occur in many other situations, such as diblock copolymer melts in the strong segregation
regime, or star polymers under good solvent conditions [284]. The universal occurrence of stretched
polymer con�gurations in several seemingly unconnected situations warrants a detailed discussion.
Below, this discussion is separated for neutral and charged grafted chains.

13.1. Neutral grafted polymers

The scaling behavior of the brush height D can be analyzed using a Flory-like mean-�eld
theory, which is a simpli�ed version of the original Alexander theory [283] for polymer brushes. The
stretching of the chain leads to an entropic free energy loss of D2=(a2N ) per chain, and the repul-
sive energy density due to unfavorable monomer–monomer contacts is proportional to the squared
monomer density times the excluded-volume parameter v2 (introduced in Section 2.2). The free
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energy per chain (and in units of kBT ) is then

F � D2

a2N
+ v2

(
�N
D

)2 D
�

: (13.1)

The equilibrium height is obtained by minimizing Eq. (13.1) with respect to D, and the result is

Deq = N (2v2a2�=3)1=3 ; (13.2)

where the numerical constants have been added for numerical convenience in the following con-
siderations. The vertical size of the brush scales linearly with the polymerization index N , a clear
signature of the strong stretching of the polymer chains, as was originally obtained by Alexander
[283]. At the overlap threshold, �∗ ∼ a−2N−6=5, the height scales as Deq ∼ N 3=5, and thus agrees
with the scaling of an unperturbed chain radius in a good solvent, Eq. (2.8), as it should. The sim-
ple scaling calculation predicts the brush height D correctly in the asymptotic limit of long chains
and strong overlap. It has been con�rmed by experiments [189,277,278] and computer simulations
[285,286].

The above scaling result assumes that all chains are stretched to exactly the same height, leading
to a step-like shape of the density pro�le. Monte-Carlo and numerical mean-�eld calculations con�rm
the general scaling of the brush height, but exhibit a more rounded monomer density pro�le which
goes continuously to zero at the outer perimeter [285]. A big step towards a better understanding of
stretched polymer systems was made by Semenov [287], who recognized the importance of classical
paths for such systems.

The classical polymer path is de�ned as the path which minimizes the free energy, for a given
start and end positions, and thus corresponds to the most likely path a polymer can take. The name
follows from the analogy with quantum mechanics, where the classical motion of a particle is given
by the quantum path with maximal probability. Since for strongly stretched polymers the �uctuations
around the classical path are weak, it is expected that a theory that takes into account only classical
paths, is a good approximation in the strong-stretching limit. To quantify the stretching of the brush,
let us introduce the (dimensionless) stretching parameter �, de�ned as

� ≡ N
(
3v22�

2

2a2

)1=3

=
3
2

(
Deq

aN 1=2

)2

; (13.3)

where Deq is the brush height according to Alexander’s theory, compare Eq. (13.2). The parameter
� is proportional to the square of the ratio of the Alexander prediction for the brush height, Deq, and
the unperturbed Gaussian chain radius R ∼ aN 1=2, and, therefore, is a measure of the stretching of
the brush. Constructing a classical theory in the in�nite-stretching limit, de�ned as the limit � → ∞,
it was shown independently by Milner et al. [288] and Skvortsov et al. [289] that the resulting
monomer volume-fraction pro�le depends only on the vertical distance from the grafting surface and
has in fact a parabolic pro�le. Normalized to unity, the density pro�le is given by

�(x) =
(
3�
4

)2=3

−
(

�x
2Deq

)2

: (13.4)
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Fig. 28. Results for the density pro�le (normalized to unity) of a strongly compressed brush, as obtained within
mean-�eld theory. As the compression increases, described by the stretching parameter �, which varies from 0.1 (dots) to
1 (dash-dots), 10 (dashes), and 100 (solid line), the density pro�le approaches the parabolic pro�le (shown as a thick,
dashed line) obtained within a classical-path analysis (adapted from Ref. [290]).

The brush height, i.e., the value of x for which the monomer density becomes zero, is given by
x∗ = (6=�2)1=3Deq and is thus proportional to the scaling prediction for the brush height, Eq. (13.2).
The parabolic brush pro�le has subsequently been con�rmed in computer simulations [285,286] and
experiments [189] as the limiting density pro�le in the strong-stretching limit, and constitutes one
of the cornerstones in this �eld. Intimately connected with the density pro�le is the distribution of
polymer end points, which is non-zero everywhere inside the brush, in contrast with the original
scaling description leading to Eq. (13.2).

However, deviations from the parabolic pro�le become progressively important as the length of
the polymers N or the grafting density � decreases. In a systematic derivation of the mean-�eld
theory for Gaussian brushes [290] it was shown that the mean-�eld theory is characterized by a
single parameter, namely the stretching parameter �. In the limit � → ∞, the di�erence between the
classical approximation and the mean-�eld theory vanishes, and one obtains the parabolic density
pro�le. For �nite � the full mean-�eld theory and the classical approximation lead to di�erent results
and both show deviations from the parabolic pro�le.

In Fig. 28 we show the density pro�les (normalized to unity) for four di�erent values of �,
obtained with the full mean-�eld theory [290]. The parameter values used are � = 100 (solid line),
� = 10 (thin dashed line), � = 1 ( dotted-dashed line), and � = 0:1 (dotted line). For comparison,
we also show the asymptotic result according to Eq. (13.4) as a thick dashed line. In contrast to
earlier numerical implementations [1], the self-consistent mean-�eld equations were solved in the
continuum limit, where the results depend only on the single parameter � and direct comparison
with other continuum theories becomes possible. Already for � = 100 the density pro�le obtained
within mean-�eld theory is almost indistinguishable from the parabolic pro�le denoted by a thick
dashed line.

Experimentally, the highest achievable � values are in the range of � � 20. Namely, deviations
from the asymptotic parabolic pro�le are important. For moderately large values of �¿ 10, the
classical approximation (not shown here), derived from the mean-�eld theory by taking into account
only one polymer path per end-point position, is still a good approximation, as judged by comparing
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density pro�les obtained from both theories [290], except very close to the surface. Unlike mean-�eld
theory, the classical theory misses completely the depletion e�ects at the substrate. Depletion e�ects
at the substrate lead to a pronounced density depression close to the grafting surface, as is clearly
visible in Fig. 28.

A further interesting question concerns the behavior of individual polymer paths. As was already
discussed for the in�nite-stretching theories (� → ∞), polymers paths can end at any distance from
the surface. Analyzing the polymer paths which end at a common distance from the surface, two
rather unexpected features are obtained: (i) free polymer ends, in general, are stretched; and, (ii) the
end-points lying close to the substrate are pointing towards the surface (such that the polymer path
�rst turns away from the grafting surface before moving back towards it). In contrast, end-points
lying beyond a certain distance from the substrate, point away from the surface (such that the
paths move monotonously towards the surface). We should point out that these two features have
been recently con�rmed in molecular-dynamics simulations [291]. They are not an artifact of the
continuous self-consistent theory used in Ref. [290] nor are they due to the neglect of �uctuations.
These are interesting results, especially since it has been long assumed that free polymer ends are
unstretched, based on the assumption that no forces act on free polymer ends.

Let us now turn to the thermodynamic behavior of a polymer brush. Using the Alexander descrip-
tion, we can calculate the free energy per chain by putting the result for the optimal brush height,
Eq. (13.2), into the free-energy expression, Eq. (13.1):

F ∼ N (v2�=a)2=3 : (13.5)

In the presence of excluded-volume correlations, i.e., when the chain overlap is rather moderate, the
brush height D is still correctly predicted by the Alexander calculation, but the prediction for the free
energy is in error. Including correlations [283], the free energy is predicted to scale as F ∼ N�5=6.
The osmotic surface pressure � is related to the free energy per chain by

� = �2 9F
9� ; (13.6)

and should thus scale as � ∼ �5=3 in the absence of correlations, and as � ∼ �11=6 in the presence of
correlations. However, these theoretical predictions do not compare well with all experimental results
for the surface pressure of a compressed brush [280]. Currently there is still some debate about the
cause for this discrepancy. An alternative theoretical method to study tethered chains is the so-called
single-chain mean-�eld method [292], where the statistical mechanics of a single chain is treated
exactly, and the interactions with the other chains are taken into account on a mean-�eld level. This
method is especially useful for short chains, where �uctuation e�ects are important, and for dense
systems, where excluded volume interactions play a role. The calculated pro�les and brush heights
agree very well with experiments and computer simulations. Moreover, these calculations explain
the pressure isotherms measured experimentally [280] and in molecular-dynamics simulations [293].
As we described earlier, the main interest in end-adsorbed or grafted polymer layers stems from

their ability to stabilize surfaces against van-der-Waals attraction. The force between colloids with
grafted polymers is repulsive if the polymers do not adsorb on the grafting substrates [294]. This
is in accord with our discussion of the interaction between adsorption layers, where attraction was
found to be caused mainly by bridging and creation of polymer loops, which of course are absent for
non-adsorbing brushes. A stringent test of brush theories was possible with accurate experimental
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measurements of the repulsive interaction between two opposing grafted polymer layers using a
surface force apparatus [277]. The resultant force could be �tted very nicely by the in�nite-stretching
theory of Milner et al. [295]. It was also shown that polydispersity e�ects, as appear in experiments,
have to be taken into account theoretically in order to obtain a good �t of the data [296].

13.2. Solvent and substrate e�ects on polymer grafting

So far we assumed that the polymer grafted layer is in contact with a good solvent. In this case,
the grafted polymers try to minimize their mutual contacts by stretching out into the solvent. If the
solvent is bad, the monomers try to avoid the solvent by forming a collapsed brush, the height of
which is considerably reduced with respect to the good-solvent case. It turns out that the collapse
transition, which leads to phase separation in the bulk, is smeared out for the grafted layer and does
not correspond to a true phase transition [297]. The height of the collapsed layer scales linearly in
�N , which re�ects the constant density within the brush, in agreement with experiments [298]. Some
interesting e�ects have been described theoretically [299] and experimentally [298] for brushes in
mixtures of good and bad solvent, which can be rationalized in terms of a partial solvent demixing.

For a theta solvent (v2=0) the relevant interaction is described by the third-virial coe�cient; using
a simple Alexander approach similar to the one leading to Eq. (13.2), the brush height is predicted
to vary with the grafting density as D ∼ �1=2, in agreement with computer simulations [300].

Up to now we discussed planar grafting layers. It is of much interest to consider the case where
polymers are grafted to curved surfaces. The �rst study taking into account curvature e�ects of
stretched and tethered polymers was done in the context of star polymers [301]. It was found that
chain tethering in the spherical geometry leads to a universal density pro�le, showing a densely
packed core, an intermediate region where correlation e�ects are negligible and the density decays
as �(r) ∼ 1=r, and an outside region where correlations are important and the density decays as � ∼
r−4=3. These considerations were extended using the in�nite-stretching theory of Milner et al. [302],
self-consistent mean-�eld theories [303], and molecular-dynamics simulations [304]. Of particular
interest is the behavior of the bending rigidity of a polymer brush, which can be calculated from
the free energy of a cylindrical and a spherical brush and forms a conceptually simple model for
the bending rigidity of a lipid bilayer [305].

A di�erent scenario is obtained with special functionalized lipids linked to the polymer chain. If
such lipids are incorporated into lipid vesicles, the water-soluble polymers (typically one uses PEG
(poly-ethylene glycol) for its non-toxic properties) form well-separated mushrooms, or, at higher
concentration of PEG lipid, a dense brush. These modi�ed vesicles are very interesting in the context
of drug delivery, because they show prolonged circulation times in vivo [306]. This is probably due to
a steric serum-protein-binding inhibition by the hydrophilic brush coat consisting of the PEG lipids.
Since the lipid bilayer is rather �exible and undergoes thermal bending �uctuations, there is an
interesting coupling between the polymer density distribution and the membrane shape [98,307,308].
For non-adsorbing, anchored polymers, the membrane will bend away from the polymer due to
steric repulsion [309–311], but for adsorbing anchored polymer the membrane will bend towards the
anchored polymer [312,313].
The behavior of a polymer brush in contact with a solvent, which is by itself also a polymer,

consisting of chemically identical but somewhat shorter chains than the brush, had been �rst consid-
ered by de Gennes [282]. A complete scaling description has been given only recently [314]. One
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distinguishes di�erent regimes where the polymer solvent is expelled to various degrees from the
brush. A somewhat related question concerns the behavior of two opposing brushes brought closely
together, and separated by a solvent consisting of a polymer solution [315]. Here one distinguishes
a regime where the polymer solution leads to a strong attraction between the surfaces via the or-
dinary depletion interaction (compare to Ref. [219]), but also a high polymer concentration regime
where the attraction is not strong enough to induce colloidal �occulation. This phenomenon is called
colloidal restabilization [315].

Considering a mixed brush made of mutually incompatible grafted chains, a novel transition to a
brush characterized by a lateral composition modulation was found [316]. Even more complicated
spatial structures are obtained with grafted diblock copolymers [317]. Finally, we would like to
mention in passing that these static brush phenomena have interesting consequences on dynamic
properties of polymer brushes [318].

13.3. Charged grafted polymers

Brushes can also be formed by charged polymers which are densely end-grafted to a surface; they
are called polyelectrolyte or charged brushes. They have been the focus of numerous theoretical
[319–327] and experimental [328–330] studies. In addition to the basic interest, charged brushes are
considered for their applications because they serve as an e�cient mean for preventing colloids in
polar media (such as aqueous solutions) from �occulating and precipitating out of solution [97].
This stabilization arises from steric (entropic) as well as electrostatic repulsion. A strongly charged
brush is able to trap its own counterions and generates a layer of locally enhanced salt concentration
[321]. It is thus less sensitive to the salinity of the surrounding aqueous medium than a stabilization
mechanism based on pure electrostatics (i.e. without polymers). Little is known from experiments
on the scaling behavior of PE brushes, as compared to neutral brushes. The thickness of the brush
layer has been calculated from neutron-scattering experiments on end-grafted polymers [328] and
charged diblock-copolymers at the air–water interface [330].

Theoretical work on PE brushes was initiated by the works of Miklavic and Marcelja [319] and
Misra et al. [320]. In 1991, Pincus [321] and Borisov et al. [322] presented scaling theories for
charged brushes in the so-called osmotic regime, where the brush height results from the balance
between the chain elasticity (which tends to decrease the brush height) and the repulsive osmotic
counterion pressure (which tends to increase the brush height). In later studies, these works have
been generalized to poor solvents [323] and to the regime where excluded volume e�ects become
important, the so-called quasi-neutral or Alexander regime [326].

In what follows we assume that the charged brush is characterized by two length scales: the average
vertical extension of polymer chains from the surface D, and the typical extent of the counterion
cloud, denoted by H . We neglect the presence of additional salt, which has been discussed extensively
in the original literature, and only consider screening e�ects due to the counterions of the charged
brush. Two di�erent scenarios emerge, as is schematically presented in Fig. 29. The counterions can
either extend outside the brush, H�D, as shown in (a), or be con�ned inside the brush, H ≈ D
as shown in (b). As we show now, case (b) is indicative of strongly charged brushes, while case
(a) is typical for weakly charged brushes.

The free energy density per unit area and in units of kBT contains several contributions, which
we now calculate one by one. We recall that the grafting density of PEs is denoted by �, z is the
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Fig. 29. Schematic PE brush structure. In (a) we show the weak-charge limit where the counterion cloud has a thickness
H larger than the thickness of the brush layer, D. In (b) we show the opposite case of the strong-charge limit, where all
counterions are contained inside the brush and a single length scale D ≈ H exists.

counterion valency, N the polymerization index of grafted chains, and f the charge fraction. The
osmotic free energy, Fos, associated with the ideal entropy cost of con�ning the counterions to a
layer of thickness H is given by

Fos � Nf�
z

ln
(
Nf�
zH

)
: (13.7)

Fv2 is the second virial contribution to the free energy, arising from steric repulsion between the
monomers (contributions due to counter ions are neglected). Throughout this section, the polymers
are assumed to be in a good solvent (positive second virial coe�cient v2 ¿ 0). The contribution thus
reads

Fv2 �
1
2
Dv2

(
N�
D

)2

: (13.8)
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Finally, a direct electrostatic contribution Fel occurs if the PE brush is not locally electro-neutral
throughout the system, as for example is depicted in Fig. 29a. This energy is given by

Fel =
2�‘B(Nf�)2

3
(H − D)2

H
: (13.9)

This situation arises in the limit of low charge, when the counterion density pro�le extends beyond
the brush layer, i.e. H ¿D.

The last contribution is the stretching energy of the chains which is

Fst =
3D2

2Na2
� : (13.10)

Here, a is the Kuhn length of the polymer, implying that we neglect any chain sti�ness for the
brush problem. The di�erent free energy contributions lead, upon minimization with respect to the
two length scales H and D, to di�erent behaviors. Let us �rst consider the weak charging limit, i.e.
the situation where the counterions leave the brush, H ¿D. In this case, minimization of Fos + Fel

with respect to the counterion height H leads to

H ∼ 1
z‘BNf�

(13.11)

which has the same scaling as the Gouy–Chapman length for z-valent counterions at a surface of
surface charge density 	=Nf�. Balancing now the polymer stretching energy Fst and the electrostatic
energy Fel one obtains the so-called Pincus brush height

D � N 3�a2‘Bf2 ; (13.12)

which results from the electrostatic attraction between the counterions and the charged monomers.
One notes the peculiar dependence on the polymerization index N . In the limit of H ≈ D where D
given by Eq. (13.12), the PE brush can be considered as neutral and the electrostatic energy vanishes.
There are two ways of balancing the remaining free energy contributions. The �rst is obtained by
comparing the osmotic energy of counterion con�nement, Fos, with the polymer stretching term, Fst,
leading to the height

D ∼ Naf1=2

z1=2
; (13.13)

constituting the so-called osmotic brush regime. Finally comparing the second-virial free energy, Fv2 ,
with the polymer stretching energy, Fst, one obtains

D ∼ Na(v2�=a)1=3 ; (13.14)

and the PE brush is found to have the same scaling behavior as the neutral brush [283,282], compare
Eq. (13.2). Comparing the brush heights in all three regimes we arrive at the phase diagram shown
in Fig. 30. The three scaling regimes coexist at the characteristic charge fraction

fco ∼
(

zv2
N 2a2‘B

)1=3

; (13.15)
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Fig. 30. Scaling diagram for PE brushes on a log–log plot as a function of the grafting density � and the fraction of
charged monomers f. Featured are the Pincus-brush regime, where the counterion layer thickness is much larger than the
brush thickness, the osmotic-brush regime, where all counterions are inside the brush and the brush height is determined by
an equilibrium between the counterion osmotic pressure and the PE stretching energy, and the neutral-brush regime, where
charge e�ects are not important and the brush height results from a balance of PE stretching energy and second-virial
repulsion. The power law exponents of the various lines are denoted by numbers.

and the characteristic grafting density

�co ∼ 1

N‘1=2B v1=22

: (13.16)

For large values of the charge fraction f and the grafting density � it has been found numerically
that the brush height does not follow any of the scaling laws discussed here [331]. This has been
recently rationalized in terms of another scaling regime, the collapsed regime. In this regime one
�nds that correlation and �uctuation e�ects, which are neglected in the discussion in this section,
lead to a net attraction between charged monomers and counterions [332]. Similarly, two charged
surfaces, one decorated with a charged brush, the other one neutralized by counter ions, attract each
other at large enough grafting densities [333].
Another way of creating a charged brush is to dissolve a diblock copolymer consisting of a hy-

drophobic and a charged block in water. The diblocks associate to form a hydrophobic core, thereby
minimizing the unfavorable interaction with water, while the charged blocks form a highly charged
corona or brush [334]. The micelle morphology depends on di�erent parameters. Most importantly,
it can be shown that salt acts as a morphology switch, giving rise to the sequence spherical, cylin-
drical, to planar micellar morphology as the salt concentration is increased [334]. Theoretically, this
can be explained by the entropy cost of counterion con�nement in the charged corona [335]. The
charged corona can be studied by neutron scattering [336] or atomic-force microscopy [337] and
gives information on the behavior of highly curved charged brushes.
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14. Concluding remarks

We reviewed simple physical concepts underlying the main theories which deal with equilibrium
and static properties of neutral and charged polymers adsorbed or grafted to substrates. Most of
the review dealt with somewhat ideal situations: smooth and �at surfaces which are chemically
homogeneous; long and linear homopolymer chains where chemical properties can be averaged on;
simple phenomenological type of interactions between the monomers and the substrate as well as
between the monomers and the solvent.

Even with all the simplifying assumptions, the emerging physical picture is quite rich and robust.
Adsorption of polymers from dilute solutions can be understood in terms of single-chain adsorption
on the substrate. Mean-�eld theory is quite successful but in some cases �uctuations in the local
monomer concentration play an important role. Adsorption from more concentrated solutions results
in even more complex density pro�les, with several regimes (proximal, central, distal). Each regime
is characterized by a di�erent physical behavior. We reviewed the principle theories used to model
the polymer behavior. We also mentioned brie�y more recent ideas about the statistics of polymer
loops and tails. For charged polymers, the structure of the adsorbed layer is in part controlled by
the counterion distribution which is coupled to the polymer layer.

The second part of this review is about neutral and charged polymers which are terminally grafted
on one end to the surface and are called polymer brushes. The theories here are quite di�erent since
the statistics of the grafted layer depends crucially on the fact that the chain is not attracted to the
surface but is forced to be in contact to the surface since one of its ends is chemically or physically
bonded to the surface. Here as well we review the classical mean-�eld theory and more advanced
theories giving the concentration pro�les of the entire polymer layer as well as that of the polymer
free ends.

In general, the theory for neutral polymers is more advanced than the one for charged poly-
mers, partly because charged polymers became the target for theoretical modelling fairly recently.
In addition, due to the long-range interactions between charged monomers, and due to a number of
additional relevant parameters (such as salt concentration, pH), the resultant behavior for charged
polymers is more complex. We have introduced some of the basic concepts of charged polymers,
such as the Manning condensation of counterions and the electrostatic chain sti�ening. Due to this
increased sti�ness of polyelectrolytes, their chain statistics is described by semi-�exible models. We
have, therefore, introduced such models in some detail and also demonstrated some e�ects speci�c
to semi-�exible charged polymers.

At present, studies of polyelectrolytes in solutions and at surfaces is shifting more towards
biological systems. We mentioned in this review the complexation of DNA and histones. This is
only one of many examples of interest where charged biopolymers, receptors, proteins and DNA
molecules interact with each other or with other cellular components. The challenge for future
fundamental research will be to try to understand the role of electrostatic interactions combined
with speci�c biological (lock–key) mechanisms and to infer on biological functionality of such
interactions.

In this review, we also discussed additional factors that have an e�ect on the polymer adsorption
and grafted layers: the quality of the solvent, undulating and �exible substrates such as �uid/�uid
interfaces or lipid membranes; adsorption and grafting on curved surfaces such as spherical colloidal
particles.
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Although our main aim was to review the theoretical progress in this �eld, we mentioned many
relevant experiments. In this active �eld several advanced experimental techniques are used to probe
adsorbed or grafted polymer layers: neutron scattering and high-resolution X-ray re�ectivity, light
scattering using �uorescent probes, ellipsometry, surface isotherms as well as the surface force
apparatus for the force measurement between two surfaces.

This paper should be viewed as a general introduction to adsorption phenomena involving charged
and neutral chains and can serve as a starting point to understand more complex systems as encoun-
tered in applications and current experiments.
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