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Abstract

This chapter deals with charged poly-
mers (polyelectrolytes) in solution and at
surfaces. The behavior of polyelectrolytes
(PEs) is markedly different from that of
neutral polymers. In bulk solutions, that
is, disregarding the surface effect, there are
two unique features to charged polymers:
first, owing to the presence of long-ranged
electrostatic repulsion between charged
monomers, the polymer conformations
are much more extended, giving rise to
a very small overlap concentration and
high solution viscosity. Second, the pres-
ence of a large number of counterions
increases the osmotic pressure of PE solu-
tions,making such polymers water soluble
as this is of great importance to many ap-
plications. At surfaces, the same interplay
between monomer–monomer repulsion
and counterion degrees of freedom leads
to a number of special properties. In par-
ticular, the adsorption behavior depends
on both the concentration of polymers and
the added salt in the bulk. We first de-
scribe the adsorption behavior of single
PE molecules and discuss the necessary
conditions to obtain an adsorbed layer and
characterize its width. Depending on the
stiffness of the PE, the layer can be flat and
compressed or coiled and extended. We

then proceed and discuss the adsorption
of PEs from semidilute solutions. Mean-
field theory profiles of PE adsorption are
calculated as a function of surface charge
density (or surface potential), the amount
of salt in the system, and the charge frac-
tion on the chains. The phenomenon of
charge inversion is reviewed and its rel-
evance to the formation of multilayers is
explained. The review ends with a short
overview of the behavior of grafted PEs.

2.7.1
Introduction

PEs are charged macromolecules that are
extensively studied not only because of
their numerous industrial applications but
also from a purely scientific interest [1–4].
The most important property of PEs is
their water solubility giving rise to a
wide range of nontoxic, environmentally
friendly, and cheap formulations. On the
theoretical side, PEs combine the field of
statistical mechanics of charged systems
with the field of polymer science and
offer quite a number of surprises and
challenges.
The polymers considered in this review

are taken as linear and long polymer
chains, containing a certain fraction of
electrically charged monomers. Chemi-
cally, this can be achieved, for example,
by substituting neutral monomers with
acidic ones. Upon contact with water,
the acidic groups dissociate into positively
charged protons, which bind immediately
to watermolecules, and negatively charged
monomers. Although this process effec-
tively charges the polymer molecules, the
counterions make the PE solution electro-
neutral on macroscopic length scales.
The counterions are attracted to

the charged polymers via long-ranged
Coulomb interactions, but this physical
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association typically only leads to
rather loosely bound counterion clouds
around the PE chains. Because PEs
are present in a background of a
polarizable and diffusive counterion
cloud, there is a strong influence of
the counterion distribution on the PE
structure, as will be discussed at length
in this review. Counterions contribute
significantly toward bulk properties, such
as the osmotic pressure, and their
translational entropy is responsible for the
generally good water solubility of charged
polymers. In addition, the statistics of
PE chain conformations are governed by
intrachain Coulombic repulsion between
charged monomers, resulting in more
extended and swollen conformations of
PEs as compared to neutral polymers.
All these factors combined are of great

importance when considering PE adsorp-
tion to charged surfaces. We distinguish
between physical adsorption, where chain
monomers are attracted to surfaces via
electrostatic or nonelectrostatic interac-
tions, and chemical adsorption, where a
part of the PE (usually the chain end)
is chemically bound (grafted) to the sur-
face. In all cases, the long-ranged repulsion
of the dense layer of adsorbed PEs and
the entropy associated with the counterion
distribution are important factors in the
theoretical description.

2.7.2
Neutral Polymers in Solution

Before reviewing the behavior of charged
polymers, let us describe some of the
important ideas underlying the behavior
of neutral polymer chains in solution.

2.7.2.1 Flexible Chain Statistics
The chains considered in this review are ei-
ther flexible or semiflexible. The statistical

thermodynamics of flexible chains is well
developed and the theoretical concepts can
be applied with a considerable degree of
confidence [5–9]. Long and flexible chains
have a large number of conformations,
a fact that plays a crucial role in deter-
mining their behavior in solution. When
flexible chains adsorb on surfaces, they
form a diffusive adsorption layer extending
away from the surface into the solution.
This is in contrast to semiflexible or rigid
chains, which can formdense and compact
adsorption layers.
The main parameters used to describe a

flexible polymer chain are the polymeriza-
tion index N , which counts the number of
repeat units or effective monomers along
the chain, and the Kuhn length a, being
the size of one effective monomer or the
distance between two neighboring effec-
tive monomers. The effective monomer
size ranges from a few Å for synthetic
polymers to a few nanometers for biopoly-
mers [7]. The effective monomer size a is
not to be confused with the actual size b
of one chemical monomer; in general, a
is greater than b owing to chain stiffen-
ing effects, as will be explained in detail
later on. In contrast to other molecules
or particles, a polymer chain contains not
only translational and rotational degrees of
freedom but also a vast number of confor-
mational degrees of freedom. For typical
polymers, different conformations are pro-
duced by torsional rotations of the polymer
backbone bonds.
A simple description of flexible chain

conformations is achieved with the freely
jointed chain model in which a polymer
consisting of N + 1 monomers is repre-
sented byN bonds defined by bond vectors
rj with j = 1, . . . N . Each bond vector has
a fixed length |rj | = a corresponding to
the Kuhn length, but otherwise is allowed
to rotate freely. For the freely jointed chain
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model, the monomer size b equals the
effective monomer size a, b = a. Fixing
one of the chain ends at the origin, the po-
sition of the (k + 1)-th monomer is given
by the vectorial sum

Rk =
k∑
j=1

rj (1)

Because two arbitrary bond vectors are
uncorrelated in this simple model, the
thermal average over the scalar product
of two different bond vectors vanishes,
〈rj · rk〉 = 0 for j �= k, while the mean-
squared bond vector length is simply given
by 〈r2j 〉 = a2. It follows then that themean-
squared end-to-end radius is proportional
to the number of monomers

〈R2
N 〉 = Na2 (2)

The same result is obtained for the
mean quadratic displacement of a freely
diffusing particle and eludes to the same
underlying physical principle, namely, the
statistics of Markov processes.
In Fig. 1(a) we show a snapshot of

Monte-Carlo simulations of a freely jointed
chain consisting of 100 monomers, each
being represented by a sphere of diameter
b (being equal here to a, the effective
monomer size). The bar represents a
length of 10b, which according to Eq. (2)
is the average distance between the chain
ends. Indeed, the end-to-end radius gives
a good idea of the typical chain radius.
The freely jointed chainmodel describes

ideal Gaussian chains and does not ac-
count for interactions between monomers
that are not necessarily close neighbors
along the backbone. Including these in-
teractions will give a different scaling
behavior for long polymer chains. The end-

to-end radius, R =
√

〈R2
N 〉, can be written

more generally for N � 1 as

R 	 aNν (3)

For an ideal polymer chain (no interactions
between monomers), the above result
implies ν = 1/2. This result holds only
for polymers in which the attraction
between monomers (as compared with
themonomer–solvent interaction) cancels
the steric repulsion (which is due to the
fact that the monomers cannot penetrate
each other). This situation can be achieved
in special solvent conditions called theta
solvents.
More generally, polymers in solution can

experience three types of solvent condi-
tions, with theta solvent condition being
intermediate between ‘‘good’’ and ‘‘bad’’
solvent conditions. The solvent quality
depends mainly on the specific chem-
istry determining the interaction between
the solvent molecules and monomers.
It also can be changed by varying the
temperature.
The solvent is called good when the

monomer–solvent interaction is more
favorable than the monomer–monomer
one. Single polymer chains in good sol-
vents have ‘‘swollen’’ spatial configura-
tions, reflecting the effective repulsion
betweenmonomers. For good solvents, the
steric repulsion dominates and the poly-
mer coil takes a more swollen structure,
characterized by an exponent ν 	 3/5 [7].
This spatial size of a polymer coil is
much smaller than the extended con-
tour length L = aN but larger than the
size of an ideal chain aN1/2. The rea-
son for this peculiar behavior is entropy
combined with the favorable interaction
betweenmonomers and solventmolecules
in good solvents. As we will see later, it
is the conformational freedom of poly-
mer coils that leads to salient differ-
ences between polymer and simple liquid
adsorption.
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Fig. 1 Snapshots of Monte-Carlo simulations of a neutral and semiflexible chain
consisting of N = 100 monomers of diameter b, which defines the unit of length. The
theoretical end-to-end radius R is indicated by a straight bar. The persistence lengths used
in the simulations are (a) �0 = 0, corresponding to a freely jointed (flexible) chain, leading
to an end-to-end radius R/b = 10; (b) �0/b = 2, leading to R/b = 19.8; (c) �0/b = 10,
leading to R/b = 42.4; and (d) �0/b = 100, leading to R/b = 85.8.

In the opposite case of ‘‘bad’’ (sometimes
called poor) solvent conditions, the effective
interaction between monomers is attrac-
tive, leading to collapse of the chains and
to their precipitation from the solution
(phase separation between the polymer
and the solvent). It is clear that in this case,
the polymer size, like any space-filling
object embedded in three-dimensional
space, scales as N ∼ R3, yielding ν =
1/3.

2.7.2.2 Semiflexible Chain Statistics
Beside neglecting monomer–monomer
interaction, the freely jointed chain model
does not take into account the chain elas-
ticity, which plays an important role for
some polymers, and leads to more rigid
structures. This stiffness can be conve-
niently characterized by the persistence
length �0, defined as the length over which
the tangent vectors at different locations
on the chain are correlated. In otherwords,
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the persistence length gives an estimate for
the typical radius of curvature, while tak-
ing into account thermal fluctuations. For
synthetic polymers with trans-cis confor-
mational freedom of the chain backbone,
the stiffness is due to fixed bond angles
and hindered rotations around individual
backbone bonds. This effect is even more
pronounced for polymers with bulky side
chains, such as poly-DADMAC, because
of steric constraints, and the persistence
length is of the order of a few nanome-
ters.
Biopolymers with a more complex struc-

ture on the molecular level tend to be
stiffer than simple synthetic polymers.
Some typical persistence lengths encoun-
tered in these systems are �0 ≈ 5mm
for tubulin, �0 ≈ 20 µm for actin, and
�0 ≈ 50 nm for double-stranded DNA. Be-
cause some of these biopolymers are
charged, we will discuss at length the
dependence of the persistence length on
the electrostatic conditions. In some cases
the main contribution to the persistence
length comes from the repulsion between
charged monomers.
To describe the bending rigidity of

neutral polymers, it is easier to use a
continuum model [6], in which one ne-
glects the discrete nature of monomers.
The bending energy (rescaled by the ther-
mal energy, kBT ) of a stiff or semiflexible
polymer of contour length L is given by

�0

2

∫ L

0
ds
(
d2r(s)
ds2

)2
(4)

where d2r(s)/ds2 is the local curvature
of the polymer. We assume here that
the polymer segments are nonextendable,
that is, the tangent vectors are always
normalized, |dr(s)/ds| = 1. Clearly, this
continuum description will only be good
if the persistence length is larger than the

monomer size. The mean-squared end-to-
end radius of a semiflexible chain is known
and reads [6]

R2 = 2�0L+ 2�20(e
−L/�0 − 1) (5)

where the persistence length is �0 and the
total contour length of a chain is L. Two
limiting behaviors are obtained forR from
Eq. (5): for long chains,L � �0, the chains
behave as flexible ones, R2 	 2�0L; while
for rather short chains, L �0, the chains
behave as rigid rods, R 	 L. Comparison
with the scaling of the freely jointed chain
model (Eq. 2) shows that a semiflexible
chain can, for L � �0, be described by a
freely jointed chainmodel with an effective
Kuhn length of

a = 2�0 (6)

and an effective number of segments or
monomers

N = L

2�0
(7)

In this case the Kuhn length takes
into account the chain stiffness and is
independent from the monomer length.
This monomer size is denoted by b

whenever there is need to distinguish
between the monomer size b and the
persistence length �0 (or Kuhn length a).
In Fig. 1 we show snapshots taken from
Monte-Carlo simulations of a semiflexible
chain consisting of 100 polymer beads
of diameter b. The persistence length
is varied from �0 = 2b (Fig. 1b), over
�0 = 10b (Fig. 1c), to �0 = 100b (Fig. 1d).
Comparison with the freely jointed chain
model (having no persistence length)
is given in Fig. 1(a) (a = b, �0 = 0). It is
seen that as the persistence length is
increased, the chain structure becomes
more expanded. The theoretical prediction
for the average end-to-end radius R (Eq. 5)
is shown as the black bar on the figure and
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gives a good estimate on typical sizes of
semiflexible polymers.

2.7.3
Properties of Polyelectrolytes in Solution

For PEs, electrostatic interactions provide
the driving force for their salient features
and have to be included in any theoreti-
cal description. The reduced electrostatic
interaction between two pointlike charges
can be written as z1z2v(r) where

v(r) = e2

kBT εr
(8)

is the Coulomb interaction between two
elementary charges, z1 and z2 are the va-
lences (or the reduced charges in units
of the elementary charge e), and ε is
the medium dielectric constant. Through-
out this review, all energies are given in
units of the thermal energy kBT . The in-
teraction depends only on the distance r
between the charges. The total electrostatic
energy of a given distribution of charges
is obtained from adding up all pairwise
interactions between charges according
to Eq. (8). In principle, the equilibrium
behavior of an ensemble of charged parti-
cles (e.g. a salt solution) follows from the
partition function, that is, the weighted
sum over all different microscopic con-
figurations, which – via the Boltzmann
factor – depends on the electrostatic en-
ergy of each configuration. In practice,
however, this route is very complicated for
several reasons:

1. The Coulomb interaction (Eq. 8) is
long-ranged and couples many charged
particles. Electrostatic problems are
typically many-body problems, even for
low densities.

2. Charged objects in most cases are
dissolved in water. Like any material,

water is polarizable and reacts to the
presence of a charge with polarization
charges. In addition, and this is by
far a more important effect, water
molecules carry a permanent dipole
moment that partially orients in the
vicinity of charged objects. Note that
for water, ε ≈ 80, so that electrostatic
interactions and self-energies are much
weaker in water than in air (where ε ≈
1) or some other low-dielectric solvents.
Still, the electrostatic interactions are
especially important in polar solvents
because in these solvents, charges
dissociate more easily than in unpolar
solvents.

3. In biological systems and most indus-
trial applications, the aqueous solution
contains mobile salt ions. Salt ions
of opposite charge are drawn to the
charged object and form a loosely
bound counterion cloud around it. They
effectively reduce or screen the charge
of the object. The effective (screened)
electrostatic interaction between two
charges z1e and z2e in the presence
of salt ions and a polarizable sol-
vent can be written as z1z2vDH(r),
with the Debye–Hückel (DH) poten-
tial vDH(r) given on the linear-response
level by

vDH(r) = �B

r
e−κr (9)

The Bjerrum length �B is defined as

�B = e2

εkBT
(10)

and denotes the distance at which the
Coulombic interaction between two unit
charges in a dielectric medium is equal
to thermal energy (kBT ). It is a measure
of the distance below which the Coulomb
energy is strong enough to compete with
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the thermal fluctuations; in water at room
temperatures, one finds �B ≈ 0.7 nm. The
exponential decay is characterized by the
so-called screening length κ−1, which is
related to the salt concentration csalt by

κ2 = 8πz2�Bcsalt (11)

where z denotes the valency of the
screening ions (z : z salt). At physiological
conditions the salt concentration is csalt ≈
0.1M and for monovalent ions (z = 1) this
leads to κ−1 ≈ 1 nm.
The so-called DH interaction (Eq. 9)

embodies correlation effects due to the
long-ranged Coulomb interactions in a
salt solution using linear-response theory.
In the following we estimate the range
of validity of this approximation using
simple scaling arguments. The number
of ions that are correlated in a salt solution
with concentration csalt is of the order
of n ∼ κ−3csalt, where one employs the
screening length κ−1 as the scale over
which ions are correlated. Using the
definition κ2 = 8πz2�Bcsalt, one obtains
n ∼ (z2�Bc1/3salt)

−3/2. The average distance

between ions is roughly r ∼ c−1/3
salt . The

typical electrostatic interaction between
two ions in the solution thus is U ∼
z2�B/r ∼ z2�Bc1/3salt , and we obtain U ∼
n−2/3. Using these scaling arguments,
one obtains that either (1) many ions are
weakly coupled together (i.e. n� 1 and
U  1) or (2) a few ions interact strongly
with each other (n 	 U 	 1). In the first
case, and in the absence of external fields,
the approximations leading to the DH
approximation (Eq. 9) are valid.
The DH approximation forms a conve-

nient starting point for treating screening
effects, since (owing to its linear character)
the superposition principle is valid and the
electrostatic free energy is given by a sum

over the two-body potential (Eq.9). How-
ever, wewill at various points in this review
also discuss how to go beyond the DH ap-
proximation, for example, in the form of
the nonlinear Poisson–Boltzmann theory
(see Sect. 2.7.5) or a box model for the
counterion distribution (see Sect. 2.7.6).

2.7.3.1 Isolated Polyelectrolyte Chains
We discuss now the scaling behavior of
a single semiflexible PE in the bulk, in-
cluding chain stiffness and electrostatic re-
pulsion between monomers. For charged
polymers, the effective persistence length
is increased owing to electrostatic re-
pulsion between monomers. This effect
modifies considerably not only the PE be-
havior in solution but also their adsorption
characteristics.
The scaling analysis is a simple exten-

sion of previous calculations for flexible
(Gaussian) PEs [10–12]. The semiflexible
polymer chain is characterized by a bare
persistence length �0 and a linear charge
density τ . Using the monomer length b
and the fraction of charged monomers f
as parameters, the linear charge density
can be expressed as τ = f/b. Note that
in the limit where the persistence length
is small and comparable to a monomer
size, only a single length scale remains,
�0 	 a 	 b.
Many interesting effects, however, are

obtained in the general case treating the
persistence length �0 and the monomer
size b as two independent parameters.
In the regime where the electrostatic
energy is weak, and for long enough con-
tour length L, where L� �0, a polymer
coil will be formed with a radius R un-
perturbed by the electrostatic repulsion
between monomers. According to Eq. (5),
we get R2 	 2�0L. To estimate when the
electrostatic interaction will be sufficiently
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strong to swell the polymer coil, we re-
call that the electrostatic energy (rescaled
by the thermal energy kBT ) of a homoge-
neously charged sphere of total charge Q
and radius R is

Wel = 3�BQ2

5R
(12)

The exact charge distribution inside the
sphere only changes the prefactor of order
unity and is not important for the scaling
arguments. For a polymer of length L

and line charge density τ , the total charge
is Q = τL. The electrostatic energy of a
(roughly spherical) polymer coil is then

Wel 	 �Bτ
2L3/2�

−1/2
0 (13)

The polymer length at which the electro-
static self-energy is of order kBT , that is,
Wel 	 1, follows as

Lel 	 �0(�B�0τ
2)−2/3 (14)

and defines the electrostatic blob size or
electrostatic polymer length. We expect a
locally crumpled polymer configuration if
Lel > �0, that is, if

τ
√
�B�0 < 1 (15)

because the electrostatic repulsion be-
tween two segments of length �0 is smaller
than the thermal energy and is not suf-
ficient to align the two segments. This
is in accord with more detailed calcula-
tions by Joanny and Barrat [11]. A recent
general Gaussian variational calculation
confirms this scaling result and in ad-
dition yields logarithmic corrections [12].
Conversely, for

τ
√
�B�0 > 1 (16)

electrostatic chain–chain repulsion is al-
ready relevant on length scales comparable
to the persistence length. The chain is

expected to have a conformation charac-
terized by an effective persistence length
�eff , larger than the bare persistence length
�0, that is, one expects �eff > �0.
This effect is clearly seen in Fig. 2,

where we show snapshots of Monte-Carlo
simulations of a charged chain of 100
monomers of size b each and bare persis-
tence length �0/b = 1 and several values
of κ−1 and τ . The number ofmonomers in
an electrostatic blob can be written accord-
ing to Eq. (14) as Lel/�0 = (τ 2�B�0)−2/3

and yields for Fig. 2(a) Lel/�0 = 0.25,
for Fig. 2(b) Lel/�0 = 0.63, for Fig. 2(c)
Lel/�0 = 1.6, and for Fig. 2(d) Lel/�0 = 4.
Accordingly, in Fig. 2(d) the electrostatic
blobs consist of four monomers, and the
weakly charged chain crumples at small
length scales. A typical linear charge den-
sity reached with synthetic PEs such as
Polystyrenesulfonate (PSS) is one charge
per two carbon bonds (or, equivalently, one
charge per monomer), and it corresponds
to τ ≈ 4 nm−1. Since for these highly flex-
ible synthetic PEs the bare persistence
length is of the order of the monomer
size, �0 	 b, the typical charge parameter
for a fully charged PE therefore is roughly
τ 2�B�0 ≈ 3 and is intermediate between
Fig. 2(a and b). Smaller linear charge den-
sities can always be obtained by replacing
some of the charged monomers on the
polymer backbone with neutral ones, in
which case the crumpling observed in
Fig. 2(d) becomes relevant. Larger bare
persistence lengths can be achieved with
biopolymers or synthetic PEs with a con-
jugated carbon backbone.
The question now arises as to what

are the typical chain conformations at
much larger length scales. Clearly, they
will be influenced by the repulsions.
Indeed, in the persistent regime, obtained
for τ

√
(�B�0) > 1, the polymer remains

locally stiff even for contour lengths larger
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(b)

(c)

(d)

Fig. 2 Snapshots of Monte Carlo simulations of a polyelectrolyte chain of N = 100
monomers of size b, taken as the unit length. In all simulations the bare persistence
length is fixed at �0/b = 1, and the screening length and the charge interactions are
tuned such that the electrostatic persistence length (�OSF) is constant and
�OSF/b = 100, see Eq. (18). The parameters used are (a) κ−1/b = √

50 and τ 2�B�0 = 8;
(b) κ−1/b = √

200 and τ 2�B�0 = 2; (c) κ−1/b = √
800 and τ 2�B�0 = 1/2; and

(d) κ−1/b = √
3200 and τ 2�B�0 = 1/8. Noticeably, the weakly charged chains crumple

at small length scales and show a tendency to form electrostatic blobs.

than the bare persistence length �0, and
the effective persistence length is given by

�eff 	 �0 + �OSF (17)

The electrostatic persistence length, first
derived by Odijk and independently by

Skolnick and Fixman, reads [13–15]

�OSF = �Bτ
2

4κ2
(18)

and is calculated from the electrostatic
energy of a slightly bent polymer using
the linearized DH approximation (Eq. 9).
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It is valid only for polymer conformations
that do not deviate too much from the
rodlike reference state. The electrostatic
persistence length gives a sizable contri-
bution to the effective persistence length
only for �OSF > �0. This is equivalent to
the condition

τ
√
�B�0 > �0κ (19)

The persistent regime is obtained for
parameters satisfying both conditions (16)
and (19). Another regime called the

Gaussian regime is obtained in the opposite
limit of τ

√
(�B�0) < �0κ .

The electrostatic persistence length is
visualized in Fig. 3, in which we present
snapshots of Monte-Carlo simulations of a
charged chain consisting of 100monomers
of size b. The bare persistence length was
fixed at �0 = b, and the charge-interaction
parameter was chosen to be τ 2�B�0 = 2,
close to the typical charge density in
experiments on fully charged synthetic
PEs. The snapshots correspond to vary-
ing screening lengths of (1) κ−1/b = √

2,

(a)

(b)

(c)

Fig. 3 Snapshots of Monte-Carlo simulations of a PE chain consisting of N = 100
monomers of size b. In all simulations, the bare persistence length is fixed at
�0/b = 1 and the charge-interaction parameter is chosen to be τ 2�B�0 = 2. The
snapshots correspond to varying screening lengths of (a) κ−1/b = √

2, leading to an
electrostatic contribution to the persistence length of �OSF/b = 1; (b) κ−1/b = √

18,
leading to �OSF/b = 9; and (c) κ−1/b = √

200, leading to �OSF/b = 100. According
to the simple scaling principle (Eq. 17), the effective persistence length in the
snapshots (a–c) should be similar to the bare persistence length in Fig. 1(b–d).
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leading to an electrostatic contribution
to the persistence length of �OSF = b

(Fig. 3a), (2) κ−1/b = √
18, or �OSF = 9b

(Fig. 3b), and (3) κ−1/b = √
200, equiva-

lent to �OSF = 100b (Fig. 3c). According
to the simple scaling principle (Eq. 17),
the effective persistence length in the
snapshots (Fig. 3a–c) should be simi-
lar to the bare persistence length in
Fig. 1(b–d), and indeed, the chain struc-
tures in Figs. 3(c) and 1(d) are very similar.
Figs. 3(a) and 1(b) are clearly different, al-
though the effective persistence length
should be quite similar, mostly because
of self-avoidance effects that are present in
charged chains and are discussed in detail
in Sect. 2.7.3.1.2.
For the case in which the polymer crum-

ples on length scales larger than the bare
bending rigidity, that is, for Lel > �0 or
τ
√
(�B�0) < 1, the electrostatic repulsion

between polymer segments is not strong
enough to prevent crumpling on length
scales comparable to �0, but can give rise
to a chain stiffening on larger length
scales, as explained by Khokhlov and
Khachaturian [10] and confirmed by Gaus-
sian variational methods [12]. Figure 4
schematically shows the PE structure in
this regime, where the chain on small
scales consists of Gaussian blobs of chain
length Lel, within which electrostatic in-
teractions are not important. On larger
length scales, electrostatic repulsion leads

to a chain stiffening, so that the PE forms a
linear array of electrostatic blobs. To quan-
tify this effect, one defines an effective line
charge density of a linear array of electro-
static blobs with blob size Rel 	 √

(�0Lel),

τ̃ 	 τLel

Rel
	 τ

(
Lel

�0

)1/2
(20)

Combining Eqs. (18) and (20) gives the
effective electrostatic persistence length
for a string of electrostatic blobs,

�KK 	 �
1/3
B �

−2/3
0 τ 2/3

κ2
(21)

Fig. 4 Schematic view of the four
scaling ranges in the Gaussian-
persistent regime. On spatial scales
smaller than Rel, the chain behavior is
Gaussian; on length scales larger than
Rel but smaller than �KK, the Gaussian
blobs are aligned linearly. On length
scales up to Lsw, the chain is
isotropically swollen with an exponent
ν = 1/2, and on even larger length
scales, self-avoidance effects become
important and ν changes to ν = 3/5.

Gaussian

Persistent

Gaussian

Swollen

RSW ∼ L1/2
SW

R ∼ Ln

Rel ∼ (�0 Lel)
1/2

�KK
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This electrostatic stiffening is only relevant
for the so-called Gaussian-persistent regime
valid for �KK > Rel, or equivalently

τ
√
�B�0 > (�0κ)

3/2 (22)

When this inequality is inverted, the
Gaussian-persistence regime crosses over
to the Gaussian one.
The crossover boundaries (Eqs. 16, 19,

22) between the various scaling regimes
are summarized in Fig. 5. We obtain three
distinct regimes. In the persistent regime,
for τ

√
(�B�0) > �0κ and τ

√
(�B�0) > 1,

the polymer takes on a rodlike struc-
ture with an effective persistence length
larger than the bare persistence length
and given by the OSF expression (Eq. 18).
In the Gaussian-persistent regime, for
τ
√
(�B�0) < 1 and τ

√
(�B�0) > (�0κ)

3/2,
the polymer consists of a linear array of
Gaussian electrostatic blobs, as shown in
Fig. 4, with an effective persistence length
�KK larger than the electrostatic blob size
and given by Eq. (21). Finally, in the Gaus-
sian regime, for τ

√
(�B�0) < (�0κ)

3/2 and
τ
√
(�B�0) < �0κ , the electrostatic repul-

sion does not lead to stiffening effects at
any length scale.
The persistence length �KK was also

obtained from Monte-Carlo simulations
with parameters shown in Fig. 2(d), where

chain crumpling at small length scales
and chain stiffening at large length scales
occur simultaneously [16–20]. However,
extremely long chains are needed in order
to obtain reliable results for the persistence
length, since the stiffening occurs only at
intermediate length scales and therefore
fitting of the tangent–tangent correlation
function is nontrivial. Nevertheless, sim-
ulations point to a different scaling than
that in Eq. (21), with a dependence on the
screening length closer to a linear one, in
qualitative agreement with experimental
results [3]. The situation is complicated by
the fact that more recent theories for the
single PE chain give different results, some
confirming the simple scaling results de-
scribed in Eqs. (18) and (21) [12, 21, 22],
some confirming Eq. (18) while criticiz-
ing Eq. (21) [11, 23, 24]. This issue is not
resolved and is under intense current in-
vestigation. For multivalent counterions,
fluctuation effects can even give rise to a
PE collapse purely due to electrostatic in-
teractions [25–27], which is accompanied
by a negative contribution to the effective
persistence length [28].

2.7.3.1.1 Manning Condensation A pe-
culiar phenomenon occurs for highly
charged PEs and is known as the Manning

Fig. 5 Schematic phase diagram of a single
semiflexible PE in bulk solution with bare persistence
length �0 and line charge density τ , exhibiting various
scaling regimes. High salt concentration and small τ
correspond to the Gaussian regime, where the
electrostatic interactions are irrelevant. In the
persistent regime, the polymer persistence length is
increased, and in the Gaussian-persistent regime, the
polymer forms a persistent chain of Gaussian blobs as
indicated in Fig. 4. The broken line indicates the
Manning condensation, at which counterions
condense on the polymer and reduce the effective
polymer line charge density. We use a log–log plot,
and the various power-law exponents for the crossover
boundaries are denoted by numbers.

1

1

Gaussian

Gaussian-
persistent

1

2/3 Persistent

�0
1/2

1/2z�B

1/2�B  �0   
1/2τ

−1−1�0κ
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condensation of counterions [29, 30]. For a
rigid PE represented by an infinitely long
and straight cylinder with a linear charge
density larger than

�Bτz = 1 (23)

where z is the counterion valency, it
was shown that counterions condense
on the oppositely charged cylinder even
in the limit of infinite solvent dilution.
Real polymers have a finite length, and
are neither completely straight nor in
the infinite dilution limit [31, 32]. Still,
Manning condensation has an experi-
mental significance for polymer solutions
because thermodynamic quantities, such
as counterion activities [33] and osmotic
coefficients [34], show a pronounced sig-
nature of Manning condensation. Locally,
polymer segments can be considered as
straight over length scales comparable
to the persistence length. The Manning
condition (Eq. 23) usually denotes a re-
gion where the binding of counterions to
charged chain sections begins to deplete
the solution from free counterions.
Within the scaling diagram of Fig. 5, the

Manning threshold (denoted by a vertical
broken line) is reached typically for charge
densities larger than the one needed to
straighten out the chain. This holds for
monovalent ions provided �0 > �B, as is
almost always the case. The Manning con-
densation of counterions will not have
a profound influence on the local chain
structure since the chain is rather straight
already due tomonomer–monomer repul-
sion. A more complete description of var-
ious scaling regimes related to Manning
condensation, chain collapse, and chain
swelling has recently been given [35, 36].

2.7.3.1.2 Self-avoidance andPolyelectrolyte
ChainConformations Let us now consider
how the self-avoidance of PE chains comes

into play, concentrating on the persistent
regime defined by τ

√
(�B�0) > 1. The end-

to-end radius R of a strongly charged PE
chain shows three distinct scaling ranges.
For a chain length L smaller than the
effective persistence length �eff , which
according to Eq. (17) is the sum of the
bare and electrostatic persistence lengths,
R grows linearly with the length, R ∼ L.
Self-avoidance plays no role in this case
because the chain is too short to fold back
on itself.
For much longer chains, L� �eff , we

envision a single polymer coil as a solution
of separate polymer pieces of length �eff ,
and treat their interactions using a virial
expansion. The second-virial coefficient v2
of a rod of length �eff and diameter d scales
as v2 ∼ �2effd [10]. The chain connectivity is
taken into account by adding the entropic
chain elasticity as a separate term. The
standard Flory theory [7] for a semiflexible
chain is based on writing the free energy
F as a sum of two terms

F 	 R2

�effL
+ v2R3

(
L/�eff

R3

)2

(24)

where the first term is the entropic elastic
energy associated with swelling a polymer
chain to a radius R and the second
term is the second-virial repulsive energy
proportional to the coefficient v2 and the
segment density-squared. It is integrated
over the volume R3. The optimal radius
R is calculated by minimizing this free
energy and gives the swollen radius

R ∼
(
v2

�eff

)1/5
Lν (25)

with ν = 3/5. This swollen radius is
only realized above a minimal chain
length L > Lsw ∼ �7eff /v22 ∼ �3eff /d2. For
elongated segments with �eff � d or,
equivalently, for a highly charged PE, we
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obtain an intermediate range of chain
lengths �eff < L < Lsw for which the
chain is predicted to be Gaussian and the
chain radius scales as

R ∼ �
1/2
eff L

1/2 (26)

For charged chains, the effective rod diam-
eter d is given in low salt concentrations
by the screening length, that is, d ∼ κ−1

plus logarithmic corrections. The condi-
tion to have a Gaussian scaling range
(Eq. 26) thus becomes �eff � κ−1. Within
the persistent and the Gaussian-persistent
scaling regimes depicted in Fig. 5, the ef-
fective persistence length is dominated by
the electrostatic contribution and given by
Eqs. (18) and (21), respectively, which in
turn are always larger than the screen-
ing length κ−1. It follows that a Gaussian
scaling range (Eq. 26) always exists be-
low the asymptotic swollen scaling range
(Eq. 25). This situation is depicted in
Fig. 4 for the Gaussian-persistent scaling
regime, where the chain shows two dis-
tinct Gaussian scaling ranges at the small
and large length scales. This multihier-
archical scaling structure is only one of
the many problems one faces when trying
to understand the behavior of PE chains,
be it experimentally, theoretically, or by
simulations.
A different situation occurs when the

polymer backbone is under bad-solvent
conditions, inwhich case an intricate inter-
play between electrostatic chain swelling
and short-range collapse occurs [37]. Quite
recently, this interplay was theoretically
shown to lead to a Rayleigh instability in
the form of a necklace structure consist-
ing of compact beads connected by thin
strings [38–41]. Small-angle X-ray scatter-
ing on solvophobic PEs in a series of polar
organic solvents of various solvent quality
could qualitatively confirm these theoreti-
cal predictions [42].

2.7.3.2 Dilute Polyelectrolyte Solutions
It is natural to generalize the discus-
sion of single-chain behavior to that of
many PE chains at dilute concentrations.
The dilute regime is defined by cm < c∗m,
where cm denotes the monomer con-
centration (per unit volume) and c∗m is
the concentration where individual chains
start to overlap. Clearly, the overlap con-
centration is reached when the average
bulk monomer concentration exceeds the
monomer concentration inside a polymer
coil. To estimate the overlap concentra-
tion c∗m, we simply note that the average
monomer concentration inside a coil with
radius R 	 bNν is given by

c∗m 	 N

R3 	 N1−3νb−3 (27)

For ideal chains with ν = 1/2, the over-
lap concentration scales as c∗m ∼ N−1/2

and thus decreases slowly as the polymer-
ization index N increases. For rigid poly-
mers with ν = 1, the overlap concentration
scales as c∗m ∼ N−2 and decreases strongly
as N increases. This means that the dilute
regime for stiff PE chains corresponds
to extremely low monomer concentra-
tions. For example, taking amonomer size
b = 0.254 nm and a polymerization index
of N = 104, the overlap concentration be-
comes c∗m ≈ 6 × 10−7 nm−3 ≈ 10−3 mM,
which is a very small concentration.
The osmotic pressure in the dilute

regime in the limit cm → 0 is given by

"

kBT
= f cm

z
+ cm

N
(28)

and consists of the ideal pressure of non-
interacting counterions (first term) and
polymer coils (second term). Note that
since the second term scales as N−1, it
is quite small for large N and can be
neglected. Hence, the main contribution
to the osmotic pressure comes from the
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counterion entropy. This entropic term ex-
plains also why charged polymers can be
dissolved in water even when their back-
bone is quite hydrophobic. Precipitation
of the PE chains will also mean that the
counterions are confined within the pre-
cipitate. The entropy loss associated with
this confinement is too large and keeps the
polymers dispersed in solution. In con-
trast, for neutral polymers there are no
counterions in solution. Only the second
term in the osmotic pressure exists and
contributes to the low osmotic pressure of
these polymer solutions. In addition, this
can explain the trend toward precipitation
even for very small attractive interactions
between neutral polymers.

2.7.3.3 Semidilute Polyelectrolyte Solution
In the semidilute concentration regime,
cm > c

∗
m, different polymer coils are

strongly overlapping, but the polymer so-
lution is still far from being concentrated.
This means that the volume fraction of the
monomers in solution is much smaller
than unity, b3cm  1. In this concentra-
tion range, the statistics of counterions and
polymer fluctuations are intimately con-
nected. One example in which this feature
is particularly prominent is furnished by
neutron and X-ray scattering from semidi-
lute PE solutions [43–48].
The structure factor S(q) shows a

pronounced peak, which results from
a competition between the connectivity
of polymer chains and the electrostatic
repulsion between charged monomers, as

will be discussed below. An important
length scale, schematically indicated in
Fig. 6, is the mesh size or correlation
length ξ , which measures the length
belowwhich entanglement effects between
different chains are unimportant. The
mesh size can be viewed as the polymer
(blob) scale below which single-chain
statistics are valid. A semidilute solution
can be thought of being composed of
roughly a close-packed array of polymer
blobs of size ξ .
The starting point for the present

discussion is the screened interaction
between two charges immersed in a
semidilute PE solution containing charged
polymers, their counterions, and, possibly,
additional salt ions. Screening in this case
is produced not only by the ions but also
by the charged chain segments that can
be easily polarized and shield any free
charges.
Using the random-phase approximation

(RPA), the effective DH interaction can be
written in Fourier space as [49, 50]

Fig. 6 Schematic view of the chain
structure in the semidilute
concentration range. The mesh size ξ is
about equal to the effective polymer
persistence length �eff and to the
screening length κ−1 (if no salt is added
to the system).
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vRPA(q) =
1 + v2cmS0(q)

cmf 2S0(q)+ v−1
DH(q)+ v2cmv−1

DH(q)S0(q)

(29)
recalling that cm is the average density
of monomers in solution and f is the
fraction of charged monomers on each of
the PE chains. The second-virial coefficient
of monomer–monomer interactions is v2
and the single-chain form factor (discussed
below) is denoted by S0(q). In the case
in which no chains are present, cm = 0,
the RPA expression reduces to vRPA(q) =
vDH(q), the Fourier-transform of the DH
potential of Eq. (9), given by

vDH(q) = 4π�B
q2 + κ2 (30)

As before, κ−1 is the DH screening length,
which is due to all mobile ions. We
can write κ2 = κ2salt + 4πz�Bf cm, where
κ2salt = 8πz2�Bcsalt describes the screen-
ing due to added salt of valency z : z
and concentration csalt, and the second
term describes the screening due to
the counterions of the PE monomers.
Within the same RPA approximation, the
monomer–monomer structure factorS(q)
of a polymer solution with monomer den-
sity cm is given by [49, 50]

S−1(q) = f 2vDH(q)+ S−1
0 (q)

cm
+ v2
(31)

The structure factor (or scattering func-
tion) only depends on the form factor of
an isolated, noninteracting polymer chain,
S0(q), the second-virial coefficient, v2, the
fraction f of charged monomers, and the
interaction between monomers, which in
the present case is taken to be the DH
potential vDH(q). The structure factor of
a noninteracting semiflexible polymer is
characterized, in addition to the monomer

length b, by its persistence length �eff . In
general, this form factor is a complicated
function that cannot be written down in
closed form [51, 52]. However, one can
separate between three different ranges of
wave numbers q, and within each range
the form factor shows a rather simple scal-
ing behavior, namely,

S−1
0 (q) 	


N−1 for q2 <
6

Nb�eff
q2b�eff

6
for

6

Nb�eff
< q2 <

36

π2�2eff
qb

π
for

36

π2�2eff

< q2

(32)
For small wave numbers the polymer
acts like a point scatterer, while in the
intermediate wave number regime the
polymer behaves like a flexible, Gaussian
polymer, and for the largest wave numbers
the polymer can be viewed as a stiff rod.
One of the most interesting features of

semidilute PE solutions is the fact that the
structure factor S(q) shows a pronounced
peak. For weakly charged PEs, the peak po-
sition scales as q ∼ c

1/4
m with themonomer

density [45], in agreement with the afore-
mentioned RPA results for charged poly-
mers [49, 50]. We now discuss the scaling
of the characteristic scattering peak within
the present formalism. The position of the
peak follows from the inverse structure
factor (Eq. 31), via ∂S−1(q)/∂q = 0, which
leads to the equation

q2 + κ2salt + 4πz�Bf cm

=
(
8πq�Bf 2cm

∂S−1
0 (q)/∂q

)1/2

(33)

In principle, there are two distinct scaling
behaviors possible for the peak, depending
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on whether the chain form factor of
Eq. (32) exhibits flexible-like or rigid-like
scaling. Concentrating now on the flexible
case, that is, the intermediate q-range in
Eq. (32), the peak of S(q) scales as

q∗ 	
(
24π�Bf 2cm

b�eff

)1/4
(34)

in agreement with experimental results. A
peak is only obtained if the left-hand side of
Eq. (33) is dominated by the q-dependent
part, that is, if (q∗)2 > κ2salt + 4πz�Bf cm.
In Fig. 7(a) we show density-normalized

scattering curves for a PE solution char-
acterized by the persistence length �eff =
1 nm (taken to be constant and thus inde-
pendent of the monomer concentration),
with monomer length b = 0.38 nm (as ap-
propriate for poly-DADMAC) and charge

fraction f = 0.5 and with no added salt.
As the monomer density decreases (bot-
tom to top in the figure), the peak moves
to smaller wave numbers and sharpens, in
agreementwith previous implementations
of the RPA. In Fig. 7(b) we show the same
data in a different representation. Here we
clearly demonstrate that the large-q region
already is dominated by the 1/q behavior
of the single-chain structure factor, S0(q).
Since neutron-scattering data easily extend
to wave numbers as high as q ∼ 5 nm−1,
the stiff rodlike behavior in the high q-
limit, exhibited on such a plot, will be
important in interpreting and fitting ex-
perimental data even at lower q-values.
In a semidilute solution there are three

different, and in principle, independent
length scales: the mesh size ξ , the

1 2 3 4 50

10

20

30

0

S(
q)

/c
m

q
[nm−1](a)

0 1 2 3 4 5

5

10

15

0

20

q 
S(

q)
/c

m

q
[nm−1](b)

Fig. 7 (a) RPA prediction for the
rescaled structure factor S(q)/cm of a
semidilute PE solution with persistence
length �eff = 1 nm, monomer length
b = 0.38 nm, and charge fraction
f = 0.5 in the salt-free case. The
monomer densities are (from bottom to
top) cm = 1M, 0.3M, 10mM, 3mM,
1mM, and 0.3mM. (b) For the same
series of cm values as in (a), the
structure factor is multiplied by the wave
number q. The semiflexibility becomes
more apparent because for large q the
curves tend toward a constant.
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screening length κ−1, and the persistence
length �eff . In the absence of added salt,
the screening length scales as

κ−1 ∼ (z�Bf cm)
−1/2 (35)

Assuming that the persistence length is
larger or of the same order ofmagnitude as
the mesh size, as is depicted in Fig. 6, the
polymer chains can be thought of straight
segments between different crossing links.
Denoting the number of monomers inside
a correlation blob as g, this means that ξ ∼
bg. The average monomer concentration
scales as cm ∼ g/ξ3, from which we
conclude that

ξ ∼ (bcm)−1/2 (36)

Finally, the persistence length within a
semidilute PE solution can be calculated
by considering the electrostatic energy cost
for slightly bending a charged rod. In PE
solutions, it is important to include in
addition to the screening by salt ions the
screening due to charged chain segments.
This can be calculated by using the RPA
interaction (Eq. 29). Since the screening
due to polymer chains is scale-dependent
and increases for large separations, a q-
dependent instability is encountered and
leads to a persistence length [53]

�sdOSF ∼ (bcm)−1/2 (37)

where the ‘‘sd’’ superscript stands for
‘‘semidilute.’’ This result is a generaliza-
tion of the OSF result for a single chain
and applies to semidilute solutions. Com-
paring the three lengths, we see that

ξ ∼ �sdOSF ∼
√
z�Bf

b
κ−1 (38)

Since the prefactor
√
(�Bf/b) for syn-

thetic fully charged polymers is roughly
of order unity, one finds that for salt-free

semidilute PE solutions, all three length-
scales scale in the same manner with cm,
namely, as ∼ c−1/2

m , as is known also from
experiments [43, 44, 54] and previous theo-
retical calculations [55, 56]. In simulations
of many PE chains, the reduction of the
chain size due to screening by PE chains
was clearly seen [57–60].

2.7.4
Adsorption of a Single Polyelectrolyte Chain

After reviewing bulk properties of PE
solutions, we elaborate on the adsorption
diagram of a single semiflexible PE on an
oppositely charged substrate. In contrast
to the adsorption of neutral polymers, the
resulting phase diagram shows a large
region where the adsorbed polymer is
flattened out on the substrate and creates
a dense adsorption layer.
Experimentally, the adsorption of char-

ged polymers on charged or neutral sub-
strates has been characterized as a function
of the polymer charge, chemical com-
position of the substrate, pH, and ionic
strength of the solution [61, 62], as well as
the substrate charge density [63–68]. Re-
peated adsorption of anionic and cationic
PEs can lead to well-characterized mul-
tilayers on planar [69–74] and spherical
substrates [75–77]. Theoretically, the ad-
sorption of PEs on charged surfaces
poses a much more complicated prob-
lem than the corresponding adsorption
of neutral polymers. The adsorption pro-
cess results from a subtle balance between
electrostatic repulsion between charged
monomers, leading to chain stiffening,
and electrostatic attraction between the
substrate and the polymer chain. The
adsorption problem has been treated the-
oretically employing the uniform expan-
sion method [78] and various continuous
mean-field theories [79–83]. In all these
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works, the polymer density is taken to
be constant in directions parallel to the
surface.
The adsorption of a single semiflexible

and charged chain on an oppositely
charged plane [84] can be treated as a
generalization of the adsorption of flexible
polymers [85]. A PE characterized by the
linear charge density τ is subject to
an electrostatic potential created by σ ,
the homogeneous surface charge density
(per unit area). Because this potential
is attractive for an oppositely charged
substrate, we consider it as the driving
force for the adsorption. More complex
interactions are neglected. They are due to
the dielectric discontinuity at the substrate
surface and are due to the impenetrability
of the substrate for salt ions.
An ion in solution has a repulsive

interaction from the surface when the
solution dielectric constant is higher than
that of the substrate. This effect can lead to
desorption for highly charged PE chains.
On the contrary, when the substrate is
a metal, there is a possibility to induce
PE adsorption on noncharged substrates
or on substrates bearing charges of the
same sign as the PE. See Ref. [84] for more
details.
Within the linearized DH theory, the

electrostatic potential of a homogeneously
charged plane is

Vplane(x) = 4π�Bσκ−1e−κx (39)

Assuming that the polymer is adsorbed
over a layer of width δ smaller than
the screening length κ−1, the electrostatic
attraction force per monomer unit length
can be written as

fatt = −4π�Bστ (40)

We neglect nonlinear effects due to coun-
terion condensation. They are described

by the Gouy-Chapman (GC) theory for
counterion distribution close to a charged
surface. Although these effects are clearly
important, it is difficult to include them
systematically, and we remain at the lin-
earized DH level.
Because of the confinement in the

adsorbed layer, the polymer feels an
entropic repulsion. If the layer thickness
δ is much smaller than the effective
persistence length of the polymer, �eff ,
as depicted in Fig. 8(a), a new length scale,
the so-called deflection length λ, enters the
description of the polymer statistics. The
deflection length λ measures the average
distance between two contact points of
the polymer chain with the substrate. As
shown by Odijk, the deflection length
scales as λ ∼ δ2/3�1/3eff and is larger than
the layer thickness δ but smaller than
the persistence length �eff [86, 87]. The
entropic repulsion follows in a simple
manner from the deflection length by
assuming that the polymer loses roughly
a free energy of one kBT per deflection
length.
On the other hand, if δ > �eff , as shown

in Fig. 8(b), the polymer forms a random
coil with many loops within the adsorbed
layer. For a contour length smaller than
L ∼ δ2/�eff , the polymer obeys Gaussian
statistics and decorrelates into blobs with
an entropic cost of one kBT per blob. The
entropic repulsion force permonomerunit
length is thus [86, 87]

frep ∼
{
δ−5/3�

−1/3
eff for δ  �eff

�eff δ
−3 for δ � �eff

(41)
where we neglected a logarithmic correc-
tion factor that is not important for the
scaling arguments. As shown in the pre-
ceding section, the effective persistence
length �eff depends on the screening
length and the line charge density; in
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Fig. 8 (a) Schematic picture of the
adsorbed polymer layer when the
effective persistence length is larger
than the layer thickness, �eff > δ. The
distance between two contacts of the
polymer with the substrate, the so-called
deflection length, scales as
λ ∼ δ2/3�1/3eff . (b) Adsorbed layer for the
case when the persistence length is
smaller than the layer thickness,
�eff < δ. In this case the polymer forms
a random coil with many loops and a
description in terms of a flexible
polymer model becomes appropriate.

(a)

(b)

δ

δ

λ

essence, one has to keep in mind that
�eff is larger than �0 for a wide range of pa-
rameters because of electrostatic stiffening
effects.
The situation is complicated by the

fact that the electrostatic contribution to
the persistence length is scale-dependent
and decreases as the chain is bent at
length scales smaller than the screening
length. This leads to modifications of
the entropic confinement force (Eq. 41)
if the deflection length is smaller than
the screening length. As can be checked
explicitly, all results reported here are not
changed by these modifications.
The equilibrium layer thickness follows

from equating the attractive and repulsive
forces (Eqs. 40 and 41). For rather stiff
polymers and small layer thickness, δ <
κ−1 < �eff , we obtain

δ ∼ (�Bστ�
1/3
eff )

−3/5 (42)

For a layer thickness corresponding to
the screening length, δ ≈ κ−1, scaling
arguments predict a rather abrupt desorp-
tion transition [84]. This is in accord with
previous transfer-matrix calculations for
a semiflexible polymer bound by short-
ranged (square-well) potentials [88–91].
Setting δ ∼ κ−1 in Eq. (42), we obtain an
expression for the adsorption threshold

(for κ�eff > 1)

σ ∗ ∼ κ5/3

τ�B�
1/3
eff

(43)

For σ > σ ∗, the polymer is adsorbed and
localized over a layer with a width smaller
than the screening length (and with the
condition �eff > κ−1 also satisfying δ <
�eff ). As σ is decreased, the polymer
abruptly desorbs at the threshold σ = σ ∗.
In the Gaussian regime, the effective
persistence length �eff is given by the bare
persistence length �0 and the desorption
threshold is obtained by replacing �eff by
�0 in Eq. (43), that is,

σ ∗ ∼ κ5/3

τ�B�
1/3
0

(44)

In the persistent regime, we have �eff ∼
�OSF with �OSF given by Eq. (18). The ad-
sorption threshold follows fromEq. (43) as

σ ∗ ∼ κ7/3

τ 5/3�
4/3
B

(45)

Finally, in the Gaussian-persistent regime,
we have an effective line charge density
from Eq. (20) and a modified persis-
tence length (Eq. 21). For the adsorption
threshold, we obtain from Eq. (43)
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σ ∗ ∼ κ7/3�
5/9
0

τ 5/9�
7/9
B

(46)

Let us now consider the opposite limit,
�eff < κ

−1. From Eq. (42), we see that the
layer thickness δ is of the same order
as �eff for �Bστ�2eff ∼ 1, at which point
the condition δ  �eff used in deriving
Eq. (42) breaks down. If the layer thickness
is larger than the persistence length but
smaller than the screening length, �eff <
δ < κ−1, the prediction for δ obtained from
balancing Eqs. (40) and (41) becomes

δ ∼
(
�eff

�Bστ

)1/3
(47)

From this expression we see that δ has the
same size as the screening length κ−1 for

σ ∗ ∼ �effκ
3

τ�B
(48)

This in fact denotes the location of a
continuous adsorption transition at which
the layer grows to infinity. The scaling
results for the adsorption behavior of

a flexible polymer (Eqs. 47–48) are in
agreement with previous results [78].
In Fig. 9 we show the desorption transi-

tions and the line at which the adsorbed
layer crosses over from being flat, δ < �eff ,
to being crumpled or coiled, δ > �eff . The
underlying PE behavior in the bulk, as
shown inFig. 5, is denoted by broken lines.
We obtain two different phase diagrams,
depending on the value of the parameter

- = σ�3/20 �
1/2
B (49)

For strongly charged surfaces, - > 1, we
obtain the phase diagram as in Fig. 9(a),
and for weakly charged surfaces,- < 1, as
in Fig. 9(b). We see that strongly charged
PEs, obeying τ

√
(�0�B) > 1, always adsorb

in flat layers. The scaling of the desorption
transitions is in general agreement with
recent computer simulations of charged
PEs [92].

2.7.4.1 Adsorption on Curved Substrates
Adsorption of PEs on curved sub-
strates is of importance because PEs are

(a) (b)
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Fig. 9 Adsorption scaling diagram shown on a log–log plot for (a) strongly charged
surfaces, - = σ�3/20 �

1/2
B > 1, and for (b) weakly charged surfaces, - < 1. We find a

desorbed regime, an adsorbed phase in which the polymer is flat and dense, and an
adsorbed phase in which the polymer shows loops. It is seen that a fully charged PE is
expected to adsorb in a flat layer, whereas charge-diluted PEs can form coiled layers with
loops and dangling ends. The broken lines denote the scaling boundaries of PE chains in
the bulk as shown in Fig. 5. The numbers on the lines indicate the power-law exponents of
the crossover boundaries between the regimes.
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Fig. 10 Numerically determined
adsorption diagram for a charged
semiflexible polymer of length
L = 50 nm, linear charge density
τ = 6 nm−1, persistence length
�0 = 30 nm, interacting with an
oppositely charged sphere of radius
Rp = 5 nm. Shown is the main
transition from the unwrapped
configuration (at the bottom) to the
wrapped configuration (at the top) as
a function of sphere charge Z and
inverse screening length κ. Wrapping
is favored at intermediate salt concen-
trations. The parameters are chosen
for the problem of DNA-histone com-
plexation. (Adapted from Ref. [99].)
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widely used to stabilize colloidal suspen-
sions [93] and to fabricate hollow poly-
meric shells [75–77]. When the curvature
of the small colloidal particles is large
enough, it can lead to a much more
pronounced effect for PE adsorption as
compared with neutral polymer. This is
mainly due to the fact that the electrostatic
energy of the adsorbed PE layer depends
sensitively on curvature [94–98]. Bending
a charged polymer around a small sphere
costs a large amount of electrostatic en-
ergy, which will disfavor adsorption of
long, strongly charged PE at very low salt
concentrations.
In Fig. 10 we show the adsorption phase

diagram of a single stiff PE of finite length
that interacts with an oppositely charged
sphere of charge Z (in units of e). The
specific parameters were chosen as ap-
propriate for the complexation of DNA (a
negatively charged, relatively stiff biopoly-
mer) with positively charged histone pro-
teins, corresponding to a DNA length of
L = 50 nm, a chain persistence length of
�0 = 30 nm, and a sphere radius of Rp =
5 nm. The phase diagram was obtained by
minimization of the total energy including
bending energy of the DNA, electrostatic

attraction between the sphere and the
DNA, and electrostatic repulsion between
the DNA segments with respect to the
chain configuration [99]. Configurational
fluctuations away from this ground state
are unimportant for such stiff polymers.
We show in Fig. 10 the main transition

between an unwrapped state, at low sphere
charge Z, and the wrapped state, at large
sphere charge Z. It is seen that at values
of the sphere charge between Z = 10 and
Z = 130, the wrapping only occurs at in-
termediate values of the inverse screening
length κ ∼ c

1/2
salt . At low salt concentrations

(lower left corner in the phase diagram),
the self-repulsion between DNA segments
prevents wrapping, while at large salt
concentrations (lower right corner in the
diagram), the electrostatic attraction is not
strong enough to overcome the mechani-
cal bending energy of the DNA molecule.
These results are in good agreement
with experiments on DNA/histone com-
plexes [100]. Interestingly, the optimal salt
concentration, where a minimal sphere
charge is needed to wrap the DNA, oc-
curs at physiological salt concentration,
for κ−1 ≈ 1 nm. For colloidal particles
of larger size and for flexible synthetic



304 2 Electrochemical Double Layers

polymers, configurational fluctuations be-
come important. They have been treated
using a mean-field description in terms
of the average monomer density profile
around the sphere [101, 102].

2.7.5
Adsorption from Semidilute Solutions

So far we have been reviewing the
behavior of single PE chains close to a
charged wall (or surface). This will now
be extended to include adsorption of PEs
from bulk (semidilute) solutions having
a bulk concentration cbm. As before, the
chains are assumed to have a fraction
f of charged monomers, each carrying
a charge e, resulting in a linear charge
density τ = f/b on the chain. The solution
can also contain salt (small ions) of
concentration csalt, which is directly related
to the DH screening length, κ−1. For
clarity purposes, the salt is assumed to be
monovalent (z = 1) throughout Sect. 2.7.5.
We will consider adsorption only onto

a single flat and charged surface. Clearly,
the most important quantity is the profile
of the polymer concentration cm(x) as
function of x, the distance from the wall.
Another useful quantity is the polymer
surface excess per unit area, defined as

0 =
∫ ∞

0
[cm(x)− cbm] dx (50)

Related to the surface excess 0 is the
amount of charges (in units of e) carried
by the adsorbing PE chains, f0. In
some cases the polymer carries a higher
charge (per unit area) than the charged
surface itself, f0 > σ , and the surface
charge is overcompensated by the PE,
as we will see later. This does not
violate charge neutrality in the system
because of the presence of counterions
in solution.

In many experiments, the total amount
of polymer surface excess 0 is measured
as a function of the bulk polymer concen-
tration, pH, and/or ionic strength of the
bulk solution [103–110]. For reviews see,
for example, Refs. [61, 62, 111, 112]. More
recently, spectroscopy [105] and ellipsom-
etry [109] have been used to measure the
width of the adsorbed PE layer. Other tech-
niques such as neutron-scattering can be
employed to measure the entire profile
cm(x) of the adsorbed layer [113, 114].
In spite of the difficulties in treating

theoretically PEs in solution because of
the delicate interplay between the chain
connectivity and the long range nature
of electrostatic interactions [1, 9, 115,
116], several simple approaches treating
adsorption exist.
One approach is a discrete multi-Stern

layer model [117–121], where the system
is placed on a lattice whose sites can
be occupied by a monomer, a solvent
molecule, or a small ion. The electrostatic
potential is determined self-consistently
(mean-field approximation) together with
concentration profiles of the polymer and
small ions.
In another approach, the electrostatic

potential and the PE concentration
are treated as continuous functions [78,
80–82, 122–125]. These quantities are
obtained from two coupled differential
equations derived from the total free
energy of the system. We will review
the main results of the latter approach,
presenting numerical solutions and
scaling arguments of the mean-field
profiles.

2.7.5.1 Mean-field Theory and its Profile
Equations
The charge density on the polymer
chains is assumed to be continuous and
uniformly distributed along the chains.
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Further treatments of the polymer charge
distribution (annealed and quenchedmod-
els) can be found in Refs. [81, 82, 123].
Within mean-field approximation, the

free energy of the system can be ex-
pressed in terms of the local electrostatic
potential ψ(r), the local monomer concen-
tration cm(r), and the local concentration
of positive and negative ions c±(r). The
mean-field approximation means that the
influence of the charged surface and the
interchain interactions can be expressed
in terms of an external potential that will
determine the local concentration of the
monomers, cm(r). This external potential
depends both on the electrostatic potential
and on the excluded volume interactions
between the monomers and the solvent
molecules. The excess free energy with re-
spect to the bulk can then be calculated
using another important approximation,
the ground state dominance. This ap-
proximation is used often for neutral
polymers [9] and is valid for very long poly-
mer chains, N � 1. It is then convenient
to introduce the polymer order parameter
φ(r), where cm(r) = |φ(r)|2, and to express
the adsorption free energy F in terms of
φ and ψ (and in units of kBT ) [80–82,
122–124]

F =
∫

dr{Fpol(r)+ Fions(r)+ Fel(r)}
(51)

The polymer contribution is

Fpol(r) = a2

6
|∇φ|2 + 1

2
v2(φ

4 − φ4b)
− µp(φ2 − φ2b) (52)

where the first term is the polymer elastic
energy. Throughout this sectionwe restrict
ourselves to flexible chains and treat the
Kuhn length a and the effective monomer
size b as the same parameter. The second
term is the excluded volume contribution

where the second-virial coefficient v2 is of
order a3. The last term couples the system
to a polymer reservoir via a chemical
potential µp , and φb = √

cbm is related to
the bulk monomer concentration, cbm.
The entropic contribution of the small

(monovalent) ions is

Fions(r) =
∑
i=±

[ci ln ci − ci − csalt ln csalt

+ csalt] − µi(ci − csalt) (53)

where ci(r) and µi are, respectively,
the local concentration and the chemical
potential of the i = ± ions, while csalt is
the bulk concentration of salt.
Finally, the electrostatic contributions

(per kBT ) are

Fel(r)

=
[
f eφ2ψ + ec+ψ − ec−ψ − ε

8π
|∇ψ |2

]
kBT

(54)
The first three terms are the electrostatic
energies of the monomers, the positive
ions, and the negative ions, respectively;
f is the fractional charge carried by
one monomer. The last term is the self-
energy of the electric field where ε is
the dielectric constant of the solution.
Note that the electrostatic contribution
(Eq. 54) is equivalent to the well-known
result: (ε/8πkBT )

∫
dr|∇ψ |2 plus surface

terms. This can be seen by substituting the
Poisson–Boltzmann equation (as obtained
below) into Eq. (54) and then integrating
by parts.
Minimization of the free energy

(Eqs. 51–54) with respect to c±, φ, and
ψ yields a Boltzmann distribution for
the density of the small ions, c±(r) =
csalt exp(∓eψ/kBT ), and two coupled
differential equations for φ and ψ :
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∇2ψ(r) = 8πe

ε
csalt sinh

(
eψ

kBT

)

− 4πe

ε
(f φ2 − f φ2beeψ/kBT )

(55)

a2

6
∇2φ(r) = v2(φ3 − φ2bφ)+

f φeψ

kBT
(56)

Equation (55) is a generalized Pois-
son–Boltzmann equation including the
free ions and the charged polymers. The
first term represents the salt contribu-
tion and the second term is due to the
charged monomers and their counteri-
ons. Equation (56) is a generalization of
the self-consistent field equation of neu-
tral polymers [9]. In the bulk, the above
equations are satisfied by setting ψ → 0
and φ → φb.

2.7.5.2 Numerical Profiles: Constant ψs

When the surface is taken as ideal, that
is, flat and homogeneous, the physical
quantities depend only on the distance
x from the surface. The surface imposes
boundary conditions on the polymer order
parameter φ(x) and electrostatic potential
ψ(x). In thermodynamic equilibrium, all
charge carriers in solution should exactly
balance the surface charges (charge neu-
trality). The Poisson–Boltzmann Equa-
tion (55), the self-consistent field Equa-
tion (56), and the boundary conditions
uniquely determine the polymer concen-
tration profile and the electrostatic poten-
tial. In most cases, these two coupled
nonlinear equations can only be solved
numerically.
We present now numerical profiles

obtained for surfaces with a constant
potential ψs :

ψ |x=0 = ψs (57)

The boundary conditions for φ(x) depend
on the nature of the short-range non-
electrostatic interactions of the monomers
and the surface. For simplicity, we take
a nonadsorbing surface and require that
the monomer concentration will vanish
there:

φ|x=0 = 0 (58)

We note that the boundary conditions
chosen in Eqs. (57) to (58) model the
particular situation of electrostatic attrac-
tion in competition with a short-range
(steric) repulsion of nonelectrostatic ori-
gin. Possible variations of these boundary
conditions include surfaceswith a constant
surface charge (discussed later) and sur-
faces with a nonelectrostatic short-range
attractive (or repulsive) interaction with
the polymer [83, 127]. Far from the sur-
face (x → ∞), both ψ and φ reach their
bulk values and their derivatives vanish:
ψ ′|x→∞ = 0 and φ′|x→∞ = 0.
The numerical solutions of the mean-

field Eqs. (55) and (56) together with the
boundary conditions discussed above are
presented in Fig. 11, for several different
physical parameters.
The polymer is positively charged and

is attracted to the nonadsorbing surface
held at a constant negative potential. The
aqueous solution contains a small amount
of monovalent salt (csalt = 0.1mM). The
reduced concentration profile cm(x)/φ2b
is plotted as a function of the distance
from the surface x. Different curves
correspond to different values of the
reduced surface potential ys ≡ eψs/kBT ,
the charge fraction f , and the effective
monomer size a.
Although the spatial variation of the

profiles differs in detail, they all have a
single peak that can be characterized by
its height and width. This observation
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Fig. 11 Adsorption profiles obtained by numerical solutions
of Eqs. (55) and (56) for several sets of physical parameters in
the low-salt limit. The polymer concentration scaled by its bulk
value cbm = φ2b is plotted as a function of the distance from the
surface. The different curves correspond to: f = 1, a = 5 Å and
ys = eψs/kBT = −0.5 (solid curve); f = 0.1, a = 5 Å and
ys = −0.5 (dots); f = 1, a = 5 Å and ys = −1.0 (short dashes);
f = 1, a = 10 Å and ys = −0.5 (long dashes); and f = 0.1,
a = 5 Å and ys = 1.0 (dot–dash line). For all cases,
φ2b = 10−6 Å−3, v2 = 50 Å3, ε = 80, T = 300 K, and
csalt = 0.1mM. (Adapted from Ref. [124].)

serves as a motivation to using scaling
arguments.

2.7.5.3 Scaling Results
The numerical profiles of the previous
section indicate that it may be possible
to obtain simple analytical results for
the PE adsorption by assuming that
the adsorption is characterized by one
dominant length scale D. Hence, we write
the polymer order parameter profile in the
form

φ(x) = √
cMh(x/D) (59)

where h(x) is a dimensionless function
normalized to unity at its maximum and
cM sets the scale of polymer adsorption,
such that φ(D) = √

cM. The free energy
can now be expressed in terms of D and
cM, while the exact form of h(x) affects
only the numerical prefactors.
In principle, the adsorption length D

depends also on the ionic strength through
κ−1. As discussed below, the scaling
assumption (Eq. 59) is only valid as
long as κ−1 and D are not of the
same order of magnitude. Otherwise,
h should be a function of both κx
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and x/D. We concentrate now on two
limiting regimes where Eq. (59) can be
justified: (1) the low-salt regime D  κ−1

and (2) the high-salt regime D � κ−1.
We first discuss the case of constant
surface potential, which can be directly
compared to the numerical profiles. Then
we note the differences with the constant
surface charge boundary condition in
which the interesting phenomenon of
charge overcompensation is discussed in
detail.

2.7.5.3.1 Low-salt Regime D � κ−1 and
ψs = constant In the low-salt regime the
effect of the small ions can be neglected
and the free energy (per unit surface area)
(Eqs. 51–54) is approximated by (see also
Refs. [80, 124])

F 	 a2

6D
cM − f |ys |cMD

+ 4πlBf 2c2MD
3 + 1

2
v2c

2
MD (60)

In the above equation and in what follows,
we neglect additional prefactors of order
unity in front of the various terms that arise
from inserting the scaling profile (Eq.59)
into the free energy. The first term of
Eq. (60) is the elastic energy characterizing
the response of the polymer to concentra-
tion inhomogeneities. The second term
accounts for the electrostatic attraction of
the polymers to the charged surface. The
third term represents the Coulomb repul-
sion between adsorbed monomers. The
last term represents the excluded volume
repulsion between adsorbed monomers,
where we assume that the monomer con-
centration near the surface is much larger
than the bulk concentration cM � φ2b .
In the low-salt regime and for highly

charged PEs, the electrostatic interactions

are much stronger than the excluded
volume ones.
Neglecting the latter interactions and

minimizing the free energy with respect
to D and cM gives

D2 	 a2

f |ys | ∼ 1

f |ψs | (61)

and

cM 	 |ys |2
4πlBa2

∼ |ψs |2 (62)

recalling that ys = eψs/kBT . As discussed
above, these expressions are valid as
long as (1) D  κ−1 and (2) the ex-
cluded volume term in Eq. (60) is negli-
gible. Condition (1) translates into csalt 
f |ys |/(8πlBa2). For |ys | 	 1, a = 5 Å and
lB = 7 Å this limits the salt concentra-
tion to csalt/f  0.4M. Condition (2)
on the magnitude of the excluded vol-
ume term can be shown to be equivalent
to f � v2|ys |/lBa2. These requirements
are consistent with the data presented in
Fig. 11.
We recall that the profiles presented

in Fig. 11 were obtained from the nu-
merical solution of Eqs. (55) and (56),
including the effect of small ions and
excluded volume. The scaling relations
are verified by plotting in Fig. 12 the
same sets of data as in Fig. 11, using
rescaled variables as defined in Eqs. (61)
and (62). That is, the rescaled electro-
static potential ψ(x)/ψs and polymer con-
centration cm(x)/cM ∼ cm(x)a

2/|ys |2 are
plotted as functions of the rescaled dis-
tance x/D ∼ xf 1/2|ys |1/2/a. The different
curves roughly collapse on the same curve.
In many experiments the total amount

of adsorbed polymer per unit area 0

is measured as function of the physical
characteristics of the system such as the
charge fraction f , the pH of the solution,
or the salt concentration csalt [103–110].
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Fig. 12 Scaling behavior of PE adsorption in the low-salt regime (Eqs. 61 and 62). (a) The
rescaled electrostatic potential ψ(x)/|ψs| as a function of the rescaled distance x/D. (b) The
rescaled polymer concentration cm(x)/cM as a function of the same rescaled distance. The
profiles are taken from Fig. 11 (with the same notation). (Adapted from Ref. [124].)

This quantity canbe easily obtained from
our scaling expressions yielding

0 =
∫ ∞

0
[cm(x)− φ2b ] dx

	 DcM 	 |ys |3/2
lBaf 1/2 ∼ |ψs |3/2

f 1/2 (63)

The adsorbed amount 0(f ) in the low-
salt regime is plotted in the inset of
Fig. 13(a). As a consequence of Eq. (63),
0 decreases with increasing charge frac-
tion f . Similar behavior was also re-
ported in experiments [106]. This effect
is at first glance quite puzzling be-
cause as the polymer charge increases,
the chains are subject to a stronger at-
traction to the surface. On the other
hand, the monomer–monomer repulsion
is stronger and, indeed, in this regime,
the monomer–monomer Coulomb repul-
sion scales as (f cM)

2 and dominates
over the adsorption energy that scales
as f cM.

2.7.5.3.2 High-salt Regime D � κ−1 and
ψs = constant Let us now consider the
opposite case of a high ionic strength
solution. Here, D is much larger than
κ−1, and the electrostatic interactions are
short ranged with a cutoff κ−1. The free
energy of the adsorbing PE layer (per unit
surface area) then reads

F 	 a2

6D
cM − f |ys |cMκ−1

+ 4πlBf 2κ−2c2MD + 1

2
v2c

2
MD (64)

The electrostatic cutoff enters in two
places. In the second term, only the
first layer of width κ−1 interacts elec-
trostatically with the surface. In the
third term, each charged layer situated
at point x interacts only with layers at
x′ for which |x − x′| < κ−1. This term
can be also viewed as an additional
electrostatic excluded volume with vel ∼
lB(f/κ)

2.
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Fig. 13 Typical adsorbed amount 0 as a
function of (a) the charge fraction f and (b) the
pH − pK0 of the solution for different salt
concentrations (Eq. 67). The insets correspond
to the low-salt regime (Eq. 63). The parameters

used for ε, T, and v2 are the same as in Fig. 11,
while ys = eψs/kBT = −0.5 and a = 5Å. The bulk
concentration cbm = φ2b is assumed to be much
smaller than cM. (Adapted from Ref. [124].)

Minimization of the free energy gives

D 	 κa2

f |ys | ∼ c
1/2
salt

f |ψs | (65)

and

cM ∼ f 2|ys |2/(κa)2
f 2/csalt + αv2 (66)

yielding

0 ∼ f |ys |c−1/2
salt

f 2/csalt + αv2 ∼ f |ψs |
vel + αv2 c

−1/2
salt

(67)
where α is a numerical constant of order
unity that depends on the profile details.
The adsorption behavior is depicted in

Figs. 13 and 14. Our scaling results are
in agreement with numerical solutions
of discrete lattice models (the multi-
Stern layer theory) [61, 62, 111, 117–120].
In Fig. 13, 0 is plotted as function of
f (Fig. 13a) and the pH (Fig. 13b) for
different salt concentrations. The behavior
as seen in Fig. 13(b) represents annealed
PEs where the nominal charge fraction is

given by the pH of the solution through
the expression

f = 10pH−pK0

1 + 10pH−pK0
(68)

where pK0 = − log10 K0 and K0 is the ap-
parent dissociation constant. We note that
this relation is only strictly valid for in-
finitely dilute monomers and that distinct
deviations from it are observed for PEs
because of the electrostatic repulsion be-
tween neighboring dissociating sites [126].
Still, the results in Fig. 13(b) capture the
main qualitative trends of pH-dependent
PE adsorption.
Another interesting observation that can

be deduced from Eq. (67) is that 0 is only a
function of f c−1/2

salt . Indeed, as can be seen
in Fig. 13, csalt only affects the position of
the peak and not its height.
The effect of salt concentration is shown

in Fig. 14, where0 is plotted as function of
the salt concentration csalt for two charge
fractions f = 0.01 and 0.25. The curves
on the right-hand side of the graph are
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Fig. 14 The adsorbed amount 0 as a function of the salt
concentration csalt (Eq. 67) for f = 0.01 and 0.25. The solid curves
on the right-hand side correspond to the scaling relations in the
high-salt regime (Eq. 67). The horizontal lines on the left-hand side
mark the low salt values (Eq. 67). The dashed lines serve as guides
to the eye. The parameters used are ε = 80, T = 300 K, v2 = 50Å3,
a = 5Å, ys = −2.0. (Adapted from Ref. [124].)

calculated from the high-salt expression
for 0 (Eq. 67). The horizontal lines on the
left-hand side of the graph indicate the
low-salt values of 0 (Eq. 63). The dashed
lines in the intermediate salt regime serve
only as guides to the eye since our scaling
approach is not valid when D and κ−1 are
of the same order.
Emphasis should be drawn to the dis-

tinction between weakly and strongly
charged PEs. For weak PEs, the adsorbed
amount 0 is a monotonously decreas-
ing function of the salt concentration
csalt in the whole range of salt con-
centrations. The reason being that the
monomer–monomer Coulomb repulsion,
proportional to f 2, is weaker than the
monomer–surface interaction, which is
linear in f .

For strongly charged PEs, on the other
hand, the balance between these two elec-
trostatic terms depends on the amount of
salt. At low salt concentrations, the domi-
nant interaction is the monomer–surface
Coulomb repulsion. Consequently, addi-
tion of salt screens this interaction and
increases the adsorbed amount. When the
salt concentration is high enough, this
Coulomb repulsion is screened out and the
effect of salt is to weaken the surface at-
traction. At this point the adsorbed amount
starts to decrease. As a result, the behav-
ior over the whole concentration range is
nonmonotonic with a maximum at some
optimal value c∗salt, as seen in Fig. 14.
From this analysis and from Figs. 13,

14 and Eq. (67), it is now natural to divide
the high-salt regime into two subregimes
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according to the PE charge. At low
charge fractions (subregime HS I), f 
f ∗ = (csaltv2)1/2, the excluded volume
term dominates the denominator of
Eq. (67) and

0 ∼ f |ψs |c−1/2
salt (69)

whereas at high f (subregimeHS II), f �
f ∗, the monomer–monomer electrostatic
repulsion dominates and 0 decreases with
f and increases with csalt:

0 ∼ c1/2salt |ψs |f−1 (70)

The various regimes with their crossover
lines are shown schematically in Fig. 15.
Keeping the charge fraction f constant
while changing the amount of salt cor-
responds to a vertical scan through the

diagram. For weak PEs, this cut goes
through the left-hand side of the diagram
starting from the low-salt regime and,
upon addition of salt, into theHS I regime.
Such a path describes the monotonous be-
havior inferred from Fig. 14 for the weak
PE (f = 0.01). For strong PEs, the cut
goes through the right-hand side of the di-
agram, starting from the low-salt regime,
passing through the HS II regime, and
ending in the HS I. The passage through
the HS II regime is responsible for the
nonmonotonous behavior inferred from
Fig. 14 for the strong PE (f = 0.25).
Similarly, Fig. 13(a,b) correspond to hor-

izontal scans through the top half of the
diagram. As long as the system is in the
HS I regime, the adsorbed amount in-
creases when the polymer charge fraction

10−3 10−2 10−1 1

f

0.0001

0.001

0.01c s
al

t
[M

]

0.1

1
High salt

(HS I)
HS II

Low salt

Fig. 15 Schematic diagram of the different adsorption regimes as
function of the charge fraction f and the salt concentration csalt.
Three regimes can be distinguished: (a) the low-salt regime
D  κ−1; (b) the high-salt regime (HS I) D � κ−1 for weak PEs
f  f ∗ = (csaltv2)1/2; and (c) the high-salt regime (HS II) D � κ−1

for strong PEs f � f ∗.
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increases. As the polymer charge fur-
ther increases, the system enters the
HS II regime and the adsorbed amount
decreases. Thus, the nonmonotonous be-
havior of Fig. 13. We finally note that
the single-chain desorption transition for
a flexible chain, which was discussed in
Sect. 2.7.4, is also valid for adsorption from
solutions andwill lead to a desorption tran-
sition at very high salt concentrations in
Fig. 15 (which is not shown for clarity).

2.7.5.4 Overcompensation of Surface
Charges: Constant σ
We turn now to a different electrostatic
boundary condition of constant surface
charge density and look at the interesting
phenomenon of charge compensation by
the PE chains in relation to experiments for
PE adsorption onflat surfaces, aswell as on
charged colloidal particles [72, 73, 75–77].
What was observed in experiments is that
PEs adsorbing on an oppositely charged
surface can overcompensate the original
surface charge. Because PEs create a thin
layer close to the surface, they can act as
an effective absorbing surface to a second
layer of PEs having an opposite charge
compared to the first layer. Repeating the
adsorption of alternating positively and
negatively charged PEs, it is possible to
create a multilayer structure of PEs at the
surface. Although many experiments and
potential applications for PE multilayers
exist, the theory of PE overcompensation
is only starting to be developed [83, 84,
123–125, 127, 128].
The scaling laws presented for constant

ψs can be used also for the case of constant
surface charge. A surface held at a constant
potential ψs will induce a surface charge
density σ . The two quantities are related by
dψ/ dx = 4πσe/ε at x = 0. We will now
consider separately the two limits: low salt
D  κ−1 and high salt D � κ−1.

2.7.5.4.1 Low Salt Limit: D � κ−1 As-
suming that there is only one length scale
characterizing the potential behavior in the
vicinity of the surface, as demonstrated in
Fig. 12(a), we find that the surface poten-
tial ψs and the surface charge σ are related
by ψs ∼ σeD. In the low salt limit we find
from Eq. (61)

D ∼ (f σ lB)−1/3 (71)

in agreement with Eq. (47).
Let us define two related concepts via the

effective surface charge density defined
as ;σ = f0 − σ , which is the sum of
the adsorbed polymer charge density and
the charge density of the bare substrate.
For ;σ = 0, the adsorbed polymer charge
exactly compensates the substrate charge.
If ;σ is positive, the PE overcompensates
the substrate charge and more polymer
adsorbs than is needed to exactly cancel
the substrate charge. If ;σ is positive and
reaches the value ;σ = σ , it means that
the PE charge is f0 = 2σ and leads to
a charge inversion of the substrate charge.
The effective surface charge consisting of
the substrate charge and the PE layer has
a charge density that is exactly opposite to
the original substrate charge density σ .
Do we obtain overcompensation or

charge inversion in the low salt limit
within mean-field theory? Using scaling
arguments, this is not clear since we find
that;σ ∼ f0 ∼ σ . That is, each of the two
terms in ;σ scales linearly with σ , and
the occurrence of overcompensation or
charge inversionwill depend on numerical
prefactors determining the relative sign
of the two opposing terms. However, if
we look at the numerical solution for the
mean-field electrostatic potential (Fig. 12),
we see indeed that all plotted profiles have
a maximum of ψ(x) as function of x. An
extremum in ψ means a zero local electric
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field.Or equivalently, usingGauss law, this
means that the integrated charge density
from the wall to this special extremum
point (including surface charges) is exactly
zero. At this point the charges in solution
exactly compensate the surface charges.

2.7.5.4.2 High Salt Limit: D � κ−1

When we include salt in the solution
and look at the high salt limit, the
situation ismore complex. The only length
characterizing the exponential decay of ψ
close to the surface is the DH screening
length. Hence, using dψ/ dx|s ∼ σe yields
ψs ∼ σeκ−1, and therefore from Eq. (65),

D ∼ κ2a2

f σ lB
∼ κ2f−1σ−1 (72)

The estimation of the PE layer charge can
be obtained by using the expression for D
and cM in this high salt limit (Eqs. 63–65),
yielding

f0 	 βσ (8πlBcsaltκ−2)

1 + αv2csaltf−2 = βσ

1 + v2/vel
(73)

where vel = f 2/αcsalt is the electrostatic
contribution to the second-virial coefficient
v2 and α > 0 and β > 1 are positive
numerical factors.
We see that ;σ = f0 − σ is a decreas-

ing function of v2. Charge overcompensa-
tion can occur when v2 is smaller than vel
(up to a prefactor of order unity). When
v2 can be neglected in the vicinity of the
surface, or when v2 = 0 (theta solvents),
there is always charge overcompensation,
;σ = (β − 1)σ > 0. This is the case of
strongly charged PEs. Similar conclusions
have been mentioned in Refs. [83, 127]
where v2 was taken as zero but the sur-
face has a nonelectrostatic short range
interaction with the PE. By tuning the

relative strength of the surface charge den-
sity σ and the nonelectrostatic interaction,
it is also possible to cause a charge over-
compensation and even an exact charge
inversion in a special case.
Finally, we note that the dependence of

the charge parameter;σ on the amount of
salt, csalt, is different for constant surface
charge and constant surface potential
cases. While for the former, ;σ is
nonmonotonous and has a maximum (as
mentioned above) as function of the salt
concentration, in the latter case, ;σ/σ is
a monotonic decreasing function of csalt
(Eq. 73). This can be explained by the extra
powers of csalt in the latter case coming
from the relation ψs ∼ σc−1/2

salt ∼ σκ−1.
Let us remark that in other theories the

overcharging is due to lateral correlations
between adsorbed PEs, which in conjunc-
tion with screening by salt ions leads to
strongly overcharged surfaces [84, 128].

2.7.5.5 Final Remarks on Adsorption from
Semidilute Solutions
The results presented earlier (Sect. 2.7.5)
for adsorption from solutions have been
derived using mean-field theory. Hence,
lateral fluctuations in the polymer and
ionic concentrations are neglected. In ad-
dition, we neglect the delicate influence of
the charges on the PE persistence length
and any deviations fromground state dom-
inance [9]. The region of validity of the
theory is for long and weakly charged
polymer chains in contact with a mod-
erately charged surface. The PE solution is
placed in contact with a single and ideal
surface (infinite, flat, and homogeneous).
The problem reduces then to an effec-
tive one-dimensional problem depending
only on the distance from the charged
surface. We take very simple boundary
conditions for the surface assuming that
the polymer concentration is zero on the
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surface and keeping the surface in con-
stant potential or constant surface charge
conditions.
We find numerical solutions for the

PE profile equations in various cases.
These numerical solutions agree well with
simple scaling assumptions describing the
adsorption of PEs. Scaling expressions for
the amount of adsorbed polymer 0 and
the width D of the adsorbed layer, as a
function of the fractional charge f and the
salt concentration csalt, are obtained for
two cases: constant ψs and constant σ .
For constant ψs and in the low-salt

regime, a f−1/2 dependence of 0 is
found. It is supported by our numerical
solutions of the profile Eqs. (55) and (56)
and is in agreement with experiment [106].
This behavior is due to strong Coulomb
repulsion between adsorbed monomers
in the absence of salt. As f decreases,
the adsorbed amount increases until the
electrostatic attraction becomes weaker
than the excluded volume repulsion, at
which point, 0 starts to decrease rapidly.
At high salt concentrations it is not

possible to neglect the excluded vol-
ume interaction of the monomers since
the electrostatic interactions are screened
by the salt. We obtain two limit-
ing behaviors: (1) For weakly charged
PEs, f  f ∗ = (csaltv2)1/2, the adsorbed
amount increases with the fractional
charge and decreases with the salt con-
centration, 0 ∼ f/√(csalt), owing to the
monomer–surface electrostatic attraction.
(2) For strong PEs, f � f ∗, the ad-
sorbed amount decreases with the frac-
tional charge and increases with the salt
concentration, 0 ∼ √

(csalt)/f , owing to
the dominance of monomer–monomer
electrostatic repulsion. Between these two
regimes, we find that the adsorbed amount
reaches a maximum in agreement with
experiments [107, 110].

The scaling arguments are then repeated
for constant σ boundary conditions. It
is found that the PE can possibly cause
charge overcompensation and even in-
version of the nominal substrate charge,
leading the way to multilayer formation of
positively and negatively charged PEs. The
scaling approach can serve as a starting
point for further investigations. The ana-
lytical and approximated expressions are
valid only in specific limits. Special atten-
tion should be directed to the crossover
regime where D and κ−1 are of compara-
ble size.
The problem of charge inversion is not

well understood at present. Alternative
approaches rely on lateral correlations be-
tween semiflexible adsorbed PE chains,
which also can lead to strong overcompen-
sation of surface charges [84, 128].

2.7.6
Polyelectrolyte Brushes

Charged polymers that are densely end-
grafted to a surface are called polyelectrolyte
brushes or charged brushes. They have
been the focus of numerous theoreti-
cal [129–138] and experimental [139–142]
studies. In addition to the basic inter-
est, charged brushes are considered for
their applications as efficient means for
preventing colloids in polar media (such
as aqueous solutions) from flocculating
and precipitating out of solution [93]. This
stabilization arises from steric (entropic)
and electrostatic (energetic) repulsion. A
strongly charged brush is able to trap
its own counterions and generates a
layer of locally enhanced salt concen-
tration [131]. It is thus less sensitive to
the salinity of the surrounding aqueous
medium than a stabilization mechanism
based on pure electrostatics (i.e. without
polymers).
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Neutral brushes have been extensively
studied theoretically in the past using scal-
ing theories [143, 144], strong-stretching
theories [145–149], self-consistent field
theories [150, 151], and computer simu-
lations [152–155]. Little is known from
experiments on the scaling behavior of
PE brushes as compared to uncharged
polymer brushes. The thickness of the
brush layer has been calculated from
neutron-scattering experiments on end-
graftedpolymers [139] and chargeddiblock
copolymers at the air–water interface [141,
142].
Theoretical work on PE brushes was

initiated by the works of Miklavic and
Marcelja [129] and Misra and cowork-
ers. [130]. In 1991, Pincus [131] and
Borisov, Birshtein and Zhulina [132] pre-
sented scaling theories for chargedbrushes
in the so-called osmotic regime, where the
brush height results from the balance be-
tween the chain elasticity (which tends to
decrease the brush height) and the repul-
sive osmotic counterion pressure (which
tends to increase the brush height). In
later studies, these works have been gener-
alized to the poor solvents [133, 134] and to
the regime where excluded volume effects
become important, that is, the so-called
quasi-neutral or Alexander regime [137].
In what follows we assume that the

charged brush is characterized by two
length scales: the average vertical exten-
sion of polymer chains from the wall L
and the typical extent of the counterion
cloud, denoted by H . We neglect the pres-
ence of additional salt, which has been
discussed extensively in the original liter-
ature, and only consider screening effects
due to the counterions of the charged
brush. Two different scenarios emerge,
as is schematically presented in Fig. 16.
The counterions can either extend outside
the brush, H � L, as shown in Fig. 16(a),

or be confined inside the brush, H ≈ L,
as shown in Fig. 16(b). As we show now,
case (b) is indicative of strongly charged
brushes, while case (a) is typical for weakly
charged brushes.
The free energy per unit area (and in

units of kBT ) contains several contribu-
tions. We denote the grafting density of
PEs by ρ, the counterion valency by z,
recalling that N is the polymerization in-
dex of grafted chains and f their charge
fraction. The osmotic free energy, Fos,
associated with the ideal entropy cost of
confining the counterions to a layer of
thickness H is given by

Fos 	 Nfρ

z
ln

(
Nfρ

zH

)
(74)

Fv2 is the second-virial contribution
to the free energy, arising from steric
repulsion between the monomers (contri-
butions due to counterions are neglected).
Throughout this review, the polymers are
assumed to be in a good solvent (posi-
tive second-virial coefficient v2 > 0). The
contribution thus reads

Fv2 	 1

2
Lv2

(
Nρ

L

)2

(75)

Finally, a direct electrostatic contribution
Fel occurs if the PE brush is not locally
electro-neutral throughout the system, as
for example is depicted in Fig. 16(a). This
energy is given by

Fel = 2π�B(Nfρ)2

3

(L−H)2
H

(76)

This situation arises in the limit of
low charge, when the counterion density
profile extends beyond the brush layer, that
is, H > L.
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Fig. 16 Schematic PE brush structure.
In (a), we show the weak-charge limit
where the counterion cloud has a
thickness H larger than the thickness of
the brush layer, L. In (b), we show the
opposite case of the strong-charge limit,
where all counterions are contained
inside the brush and a single length
scale L ≈ H exists.
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The last contribution is the stretching
energy of the chains, which is

Fst = 3L2

2Na2
ρ (77)

Here, a is the monomer size or Kuhn
length of the polymer, implying that
we neglect any chain stiffness for the
brush problem. The different free en-
ergy contributions lead, upon minimiza-
tion with respect to the two length
scales H and L, to different behaviors.
Let us first consider the weak charg-
ing limit, that is, the situation in which
the counterions leave the brush, H > L.

In this case, minimization of Fos + Fel
with respect to the counterion height H
leads to

H ∼ 1

z�BNfρ
(78)

which is the Gouy-Chapman length for z-
valent counterions at a surface of surface
charge density σ = Nfρ. Balancing now
the polymer stretching energy Fst and the
electrostatic energy Fel, one obtains the
so-called Pincus brush

L 	 N3ρa2�Bf
2 (79)

In the limit of H ≈ L, the PE brush
can be considered as neutral and the
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electrostatic energy vanishes. There are
two ways of balancing the remaining
free energy contributions. The first is
obtained by comparing the osmotic energy
of counterion confinement, Fos, with the
polymer stretching term, Fst, leading to
the height

L ∼ Naf 1/2

z1/2
(80)

constituting the so-called osmotic-brush
regime. Finally, comparing the second-
virial free energy, Fv2 , with the polymer
stretching energy, Fst, one obtains

L ∼ Na(v2ρ/a)1/3 (81)

and the PE brush is found to have the
same scaling behavior as the neutral
brush [143, 144]. Comparing the heights
of all three regimes, we arrive at the
phase diagram shown in Fig. 17. The three
scaling regimes meet at the characteristic
charge fraction

f ∗ ∼
(

zv2

N2a2�B

)1/3
(82)

and the characteristic grafting density

ρ∗ ∼ 1

N�
1/2
B v

1/2
2

(83)

For large values of the charge fraction
f and the grafting density ρ, it has
been found numerically that the brush
height does not follow any of the scaling
laws discussed here [156]. This has been
recently rationalized in terms of another
scaling regime, the collapsed regime. In
this regime, one finds that correlation and
fluctuation effects, which are neglected in
the discussion in this section, lead to a
net attraction between charged monomers
and counterions [157].

2.7.7
Conclusion

In this chapter we have reviewed the
behavior of charged polymers (PEs) in so-
lution and at interfaces, concentrating on
aspects that are different from the corre-
sponding behavior of neutral polymers.
Because charged biopolymers and iso-

lated PE chains tend to be quite stiff
due to electrostatic monomer–monomer

f
f ∗

ρ

Pincus brush
Neutral
brush

−3/2

3/2

Osmotic brush

−3

ρ∗

Fig. 17 Scaling diagram for PE brushes
on a log–log plot as a function of the
grafting density ρ and the fraction of
charged monomers f . Featured are the
Pincus-brush regime, where the
counterion layer thickness is much
larger than the brush thickness, the
osmotic-brush regime, where all
counterions are inside the brush and the
brush height is determined by an
equilibrium between the counterion
osmotic pressure and the PE stretching
energy, and the neutral-brush regime,
where charge effects are not important
and the brush height results from a
balance of PE stretching energy and
second-virial repulsion. The power-law
exponents of the various lines are
denoted by numbers.
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repulsions, their chain statistics is re-
lated to that of semiflexible polymers.
Neutral and charged semiflexible polymers
are controlled by their bending rigidity,
which is usually expressed in terms of
a persistence length (see Sect. 2.7.2.2).
For PEs, the electrostatic interaction
considerably influences this persistence
length.
In solution, we have considered the scal-

ing behavior of a single PE (Sect. 2.7.3.1).
The importance of the electrostatic persis-
tence length was stressed. The Manning
condensation of counterions leads to a
reduction of the effective linear charge
density (Sect. 2.7.3.1.1). Excluded volume
effects are typically less important than
for neutral polymers (Sect. 2.7.3.1.2). Di-
lute PE solutions are typically dominated
by the behavior of the counterions. So
is the large osmotic pressure of dilute
PE solutions due to the entropic contri-
bution of the counterions (Sect. 2.7.3.2).
Semidilute PE solutions can be described
by the RPA, which in particular yields
the characteristic peak of the structure
factor.
At surfaces, we discussed in detail

the adsorption of single PEs (Sect. 2.7.4),
the adsorption from semidilute solutions
(Sect. 2.7.5), and the behavior of end-
grafted PE chains (Sect. 2.7.6). We tried
to express the PE behavior in terms of
a few physical parameters such as the
chain characteristics (persistence length),
ionic strength of the solutions, and surface
characteristics. The shape and size of the
adsorbing layer is, in many instances, gov-
erned by a delicate balance of competing
mechanisms of electrostatic and nonelec-
trostatic origin. In some cases, it is found
that the adsorbing PE layer is flat and
compressed, while in other cases, it is
coiled and extended. Yet, in other situa-
tions, the PEs will not adsorb at all and

will be depleted from the surface. We
also briefly review the phenomenon of
charge overcompensation and inversion,
when the adsorbed PE layer effectively
inverses the sign of the surface charge
leading the way to formation of PE multi-
layers.
Important topics that we have left out

are the dynamics of PE solutions, which
is reviewed in Ref. [4], and the behavior of
PEs under bad-solvent conditions [39–41].
In the future we expect that studies of
PEs in solutions and at surfaces will be
directed more toward biological systems.
We mentioned in this review the complex-
ation of DNA and histones (Sect. 2.7.4.1).
This is only one of many examples of
interest in which charged biopolymers,
receptors, proteins, and DNA molecules
interact with each other or with other
cellular components. The challenge for
future fundamental research will be to
try to understand the role of electrostatic
interactions combined with specific bi-
ological (lock–key) mechanisms and to
infer on biological functionality of such
interactions.
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66. B. Maier, J. O. Rädler, Phys. Rev. Lett. 1999,
82, 1911.

67. H. von Berlepsch, C. Burger, H. Dautzen-
berg, Phys. Rev. E 1998, 58, 7549.

68. K. de Meijere, G. Brezesinski, H. Möhwald,
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