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ABSTRACT

We investigate the ordered morphologies occurring in thin-films diblock copolymer. For
temperatures above the order-disorder transition and for an arbitrary two-dimensional surface
pattern, we use a Ginzburg-Landau expansion of the free energy to obtain a linear response
description of the copolymer melt. The ordering in the directions perpendicular and parallel to
the surface are coupled. Three dimensional structures existing when a melt is confined
between two surfaces are examined. Below the order-disorder transition we find tilted
lamellar phases in the presence of striped surface fields.

INTRODUCTION

The self-assembly of block copolymers (BCP) has been the subject of numerous studies
[1]-[12]. These macromolecules are made up of chemically distinct subunits, or blocks, linked
together with a covalent bond. This bonding inhibits macrophase separation, and leads to
formation of mesophases with typical size ranging from nanometers up to microns. For
di-block copolymers, which are made up of two partially incompatible blocks (A and B), the
phase diagram is well understood [1]-[6], and exhibits disordered, lamellar, hexagonal and
cubic micro-phases. The phase behavior is governed by three parameters: the chain length
N = NA +NB , the fraction f = NA=N of the A block, and the Flory parameter �, being
inversely proportional to the temperature.

The presence of a confining surface leads to various interesting phenomena [7]-[17]. The
surface limits the number of accessible chain configurations and thus may lead to chain
frustration. Transitions between perpendicular and parallel lamellar phases with respect to the
confining surfaces have been observed in thin films [18]-[22]. In addition, the surface may be
chemically active, preferring adsorption of one of the two blocks, and usually stabilizing the
formation of lamellae parallel to the surface [12, 19, 21].

More complicated behavior occurs when the surface is chemically heterogeneous; namely,
one surface region prefers one block while other regions prefer the second block. Compared
to bulk systems, new energy and length scales enter the problem adding to its complexity.
Thin-film BCP in presence of chemically patterned surfaces is of importance in many
applications, such as dielectric mirrors and waveguides [23], anti-reflection coating for optical
surfaces [24] and fabrication of nanolithographic templates [25].
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THE MODEL

The copolymer order parameter � is defined as �(r) � �A(r)� f , the deviation of the
local A monomer concentration from its average f . Consider a symmetric (f = 1=2) BCP
melt in its disordered phase (above the bulk ODT temperature) and confined by one or two
flat, chemically patterned surfaces. The free energy (in units of the thermal energy kBT ) can
be written as [3, 4, 5, 26, 27]:
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The polymer radius of gyration Rg sets the periodicity scale d0 = 2�=q0 via the relation
q0 ' 1:95=Rg. The chemical potential is � and the other two parameters are h = 1:5�c2R2

g=q
2

0

and � = 2�N (�c � �). The Flory parameter � measures the distance from the ODT point
(� = 0), having the value �c ' 10:49=N . For positive � � �c � �, the system is in the
disordered phase having � = 0, while for � < 0 (and f = 1=2) the lamellar phase has the
lowest energy. Finally, � = 1=Na3 is the chain density per unit volume, and c and u=� are
constants of order unity [4]. This Ginzburg-Landau expansion of the free energy in powers of
� and its derivatives can be justified near the critical point, where � � hq4

0
and ordering is

weak. The lamellar phase can approximately be described by a single q-mode there:
� = �q cos(q0 � r). We note that similar types of energy functionals have been used to
describe bulk and surface phenomena [28, 29, 30], amphiphilic systems [31, 32], Langmuir
films [33] and magnetic (garnet) films [34].

We model the chemically heterogeneous surfaces by a short-range surface interaction,
where the BCP concentration at the surface is coupled linearly to a surface field �(rs):

Fs =

Z
�(rs)�(rs)d

2
rs (2)

The vector r = rs defines the position of the confining surfaces. Preferential adsorption of the
A block is modeled by a � < 0 surface field, and a constant � results in a parallel-oriented
lamellar layers (a perpendicular orientation of the chains). Without any special treatment, the
surface tends to prefer one of the blocks, but by using random copolymers [16, 17] one can
reduce this affinity or even cancel it altogether. A surface with spatially modulated pattern,
�(rs) 6= 0, induces preferential adsorption of A and B blocks to different regions of the
surface.

RESULTS AND DISCUSSION

We consider first a system of polymer melt in contact with a single flat surface. The system
is assumed to be above the ODT temperature, in the disordered bulk phase. The results are
then extended to two confining surfaces and to BCP systems below the ODT.

Above ODT

Above the ODT the bulk phase is disordered, and the free energy, Eq. (1), is convex to
second order in the order parameter �. Thus, the �4 term can be neglected. The melt is
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confined to the semi-infinite space y > 0, bounded by the rs = (x; y = 0; z) surface. The
chemical pattern �(rs) = �(x; z) can be decomposed in terms of its inplane q-modes
�(x; z) =

P
q
�q exp (i (qxx+ qzz)), where q � (qx; qz), and �q is the mode amplitude.

Similarly, the order parameter is �(x; y; z) =
P

q
�q(y) exp (i (qxx + qzz)). Substituting � in

Eq. (1), and applying a variational principle with respect to �q, results in a linear fourth-order
differential equation [35, 36]:

�
�=h+

�
q2 � q2

0

�
2
�
�q(y) + 2(q2

0
� q2)�00q(y) + �0000q (y) = 0 (3)

In the semi-infinite geometry, y > 0, the solution to Eq. (3) has an exponential form
�q(y) = Aq exp(�kqy) +Bq exp(�k�qy), where kq is given by

k2q = q2 � q2
0
+ i

p
�=h

= q2 � q2
0
+ i� (N�c �N�)1=2 (4)

with � ' 0:59q2
0
. The values of �q = 1=Re(kq) and �q = 1=Im(kq) correspond to the

exponential decay and oscillation lengths of the surface q-modes, respectively. For fixed �, �q
decreases and �q increases with increasing q [20, 35, 36]. Close to the ODT (but within the
range of validity of the model), and for q-modes such that q > q0 we find finite �q and
�q � (�c � �)�1=2. The propagation of the surface imprint (pattern) of q-modes with q < q0
into the bulk can persist to long distances, in contrast to surface patterns with q > q0 which
decays off close to the surface. This is seen by noting that q-modes in the band 0 < q < q0 are
equally “active”, i.e., these modes decay to zero very slowly in the vicinity of the ODT as
y !1: �q � (�c � �)�1=2 and �q is finite.

The boundary conditions for �q at y = 0 are

�00q(0) +
�
q2
0
� q2

�
�q(0) = 0 (5)

�q=h +
�
q2
0
� q2

�
�0q(0) + �000q (0) = 0

The amplitude Aq is found to be Aq = ��q
�
2Im(kq)

p
�h
�
�1

. Thus, the copolymer response

diverges upon approaching the critical point as (N�c �N�)�1=2.
Although our analysis allows for arbitrary surface patterns, let us consider first the simple

case of a surface attractive for the A block, but which has a single localized stripe, or surface
“disturbance”, preferentially attracting the B block (see Fig. 1 (a)). Far from this stripe
A-blocks are adsorbed on the surface and the copolymer concentration profile has decaying
lamellar order as was explained above. However, a non-trivial BCP morphology appears close
to the stripe, reflecting the adsorption of B monomers. This behavior is indeed seen in Fig. 1
(b), where the grey scale is such that A-rich regions are white, while B-rich are black. A
somewhat different situation is shown in Fig. 2 (a), where the black stripe is still preferential
to the B monomers, but the rest of the surface (in grey) is neutral, �(x; z) = 0. In this case no
lamellar ordering parallel to the surface is expected. In (b) curved lamellae appear around the
surface disturbance, optimizing interfacial energy. These curved lamellae are exponentially
damped both in directions parallel and perpendicular to the surface. Clearly, the ordering in
the perpendicular and lateral directions are coupled.
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Figure 1. A BCP melt confined by one patterned surface having a central stripe of width 5d 0. In (a) the surface
located at y = 0 has a localized “surface disturbance” of � = 1=2 inside the black stripe, favoring the adsorption
of the B monomers, and � = �1=2 outside of the stripe (favoring A monomers). The morphology in the x-y plane
is shown in (b), where farther away from the stripe (large y � d0) the lamellae have a decaying order, while
close to the surface (y . d0) the lamellae are distorted to optimize the interfacial energy. The system is above
the ODT with �N = 10. Lengths are scaled by d0, the lamellar periodicity. B-rich regions are mapped to black
shades and A-rich to white. In all plots we set the monomer length as a = 1, and choose in Eq. (1) c = u=� = 1,
R2
g
= 1

6
Na2 and N = 1000 to give � ' 0:59q20.
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Figure 2. Same as in Fig. 1, but here the surface area outside of the stripe is neutral to polymer adsorption,
� = 0. The B monomers are found close to the stripe, inducing a curved lamellar structure that decays away from
the surface.

A different scenario is presented in Fig. 3, where the surface has a sinusoidal variation in
its affinity for the monomer type: �(x) = �0 + �q cos(qx), with periodicity d = 2�=q and
average attraction h�i = �0 > 0 for the B monomers. The modulated surface field of
amplitude �q induces lateral order, with A- and B-rich regions near the surface. Near the top
of the figure (y � d0), only lamellar-like ordering is seen, because the �q (q > 0) term decays
faster than the �0 (q = 0) term.

Using this formulation, any two-dimensional chemical pattern �(x; z) can be modeled. For
surface feature of size larger than d0, the characteristic copolymer length, the chemical surface
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pattern can propagate via the BCP melt into the bulk. To demonstrate this we take in Fig. 4 (a)
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Figure 3. Copolymer morphology for a melt confined by one surface at y = 0 having a chemical affinity of the
form �(x) = �0 + �q cos(qxx), with qx = 5

4
q0 and �0 = �q = 0:1. The lamellar-like order due to the �0 term

persists farther away from the wall than the lateral order due to the �q term. The Flory parameter is �N = 10:4.

a surface pattern in the shape of the letters ‘MRS’. Inside the letters � > 0 (B monomers are
attracted), while for the rest of the surface � = 0 (neutral). The resulting patterns in the x-z
planes are shown for y=d0 = 0:5, 2 and 3:5 in (b), (c) and (d), respectively. An overall
blurring of the image is seen as the distance from the surface is increased. The fine details
(e.g. sharp corners of the letters) disappear first as a consequence of the fast decay of high
surface q-modes. The second point to notice is the A$B interchange of monomers that
occurs for surfaces separated roughly by a distance of (n+ 1

2
)d0, for integer n. This monomer

interchange mimics the formation of lamellae in the bulk, although the temperature here is
above the ODT. In addition, the appearance of lateral order is clearly seen, as lamellae form
parallel to the edges of the letters.

We briefly mention the case where a BCP melt is confined between two flat parallel
surfaces located at y = �L. The calculation of the response functions f�qg can easily be
generalized to handle two confining surfaces by including the appropriate boundary
conditions in Eqs. (5). If the distance 2L is very large, the copolymer orderings induced by
the two surfaces are not coupled, and the middle of the film (jyj � L) is disordered, � � 0.
Decreasing the film thickness to a distance comparable to the copolymer correlation length
results in an overlap of the two surface fields.

Complex three dimensional morphologies can also be achieved by using only one
dimensional surface patterns, if the two patterns are rotated with respect to each other. Such
an example is shown in Fig. 5, for two surfaces at y = �L = �d0 with perpendicularly
oriented stripes. The surface patterns are shown in (a) and (c), while the mid-plane
checkerboard morphology (y = 0) is shown in (b). In the next subsection we will show results
for the more complicated situation of BCP melt below the ODT temperature, where the bulk
phase is lamellar.
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Figure 4. Propagation of surface order into the bulk BCP melt. (a) The surface at y = 0 is taken to have a pattern
in the shape of the letters ‘MRS’. Inside the letters (� = 1) the field attracts the B monomers, while the rest of the
surface is neutral (� = 0). In (b), (c) and (d) the morphology is calculated for x-z planes located at increasing
distances from the surface, y=d0 = 0:5, 2 and 3:5, respectively. Note that in (b) and (d) black (white) shades can
be mapped into white (black) shades in (c), because their y-spacing is a half-integer number of lamellae. The
Flory parameter is �N = 9:5.
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Figure 5. Creation of three dimensional structure in a thin BCP film as a result of two one-dimensional surface
patterns. (a) and (c) are stripe surfaces located at y = �L = �d0 and y = L = d0, respectively. The mid-plane
(y = 0) ordering is shown in (b) and is created by a superposition of the two surface fields. �N = 9.

Below ODT

The prevailing bulk phase below the ODT has an inherent lamellar ordering. This order
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interferes strongly with the surface induced order, and it is not a simple task to obtain
order-parameter expressions as a function of arbitrary surface pattern. Mathematically, the
difficulty lies in the fact that the �4 term in the free energy cannot be neglected. As in the case
above the ODT, we expand the free energy to second order around the bulk phase, only this
time the bulk phase is lamellar. As we will see, this approach has also been used to describe
defects in bulk phases such as chevron and omega-shaped tilt grain boundaries [26, 27]. We
consider first a BCP melt confined by one stripe surface whose one dimensional pattern is of
the form:

�(x; z) = �q cos(qxx) (6)

The surface periodicity dx = 2�=qx is assumed to be larger than the bulk lamellar spacing
d0 = 2�=q0, dx > d0 throughout the analysis. The system reduces its interfacial energy by
trying to follow the surface modulations, and an overall tilt of the lamellae follows regardless
of the fine details of chain conformations near the surface. The tilt angle with respect to the
surface is defined as � = arcsin(d0=dx) [20]. Consequently, we use the single q-mode
approximation to describe the bulk phase �b

�b(x; y) = ��q cos(qxx+ qyy) (7)

where qy � q0 sin(�) and qx = q0 cos(�). All surface effects are contained in the correction to
the order parameter: Æ�(r) = �(r)� �b(r). We choose the in-phase one harmonic form for Æ�

Æ�(x; y) = g(y) cos(qxx) (8)

with a y-dependent amplitude g(y). This correction Æ� is expected to vanish far from the
surface, limy!1 Æ� = 0, recovering the bulk phase. The free energy in Eq. (1) is expanded to
second order in the small correction Æ�, �b � Æ�. We integrate out the x dependence and
retain only the y dependence. Then, use of a variational principle with respect to the function
g(y) yields a linear differential equation:

[A� C cos(2qyy)] g +Bg00 + g0000 = 0 (9)

where A, B, and C are parameters depending on the tilt angle � as well as on the temperature
[26]. This equation is similar to the Mathieu equation describing an electron under the
influence of a periodic one-dimensional potential, and has a solution in the form of a Bloch
wave function.

The main effect of the surface stripes on the melt is to introduce a tilt of the lamellae. This
effect is seen in Fig. 6, where the surface periodicity dx (in units of d0) is chosen to be 1 in (a),
and induces a perpendicular ordering. Larger ratios of dx=d0 cause a tilt ordering. In (b)
dx=d0 = 3=2 and in (c) dx=d0 = 3, and the deviation from a perfect lamellar shape can be
seen near the surface.

Tilt Grain Boundaries

Our approach can be used to describe defects in bulk systems as well. A tilt grain boundary
forms when two lamellar bulk grains meet with a tilt angle ' between the lamellae normals.
For symmetric tilt grain boundaries, the plane of symmetry is analogous to the patterned

T8.1.7



0 1 2 3

1

2

3
(c)

X/d
0

Y
/d

0

0 1 2 3

1

2

3
(b)

X/d
0

Y
/d

0

0 1 2 3

1

2

3
(a)

X/d
0

Y
/d

0

Figure 6. BCP melt confined by one stripe surface of periodicity dx > d0 below the ODT. The surface stripes
are described by �(x) = �q cos(qxx). Tilted lamellae with respect to the surface at y = 0 are formed and
adjust to the surface imposed periodicity. Far from the surface the lamellae relax to their undistorted d 0 spacing.
The mismatch ratio dx=d0 is 1 in (a) yielding no tilt, 3=2 in (b) and 3 in (c). The Flory parameter is taken as
�N = 10:6 and �q = 0:08.
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Figure 7. Symmetric tilt grain boundary between two bulk lamellar grains. The angle between lamellae is
determined by external boundary conditions at y ! 1 and is chosen here to be ' = 120 Æ. The morphology is
invariant in the z direction and �N = 11.

surface in a thin BCP film, and similar form of a correction field Æ� can be used, see Fig. 7.
The upper half plane y > 0 thus corresponds to Fig. 6 (b) and (c).

The correction is small in the so-called chevron region (small tilt angle '), but becomes
important for larger tilt angles [26] where the grain boundary has the form of the letter Omega.
Close to the ODT point the modulations at the interface become long range and persist into
the bulk up to large distances. One of the differences between tilt grain boundaries and tilt
induced by surface field is that in the former case there are no real surface fields. The tilt angle
between adjacent grains is determined by constraints imposed far from the y = 0 interface.
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CONCLUSIONS

An analytical expansion of the free energy, Eq. (1), can be used to obtain order parameter
expressions for a BCP melt confined by one or two flat surfaces whose pattern has arbitrary
(two dimensional) shape. The thin film morphology can also have a complex three
dimensional form even if the two surfaces have one dimensional patterns with different
orientations with respect to each other, see Fig. 5. A BCP melt close to and above the ODT
point shows decaying oscillations of the local concentration towards the bulk disorder value.
Our analysis shows that close to the ODT large surface spatial features can be transferred into
the BCP bulk far from the surface, while small surface details are greatly damped.

Below the ODT, confinement of the melt by patterned surfaces with periodicity dx > d0
leads to a formation of a surface layer characterized by lateral periodicity of dx, and the
lamellae relax to their natural periodicity d0 farther from the surface. The proposed
mechanism is a tilting of the lamellae. We show that the resulting pattern have similar
characteristics to bulk domain walls (tilt grain boundaries).
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