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Discrete agueous solvent effects and possible attractive forces
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We study discrete solvent effects on the interaction of two parallel charged surfaces in ionic aqueous
solution. These effects are taken into account by adding a bilinear nonlocal term to the free energy
of Poisson—Boltzmann theory. We study numerically the density profile of ions between the two
plates, and the resulting interplate pressure. At large plate separations the two plates are decoupled
and the ion distribution can be characterized by an effective Poisson—Boltzmann charge that is
smaller than the nominal charge. The pressure is thus reduced relative to Poisson—Boltzmann
predictions. At plate separations below20 A the pressure is modified considerably, due to the
solvent mediated short-range attraction between ions in the system. For high surface charges this
contribution can overcome the mean-field repulsion giving rise to a net attraction between the plates.
© 2001 American Institute of Physic§DOI: 10.1063/1.1331569

I. INTRODUCTION water molecular diameters, the effective interaction between
them is modified considerably. Figure 1 shows the correction
Aqueous ionic solutions are abundant in biological andto the 1£r potential between two Naions in water. This
chemical systems. Often they play a prominent role in detereffective potential was calculated, using a simulation
mining the properties of charged macromolecules that argchemé’ for a bulk NaCl solution of concentration 0.55 M,
immersed in them.The mean field theory of electrolytes, at room temperature. Note that the short-range potential, re-
known as Poisson—BoltzmariRB) theory and its linearized maining after the subtraction of the Coulomb interaction, is
version, Debye—FHekel theory;® are known for many de- oscillatory and predominantly attractive.
cades and have proved to be useful and important tools. PB The possibility to calculate the effective potential be-
theory was applied in the study of colloidal dispersiéfis, tween ions in water leads naturally to the model depicted
biological membrane%, synthetic and  biological schematically in Fig. 2. The water is treated as a continuous
polyelectrolytes:'®and complex systems such as DNA-lipid medium, with a dielectric constaat In addition to the elec-
complexes: Nevertheless, PB theory is known to have im- trostatic interaction, a short-range interaction is included be-
portant limitations. Being a mean field theory, ion—ion cor-tween ion pairs. The short-range potential, denotedi;&s),
relations are ignored. In addition, the finite size of ions isis taken as an input to the modélom simulation), and can
neglected. These effects have been studied extensively usinggeneral depend on the ion spediesdj. For example, the
various approachéssuch as liquid staté'® and density potential shown in Fig. 1 is used betweenNaa'pairs.
functional’ theories, simulation¥~*° field theory?"**and  The effective potential is calculated in a bulk solution and
other modifications to the PB theofy. 2 thus depends only on the ion—ion separation. However, sys-
Most of the studies of corrections to PB have concentems containing charged surfaces can lead to inhomogeneity
trated on the so-called primitive model, where ions are aser anisotropy in the ion distribution.
sumed to interact with each other through the electrostatic The model described above was suggested in Ref. 28,
interaction and a hard core steric repulsion. Although thisand was studied in planar geometry using the anisotropic
model can describe many effects that are neglected in PBypernetted chaitAHNC) approximatiof* in Refs. 29-32.
theory, it still neglects some physical features that are presemy Ref. 33 we presented a simplified approach to the same
in real systems. Most notably, the aqueous solvent is treategiodel. In this latter approach, a term accounting for the
as a continuous medium, whereas in reality ions interact witshort-range solvent-mediated ion—ion interaction is added to
discrete solvent molecules. the PB free energy. The formalism obtained in this way is
Solvent effects are strong especially in water, becausgimple although less accurate than the AHNC approxima-
the polar water molecules interact very strongly with ions.tion, and in particular neglects ion—ion correlations. On the
The most significant result is that the electrostatic ion—iorother hand, numerical calculations can be done fairly easily,
interaction is reduced by a facter-78 at room temperature, and are feasible in nonplanar geometries. In addition, various
due to screening by the dielectric environment. However, theinalytical results can be obtained, and the discrete solvent
discreteness of the solvent results in a more complicated pieffects can be readily understood in terms of basic physical
ture. When ions approach each other at separations of a fegtinciples. In the present paper, which can be regarded as a
follow-up of Ref. 33, we use the same formalism to study
3Electronic mail: yorambu@post.tau.ac.il discrete solvent effects on interacting charged and planar
YElectronic mail: andelman@post.tau.ac.il plates.
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4 T | Il. THE MODEL
: ) A. Free energy
£ 3 i The free energy of the system can be written as a func-
o tional of the local ion densities, consisting of the usual PB
'-E- 2r ] term and a hydration correction term. Assuming that the
D boundary conditions are of fixed charges, the following ap-
° 1- . T proximated form for the free energy can be obtaified:
o A
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FIG. 1. Short-range effective potential between'Nan pairs, adapted from whereW is the electrostatic potentlaj are the ion densities,

Ref. 27 using simulations in a bulk NaCl aqueous solution of concentration h h he diel
0.55 M, at room temperatur@ef. 35. The potential is shown in units of g are t eir respectlve Charges, is the dielectric constant,

keT, as a function of the distance between the ion centers. The CoulomkgT is the thermal energy, and the potentia} is defined
interaction is subtracted to show only the short-range hydration effect due tpelow. The bulk ion densmesb, are determmed by the

the water molecules. For ion—ion separations below 2.9 A a hard core 'nterfugaCItleS L= eXP(ﬁM)/)\T, where W, are the chemical
action is taken.
potentials,\1 is the de Broglie thermal wavelength, and
B=1/kgT. Note that the simple PB relatiory, ;= {¢; is al-

In the present work, following Refs. 29—33, we do not tered with the inclusion of hydration interactions, as will be
take into account an effective ion—surface potential. A nu-explained below(Sec. I1B. A detailed discussion of the
merical calculation of such a potential, using a realisticvarious approximations involved in E{l) is given in Ref.
model for the water molecules, is currently not available.33. Here we shall briefly discuss each of the terms, and out-
Moreover, we neglect the dependence of the effective iondine the way in which Eq(1) is obtained.
ion potentials on the ion positions relative to the surface.  The first three terms in Eql) form the usual PB ex-
Other limitations of the current model are discussed in Refpression for the free energy. The first term is the electrostatic
33. Despite these approximations, the model is a good starfree energy and the second term is the entropy of the ions.
ing point for studying qualitative effects of the discrete sol- The electrostatic potential is a functional of the ion den-
vent. sitiesc;, and is determined by the Poisson equation and the

The outline of the paper is as follows: Section Il reviews boundary conditions imposed by the surface charges. Instead
the model and discusses its application to two charged anaf writing this dependence explicitly in the free energy, it is
planar plates. In Sec. lll we discuss the corrections to the PBonvenient to add a third term @, containing a Lagrange
density profile. In Sec. IV we obtain expressions for the in-multiplier A(r).
terplate pressure and derive a generalized contact theorem. The fourth term in Eq(1) accounts for the hydration
The resulting pressure curves are studied numerically anihteraction, and is quadratic in the ion densities. The
analytically in Sec. V. Finally, Sec. VI offers some conclud- weighted potentiall;; is defined as
ing remarks. The technical details in the derivation of the
pressure are presented in the Appendix. Ujj=1—e Auilr=rD, 2

B ?/” o @ h e=78 @

@ S0 @ @ FIG. 2. Schematic description of the

c{O~<> OQ—O T @ pair potential model. An aqueous ionic

- - u (r : solution confined between two
c;) @ oo QO’O - charged plates i@ is replaced by

oop D‘Ci &Oﬂ o | Y ions in a continuum dielectric medium

: : : with electrostatic and short-range in-

_;O*’

teractionsu;; (r) =uj;(|r]) in (b). The
coordinatesz=0 and z=d designate
the contact positions of the ions with
the plates. The distance of closest ap-
proach is equal tal, /2, whered,, is
the hard-core diameter of the ions.
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where u;; is the nominal short-range hydration interaction In order to simplify the equations further, the interac-
between ions of speciesand] (Fig. 1). To obtain Eq(1) we tions between the different pairs of ion species can be taken
first treaf® the short-range interactiom; using a virial ex-  to be equal, i.eU;;j(r)=U, . (r)=U(r), whereU . is the
pansion of the grand canonical potential, keeping terms up tweighted potential between tHpositivel counterions. The
the quadratic order. The electrostatic interaction is therexact choice ofU, andU__ is expected to be of only
treated exactly as in PB theory, using a mean field approximinor significance, as the co-ions are repelled from the sur-
mation for the electrostatic potentidl. As an alternative face neighborhood and only the positive counterions
approach Eq(l) can be obtained from a field theory expan- reach high densities there. From charge neutrality we
sion of the grand partition functioff. have cp=c,,=(z_/z )c,_ and similarly (=,
=(z_/z,){_, where the relation betweer, and ¢ will be
determined later.
B. Density equations Due to the one-dimensional symmetry imposed by the

. ] . o charged and planar planes, the integration in @fcan be
The density profiles are obtained by minimizing the freeperformed over th&—y plane to obtain

energy() with respect to the ion densitie€s. The third term o
in Eq. (1), containing the Lagrange multipliér(r) allows us c.(2)=¢. e hen¥ ex;{ _J' o(z)B(z—2)dz'|, (7)
to regard the densities;(r) and the electrostatic potential - - 0

W (r) as independent fields, and require thiahas an extre-
mum with respect to the three fields, ¥, andA. Requir-
ing that(Q) has an extremum with respect Yo gives

wherec=c, +c_ is the total ion density an®(z) is the
effective interaction between two layers of ions, expressed as
an integral ofU(r) in the plane of constart. Using cylin-

€ drical coordinates,
AZ E\P, (3) ©
B(Z)=27TJ'0 p dpU(\Z%+ p?). (8

and the extremum condition with respectdothen gives

ci(r) The Poisson equatiofb) reads
In ——=+, fcj(r’)Uij(r—r’)d3r’+ﬁei\lf(r)=0, 5
gi i ﬂ_ 4me ehez ¥ _ o—pez, ¥
(4) 42 T e {z.( € )
where relation3) has been substituted to expressn terms §
?f . This equation is supplemented by the Poisson equa- XeXF{—f c(z')B(z—2') dz' |. (9)
ion, 0
X A Equations(7) and (9) are supplemented by the following
VP =—— EI &iC;i . (5 boundary conditions:
Since Eq.4) is an integral equation, thg cannot be written d_q} =_ 4_770; d_q, =0 (10)
as a simple function o. Therefore, a single equation for dz z=0 € dz z=d/2

W, analogous to the PB equation, cannot be obtained, angince the problem with two plates of equal chargea
we are left with the two coupled equatio@® and(5). These  gnqz=d is symmetric about the midplare= d/2.

equations should be solved together to obtain the electro- Finaly, the relation betweeg and the bulk densitg,
static potential and density profiles. For—0, Eq.(4) re-  can be obtained from E¢7). We imagine that the two plates
duces to the Boltzmann equatiof={; exp(-BeW). Inthe 41 immersed in a bath of electrolyte. In the region outside
bulk ¥ =0, leading to the relation, ;= {; . Combining these  the plates an equation similar to E() holds, where the

relations with Eq.(5) reproduces the PB equation, integration inside the exponent is performed in the external
A region. Far away from the plates, #sbecomes zera;, and
VAW =— - > chiee et (PB). (6)  c_ assume their asymptotic constant, bulk values. The inte-
I

grand inside the exponential can be replaced by
Equations(4) and (5) were solved for a single charged —(1+z,/z_)c,B(z—2') leading to the result
and planar plate in Ref. 33. The treatment of two parallel
Cp={¢ ex;{ -

V4
1+ =
Z

plates is very similar, and is outlined below for complete-

ness. The system is shown schematically in Figp).2The

plate positions are designated by 0 andz=d, using the where
convention that these are the coordinates of closest approach o
of the ions to the platefsvhile the potentialsij;(r) are mea- Btzf dz B(z)zf d® U(r) (12
sured from thecentersof the iong. The two plates are nega- ’°°

tively charged, each one with a uniform surface chasge is also equal to B,, the second virial coefficient. The limit
No discreteness of surface charge is taken into account in th&,c,,— 0 is the limit in which the short-range interaction be-

BiCp|, (11

present work. We assume an electrolyte of valencyz_, comes negligible in the bulk. In this limit the relation be-
i.e., a solution of positive and negative ions of chargesween the bulk density and fugacity of Ed.1) tends to the
e.=*z.e, whereeis the electron charge. ideal gas relatiore, = £=exp(Bu)/\3.
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FIG. 4. Counterion density profilesolid line) obtained from numerical so-
lution of Eq. (7) with the hydration interaction as of Fig. 3, plotted on a
semilog plot. The bulk ion density i5,=0.025 M and the surface charge is
|o|=0.333 C/md=1 e/48 A2, The dielectric constant is=78 and the tem-
perature is 298 K. The distance between the plates=i§0 A. The density
profile is symmetric about the midplane st 25 A. The dotted line shows

. . . the corresponding density profile obtained from the PB equation. The sym-
In the next section we will concentrate on a symmetric 1:1bols (X) show the density profile obtained in the AHNC approximation,

electrolyte, where Eqg7) and(9) take the form, using the same parametdfef. 35.

FIG. 3. The effective layer-layer interacti@®(z) in a planar geometry, as
obtained from the potential of Fig. 1 using E&) (solid line). The oscillat-

ing structure of the radial potential shown in Fig. 1 is apparent in the sec
ondary minima ofB(z).

c.(z)=(e PV exp{ - fdc(z’)B(z— z')dz'
0

energy. It is equal to about 7 A in water at room temper-
ature. In terms of the Bjerrum length=e/27lg|o| and
)\D:(SWCbIB)illz.

The inclusion of the hydration interaction introduces ad-
ditional length scales in the system. For the interaction of
Figs. 2 and 3, the range of the interactidgq is approxi-
mately 7 A, over twice the hard core diameth=2.9A.
The strength of the hydration interaction is characterized by
the second virial coefficier,=B,/2, with B;=— (7.9 A)

Cp= ¢ exp(—2B;cy). (14)  as is calculated from Eq12).

dZ\I’_STre ) v
F—Tgsmrtﬂe )

xexp{—fdc(z’)B(z—z’)dz’ (13

0

and

C. Definitions and parameters Il DENSITY PROFILES

For the short-range ion-ion potentialr) we use the . . .
effective potential between Na-Na'ion pairs, shown in Equations(7) and (9) are a set of three nonlinear inte-
Fig. 1. For ion-ion separations below 2.9 A a, hard core ir]_grodifferential equations. We treat them numerically using

teraction is assumed. Figure 3 shows the effective Iayer—an iterative scheme, based on the assumption that the pos-

layer interactionB(z), as was derived from this potential tive ion density profile is dominated by the electrostatic in-

using Eq.(8). This effective interaction is mostly attractive, :eralctlon. Wte_ sta:t Vtvr']th theﬂPB profile I?rf\d Call; u;);\te |(';era-
asB(z) is negative on most of its range, and has a characsve" corrections to this profi'e, as result from @) an

teristic range of approximately 7 A. The structure Bfz) (9). For a 1:1 electrolyte we iteratively solve the equation,
reflects the oscillatory behavior of(r). 2™ gre

It is useful to introduce the length scales characterizing 5= Tg”Sinf(ﬁe‘F(”))
the PB density profile.The Gouy-Chapman lengthde- dz

fined asb=ekgT/(2me|o|), characterizes the width of the d

diffusive counterion layer close to a single charged plate Xexr{—f c""(z")B(z-z")dz' |, (15
with a surface charge density, in the absence of 0

added salt. The Debye-Huckel screening length where the superscript stands for thenth iteration,
Ap=(87c,e?/ekgT) 2 equal to 19.6 A forc,=0.025M ¢ ()= g Fer™

at room temperature characterizes the decay of the screened = </

electrostatic interaction in a solution with added salt. The d

strength of the electrostatic interaction can also be expressed xex;{ - fo c"N(z)B(z—2') dz’' |, (16)

using theBjerrum length Iz=e?%/(ekgT). This is the dis-
tance at which the electrostatic interaction between two uniand the zeroth order densitie§”) are taken as the density
charges in a dielectric medium becomes equal to the thermairofiles generated by the PB equati@h The boundary con-
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ditions (10) are satisfied by the electrostatic potential in all 14 - T | T
iterations. The solution converges after several iterations. It

is interesting to note that the first iteration captures most of

the effect. This observation can lead to various analytical
results, as shown in Ref. 33 for a single plate.

In the following sections we will concentrate on the
pressure between the plates. First we discuss briefly th@- +
modification to the PB density profiles. Let us begin by con- =<
sidering a large plate separatidnin this case the results are O
similar to the single-plate case, singés larger than all other
length scales in the system, and we present them for com
pleteness.

Figure 4 shows the density profile of the positively
charged counterionsolid line) between two charged plates, ) ! L
with d=50A. Only one-half of the system is shown, since 0 5 10 15 20 25
the profile is symmetric around the midplane. The surface Z [A]
charge, |o|=0.333 C/m corresponds to approximately
48 A? per unit charge. This is a typical high surface chargeriG. 5. The ratio of the positive ion density obtained from E&.and the
obtained for mica plates. It corresponds to aGouy—Chapmawllus4gt3}£§in?gasl‘:]<;rg Fl’iﬁgthgolry,c /frc%r Siu;];iZi )Ezhaggﬁ;Oiii’os C;:Z
length b=1.06A, at a tempera_ltur(_e of 298 K, with=78. . 0.0333 C/Mh=1e/480 R (dottéd ling. All other parameters aI”e as in
The electrolyte bulk concentration is 0.025 M, correspondingg;g 4.
to a Debye—Hakel screening lengthp=19.58 A. The den-
sity profile is compared to the result of PB theqdotted
line). considered. In this cade=1 A<d,,4=7 A, so a deviation

The main effect is that the short-range attraction drawsrom the single plate curve is expected whelf2=dpyq
additional counterions to the vicinity of the charged plate.~7 A. The ratioc./c?® is shown for several plate separa-
Note, however, that the contact density remains very close tgons between 5 and 50 A. The results are very similar for
the PB density, as will be explained later. The increase of thgg=50, 35, and 20 AFig. 6a)]. In particular, note that the
counterion density near the plate is followed by a depletioncontact density remains very close to the PB value in all
further away. This can be understood in the no-salt casghree separations. This is a result of the generalized contact
since the total number of counterions is fixed. In our case théheorem, derived in Sec. IV. For smalldr equal to 5 and
salt concentration is low. The Debye—tkel screening 10A [Figs. 6b) and &c), respectively the behavior is dif-
length is large compared to the Gouy—Chapman length angrent, and in particular the contact density deviates from the
compared to the range of the short-range interaction, so theB value. The effect of decreasidgvas found to be similar

salt has a minor effect. for smaller surface charge.g., 0.1 C/ri) and for salt con-
The counterion density profile is also compared with re-centration up to 0.1 M.
sults of the AHNC approximatiofi that were obtained using The most important effect on the density profile is that

the same short-range hydration potential symbolg. The  the ion density is depleted far away from the charged plates.
qualitative effect is similar in our model and in the AHNC. When the two plates are highly separated from each other the
Specifically, both density profiles follow the PB density ion density can be described, far away from the plates, using
curve for the first few angstroms from the plate and show an effective PB surface charge. This effective charge was
considerable decrease in the positive ion density, relative toalculated in Ref. 33, and is smaller than the nominal charge
PB, starting at a distance of about 5A from the plate. Thefor example, for the surface charge used in Fig. 4 it is
maximal decrease in the density is approximately 30% in ousmaller by a factor of-3.8). The reduced density leads to a
model and almost 50% in the AHNC profile, both relative toreduced pressure, relative to PB, as will be explained in the
the PB profile. following sections.

The effect of the short-range ion—ion interaction
strongly depends on the surface charge. This is demonstrated pressURE EQUATION AND CONTACT THEOREM
in Fig. 5. The ratio of the counterion density and its PB
value,c,/c?B is shown for three values af. The effect of The pressureP;, in the region between the two plates
the hydration potential is very minor for small surface chargecan be obtained by differentiating the free enefgywith
(lo|=0.0333 C/M=1e/480 A?), where the ratic,/c7®is  respect to the plate separatidn
approximately 2% at its maximum, and considerable for a 50
surface charge of 0.333 Cfm1 e/48 A2, where it reaches Pin=——.
approximately 40%. ad

As the plate separation decreases, the modificatichto To computesQ we can imagine that a “slice” of widthsd
is expected to remain similar to the single plate case as long inserted at some positiay between the two plates. Add-
asd/2 is large compared tb and tody, 4. This can indeed be ing up all the contributions té(), and using Eq(7) and the
seen in Fig. 6, where a high surface charge, as in Fig. 4, iboundary condition$10) we obtain

(17)
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FIG. 6. The ratio between the positive ion density obtained from(Bcand its PB value, for plate separatiahequal to(a) 50 A (solid line), 35 A (dashed
line), 20 A (solid line), (b) 10 A, and(c) 5 A. All other parameters are as in Fig. 4. Each curve is shown between the platedaand the midplane
z=d/2.

e [d¥)\2 The equality of these two expressions for the pressure results
Pin:kBTZi Ci(zo) — ﬁ(E) in the generalized contact theorérif,
%0
2w
Z d dB _ 2
—kBTZ 0dzf dz’ ci(z)cj(z’)E(z’—z). E. ci(0)= e 7 +Z ci(d/2)
ij 0 Zy

a2 (d dB
(18 =Y dzf 02’ ¢(2)6)(2 ) (2~ 2).

This result is correct for any combination of ion specigs iy Jo di2 z
assuming the same short-range interactignbetween dif- (23)

ferent ion pairs. The full derivation is given in the Appendix.
The pressure is equal throughout the plate spacing andhe very small relative change of the contact density, com-
therefore, independent on the choicezgf pared to PB theory, at large plate separations can be under-
The net pressur® between the plates is the difference stood from this result. We consider first the case of high
between the pressure inside and outside the plates. The latiuiirface charge, where the Gouy—Chapman length is small
is equal throughout the region outside the plates. In particuiecompared to the Debye-ldkel screening lengthh<\. In
lar, it is equal to the bulk pressuf®,, SO we have this case, the second and third terms on the right-hand side of
P=Pin— Ppuk- (19  EQ: (23 become negligible compared to the first term when
) _ o d>Db,dpyq, Wheredyyq is the range of the hydration interac-
To obtainPy,, we note that an equation similar to H48)  tion. The contact ion density is then dominated by the posi-

holds in the bulk, with constant electrostatic potential andijye ion density, and is very close to the PB value. When
with ¢; constant and being equal to the bulk densities. FOfhere are only counterions in the solution add-% (or

the case of a 1:1 electrolyte, we find equivalently, in the case of one isolated platee have ex-
Pouk=2kaTCo(1+ByCp). (20) actly, as in PB theory,

SinceB; is negative, the bulk pressure is lower than its PB 27

value. Note that in the case of no added &, =0. c.(0)= Taz (one plate, no salt (29

Expression(18) assumes a particularly simple form if we
setz, to zero, namely, on one of the plates. Then the third

term in (18) vanishes and the second term is fixed by the It bis not small F:ompared t@p, the correction to the
I - contact density is still small for large enough plate separa-
boundary conditions, giving

tions, assuming that the hydration interaction is negligible in
27, the bulk, i.e.,— B;c,=—B,/(8l B)\%)<1. Whend>\ and
P:kBTEi ¢i(0)— < 7 Pouk- (21 d>dyyq4, the coupling between the two plates is negligible
and Eq.(23) becomes
Alternatively, if we choosez, at the midplanez=d/2, by

symmetry the second term {i8) vanishes and the pressure 27
is expressed as > ci(0)= TGZ+ Phbulk - (29
I
dr2 d
PZkBT? C‘(dlz)_kBTiEj 0 ded/ZdZ ci(2)¢;(z') The only difference in this expression relative to the PB con-

tact density is the change in the bulk pressure. This change is
negligible if the hydration interaction is small enough in the

dB
X_(Z,_Z) - Pbulk- (22) bulk

dz
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|
3]

) 4 6 8 10 12 14
d[A] d [A]

FIG. 7. (a) Pressure between two plates with surface chéwgie 0.333 C/ni=1 e/48 A?, as a function of the plate separatidnon a semilogarithmic plot.

All the parameters are as in Fig. 4. The solid line shows the overall preBsaveained from Eq(22). The dashed line shows the contributiBp, resulting

from the midplane density and the dotted line shows the PB pregblifEhe same curves on a linear scale, in the region where the overall pressure becomes
negative, i.e., attractive.

For smallerd, the integral in(23) can contribute to a is the integrated short-range force acting between ion pairs in
significant change in the contact density relative to PBthe two halves of the system. The third term is the change in
theory. This can be seen in Fig. 6, whdre&\y, at plate the bulk pressure relative to PB theory, due to the inclusion
separations below- 10 A. of a second virial coefficient in the bulk equation of state.

Some simple observations can be made immediately
from Eq. (27). These observations will be useful in the next

V. PRESSURE CURVES subsection, where the numerically calculated pressure curves
. are presente¢Figs. 7 and & For now, let us assume that the
A. Pressure beyond Poisson—Boltzmann thirdpterm in qu.(27) is negligible as compared to the first

We would like to compare the pressure from our modeltwo. Of these two terms, the fird®®,,, is linear in the density
with the PB pressure, which can be written as follows: whereas the second teriRy, 4, is quadratic. As a result, the
relative importance oP,, and P4 depends on the plate
Ppg=ka T2 [Cpg;(d/2)—cy,], (26)  separatiord. At larged the density in the midplane region is
I

small, so thaP,q<P,. The main correction to the PB pres-
wherecpg;(d/2) is the PB density of théth ion species at sure(26) then comes from the change of the midplane den-
the midplane. Using Eq€22) and (20), the pressure in our Sity, ¢(d/2)—cpg(d/2). Far away from the two plates, the
model can be written as the sum of the following three terms:

P= Pm+ Phyd_ 2kBT Bth

=kgT>, [ci(d2)—cp,]

di2 d dB
—kBTZ dzf dz’ ci(2)ci(z') 4z (z' —2)
7 Jo di2 dz

— 2kg TB(CE. (27)

A symmetric 1:1 electrolyte is assumed for simplicity
throughout this section. The first term in EQ7),

Pn=ksT>X [ci(d2)—cp,] (28)

is similar in form to the PB pressur@6), but the midplane °
density in Eqs(28) and (26) can be different. The second d [A]

term in Eq.(27), which we denote as the hydration pressure,
9.27) y P FIG. 8. The repulsive pressure between two plates with surface charge

dr2 d dB |o|=0.119 C/m=1€/135 A2, as a function of the plate separatidnAll
Phyd= — kBTE dzf dz’ Ci(z)cj(z’)—(z’ -2) other parameters are as in Fig. 4. The solid line shows the overall pressure
ij Jo dr2 dz P, the dashed line shows the contributiBp, of the midplane density, and
(29 the dotted line shows the results of PB theory.
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FIG. 9. Comparison between the pressure obtaiaedh our model andb) in the AHNC approximatior(Ref. 35, using the same short-range hydration
potential (solid lines. All the parameters are as in Fig.([#]=0.333 C/md=1 e/48 A?). The pressure is shown as a function of the plate separdtién
semilogarithmic scale is used in the main plots and a linear scale is used in the ingatshéndotted line shows the PB pressure(dnthe dotted line shows
the pressure obtained in the AHNC approximation when the ion—ion interaction includes only the hard core and the electrostatic interactions.

system behaves as predicted by PB theory with a modified?,, ; is the dominant contribution to the deviation from PB,
effective surface charge. The midplane density is depleteglnd results in a considerably reduced pressure. At ladger

relative to PB, since counterions are attracted to the vicinitythe pressure is reduced mainly because of the change in the
of the charged plates. Hence the pressure is smaller than fidplane density.

PB theory. As the plate separation decreases and the mid-
plane density increaseBy, 4 can become important. C. Comparison with AHNC

Figure 9 shows a side by side comparison of the pressure
obtained in our modela) and in the AHNC approximaticti

The general arguments of the previous section can bé&). The same surface charge|=0.333 C/md=1 e/48 A?
verified by calculating numerically the pressure using Eg.and short-range hydration potential are used in the two cal-
(27). Figure 7 shows the pressure as a function of the plateulations. The main plots show the pressure using a logarith-
separationd for a large surface charghr|=0.333C/mt  mic scale. The insets show the pressure on a linear scale in
=1e/48 A% and bulk ion densityc,=0.025 M (solid line).  the region where it becomes attractive. The full pressure
The pressure is compared witpg (dotted ling. The contri-  (solid line) is compared in Fig. @ with the PB pressure
bution of P,,, the first term in Eq.(27), is also shown (dotted ling. In Fig. Ab) the AHNC pressurésolid line) is
(dashed ling compared with the pressure obtained using an electrostatic

The behavior of the pressure at a large range of platand hard core interaction on{gdotted ling. Since the AHNC
separations is shown in Fig(aj on a semilogarithmic plot. approximation accounts for ion—ion correlations, there are
At large d, the pressure is dominated By, as expected. It differences between the pressure curves in our model as
is considerably smaller than the PB pressure, due to the reompared to the AHNC approximation. However, a compari-
duced effective charge on the plates. At lowiethe second son of Figs. 8a) and 9b) shows that very similar qualitative
term in Eq.(27), P4, becomes dominant, and the overall and even semiquantitative effects of the hydration interaction
interaction is attractive at plate separations between 6 anare found in the two calculations.
12 A. Note that the apparent sharp decrease in the pressure at A comparison for smaller |o¢|=0.119 C/m=
a separation of approximately 13 A is artificial, and resultsl e/135 A? is shown in Fig. 10. The solid line is the pressure
from the divergence of the logarithmic scale as the pressuri our model and the dashed line is the AHNC pressure. The
approaches zero. Figurébf shows the same pressure usingdotted line shows the PB pressure. As in Fig. 9, the qualita-
a linear scale, in the region in which it becomes negativdive effect is similar in the two calculations.
(attractive. The net pressure crosses smoothly from positive  Since the AHNC approximation takes into account ion—
to negative values due to a steady increase in the magnituden correlations, the comparison allows us to assess the rela-

B. Numerical results

of the (negative Pp4. At very short separationB,, domi-  tive importance of correlations and discrete solvent effects.
nates again, and the pressure coincides with the predictionghe results shown in Figs. 7 and 9 indicate that for lasge
of PB theory. discrete solvent effects can be much larger than correlation

Figure 8 shows the effect of the hydration potential for aeffects induced by the electrostatic interaction. For smaller
smaller surface charggg|=0.119 C/md=1e/135A%. In  surface charge, as in Figs. 8 and 10, these effects are of
this case and for all surface charde;<0.25 C/nt, the  similar order of magnitude. In the AHNC approximation the
pressure is repulsive at all plate separations. The correctigoressure includes an electrostatic term due to correlations
over the PB result is much smaller than in Fig. 7, but stillbetween ions in the two halves of the system, in addition to
significant. At plate separations of approximately 5—20 A the hydration and midplane density contributions. In Fig. 10
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FIG. 10. Comparison between the pressure obtained in our nisedkdl [ ]

line) and the AHNC approximatioridashed ling for a surface charge FIG. 11. The hydration pressuRy,, as a function of the plate separatidn
|o|=0.119 Cini=1e/135 A% All the parameters are as in Fig. 8. The (solid line). All the parameters are as in Fig. 4. The dashed line shows the
pressure is shown as a function of the interplate separdtissing a semi-  approximation toPy,,q obtained by replacing the ion density in the integral
logarithmic plot. The dotted line shows the PB pressure. of Eq. (29) by the PB ion density.

d [A]

this term is of similar order of magnitude &y,4, and is the

main source for the difference between the solid lipar . . .
. W4 > .

mode) and dashed linéAHNC). For larger surface charge, and a numerical prefactor in the limit b>dpyq. The

S . parameters of the hydration interactidp,=7 A andB,=
as in Fig. 9,Py, 4 becomes much larger than the electrostatlcri 500 A2 are as defined in Sec. I C.

contribution. . . . A careful treatment of Eq(27) shows that the second
The case of divalent ions, where correlation effects are ) N
stronaer. is briefly discussed in Sec. V.D.4 and third terms also add a contribution to the pressure that
ger. y LT should be regarded as linear in the density, although this

D. Further analysis contribution is small. For large enougt the integration

1. Large plate separations range in the second term of E7) can be extended to be
As discussed above, the hydration term becomes small &€tween— and +< because B/dz has a finite range. In
large d, compared to the change in the midplane density. Irddition, all quantities can be replaced by their midplane
order to study the contribution of the midplane density to thevalues. We then find that the second terRy) and third

pressure, let us assume that the plate separatisnmuch  term of Eq.(27) give
larger than all other length scales in the systenal,,q,\p .
The two plates are then decoupled and the midplane potenti&lnyq— 2KgT Bic2= tkgTB.>Y, [ci(d/2) —CpJ[cj(d/2) —cp]

with a numerical prefactor of 1/%2 in the limit b<dpq

can be written a¥ (d/2)=2W¥,(d/2), where¥(d/2) is the !

electrostatic potential at a distand& from asingle plate.

We assume also that,>b, which is usually the case when +2kgTBCy >, [i(d/2)—cyl. (33
the surface charge density is large. At a large distance from '

the plate, the single plate profile is a PB profile, correspondThe first term is quadratic ifici(d/2)—c,] and can be ne-
ing to a renormalized surface chargg;.® The contribution ~ glected relative tdP, at larged. The second term is linear,

P, to the pressure can then be written as folléws: although small becausB,c,<1. It accounts for the small
difference between the dashed and solid lines at large
_ Sk_BT< - %) oo (30 Fig- 7@
m 2 1
rl B)\D )\D

where bgg=1/(27lg|oer|) is the effective Gouy—Chapman 2. Hydration pressure
length. A similar expression holds for the PB pressure, with The behavior ofPy,4, the hydration pressure term, can

the nomlnal Gouy—Chapman lengthused instead Obe- be understood as follows. As a zero-th order approximation,

We thus find that the ion density is dominated by electrostatics and can be
Pm  1—2bgg/N\p be—b replaced in Eq(29) by its PB value. Figure 11 shows that
p_PBZ Tb/)\Dz D P B this gives a very good approximation. Hence we can write

In Ref. 33 an analytical expression fogg—b is found. Its &2 fd , ,
general behavior is Phyd:; L dedlde Cpg(2)F(Z'—2)cpg(Z'),

B, (34

begr—b~~ Igb B2 where

Downloaded 27 Feb 2001 to 132.66.16.6. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



3280 J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Y. Burak and D. Andelman

dB(z)
dz

represents the force between two planar ion layers separate

by a distancez. The following behavior of-(z) can be in-

ferred from Fig. 3. At interlayer separatioms<d,.=2.9 A

F(2) is positive (repulsive. At larger z the value ofB(z)

increases from its large negative value atd, to zero over

a few angstroms, leading to a strongly attractimegative

F(2). A closer inspection of Fig. 3 shows th&a{z) is oscil-

latory, due to the local maxima and minima®fz). As we

shall see below, these fine details are smoothed away whe

two diffusive layers of finite thickness interact. | = TTT|SRs---o-._ ... i
The behavior ofPy 4 in Fig. 11 can now be understood 1'0 15 20

as follows. Most of the counterions are concentrated neal o

the two plates, in layers whose thickness is of order d [A]

b=1.06 A. Note thath is small Comp-amd tajhyd27 A - FIG. 12. The total(repulsive pressure between two plates with surface

Whend-=djq these two layers do nOt. mterac_t directly \_Nlth charge|o|=0.25 Cinf=1e/64 A%, as a function of the plate separatidn

each other through the short-range interaction. lons in thgsing a linear plotsolid line). Al other parameters are as in Fig. 4. The

two sides of the midplane interact with each other, leading t@ressure is compared with the PB pressure curve fitted to the large separa-

a negative(attractive Py, 4. Asd is decreased towardk,y,  tion behavior, withoeg]=0.09 C/nf=1€/180 A* (dashed ling

larger and larger ion densities come into contact through

F(2) and the magnitude of the negati¥, 4 increases ac-

cordingly. The gradual increase in the magnitudeRefq  syrface charge on the plates. As the plate separation
reflects the algebraic decay of the density profile ”ear.eaCBecreases below the range of the hydration interaction
layer. Whend decreases below-2dy,4=14 A’_ the magni- g ~7 A Py decreases and eventually tends to zero. The
tude of Ppyq increases more rapidly, as the ions in the twWopressure then coincides with the PB pressure matching the
layers interact with ions in the midplane region. nominalsurface charge. As was pointed out in Ref. 28, this
The behavior ofPy,,q changes whenl decreases below |eads to an apparent strong repulsive force when compared
dpyq- Most of the contribution tPp,q now comes from the \yith the PB curve fitted to the large separation behavior. As
interaction between the dense counterion layers near the twg, example, the pressure correspondingrte0.25 C/nf=
plates. Asd decreases these layers are separated by corrg-¢/g4 A2 is shown in Fig. 12 as a function of (solid line)
spondingly decreasing distances. The hydration pressuigsing a linear scale. The dashed line shows the PB pressure
follows roughly the structure d(z). Itis strongly attractive  crve using an effective surface charge chosen to match the
for d=dy. and repulsive ford<dyc. The fine details of |5ge d behavior of the solid line. When the two lines are
F(z) are smoothed due to the thickness of the diffusive I0Ncompared, a strontapparentrepulsive contribution is seen

layers. _ in the solid line belowd=5 A, and an attractive contribu-
As the plate separation decreases beldyy towards  +ion is seen for 5 A<d< 15 A.

contact Pnq4 tends to zero, as it should since
F(0)=—kgT(dB/dz) | ,—o=0. One implication of this result

is that P,, returns to be the dominant contribution to the
pressure, even for high surface charges. Another implication _
is that the short-range interaction becomes unimportant. ALO" effects become much larger than in the monovalent
in PB theory, the ions in the region between the two plate asé®¥and can lead in some cases to attraction between the

become essentially a confined ideal gas, and their total nurrP—lates' Discrete solvent effects are also modified, since the
ber is determined by charge neutrality ,THB,‘% coincides effective short-range interaction mediated by the solvent is

with the PB pressure matching t@minal surface charge different in the two cases. A numerical calculation of these
densityo. This is seen clearly in Fig. 7 potentials is currently not available, but some general obser-

vations can be made.
When the charge on the ions is doubled, the electrostatic
interaction between two ions increases by a factor of 4. The
In experiments, the actual surface charge is usually nobn—ion separation where the electrostatic interaction is
exactly known, because the number of ions dissociating fronequal tokg T increases fromhz=7 A to almost 30 A. On this
the surface is uncontrolled. The PB charge is then fitted telectrostatic scale, the water molecular size3(A) is much
the large separation behavior. This charge can be signifsmaller than in the monovalent case. Hence we can expect
cantly smaller than the actual surface charge, as discusséige solvent to be more similar to a continuous dielectric me-
above. The interpretation of our results is then as follows. Adium. Indeed, the correction to theet/potential between
plate separations below approximately 20 A, an attractivéwo (artificial) Na®* ions in watef® is found to be purely
force appears, due tBy,4. This force can reduce the net repulsive, and is significant only at separations below
repulsion, or even induce a net attraction, depending on the-10 A, where the electrostatic interaction is considerably

F(2)=—kgT

(39

BP [M]

4. Divalent ions
When divalent ions are present in the solution, correla-

3. Small plate separations
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larger thankgT. Thus we expect discrete solvent effects,layers between the surfaces. In addition to this oscillatory
resulting from effective ion—ion potentials, to reduce in thecontribution, an additional strong contribution is seen, which
divalent case, whereas correlation effects, which are not inis often referred to as the hydration fort® The aqueous
cluded in our model, increase. pair potential model of Ref. 28 was a first step towards the
Let us now comment on the effective ion—surface potenunderstanding of this force. A more realistic picture will
tial, which is not taken into account in the present work. Theprobably emerge if a proper effective ion—surface interaction
distance from the charged plate, where the electrostatic ionwill be included, in addition to the effective ion—ion interac-
surface interaction is equal T, decreases frorh in the  tion. Furthermore, the modification to the ion—ion effective
monovalent case tb/2 in the divalent case. On this smaller potential in a confined geometry may also be important. In
scale, the discreteness of the solvent becomes more prorder to assess the importance of these effects, further simu-
nounced. Hence we expect the importance of the effectivéation results are needed as an input to the model.
ion—surface potential to increase in the divalent case, as op- The aqueous pair potential and the free eneryin-
posed to that of the effective ion—ion potential. This effectvolve various approximations, which are discussed exten-
lies outside the scope of the present work and merits a sepaively in Refs. 33 and 43. Nevertheless, the large modifica-

rate study. tion to the PB pressure, as obtained also using the AHNC
approximatiort:*2*®indicates that the solvent effects on the
VI. CONCLUDING REMARKS ion distribution are a crucial ingredient in the origin of hy-

Summarizing our results on the pressure, we find thafiration force€®*The semiquantitative agreement of our re-

hydration effects can be understood as arising from two con§UItS with the AHNC approximation indicates that our for-

tributions. The first contribution is the change in the mid_malism captures the important effects and suggess its further

plane ion density. This contribution dominates at large plat@ppl{cathn n nonplgqar geometries, where the AHNC ap-
separations and can be understood in terms of an effectiy OXImation is too difficult to apply.

PB surface charge in our model. The effective PB charge is

smaller than the nominal charge due to the accumulation of

counterions in the vicinity of the charged plates. Thus theACKNOWLEDGMENTS

pressure is reduced relative to PB theory, using the same

suer(;eacnh:tgeer.native viewnoint. the PB surface charge ca discussions and for sharing with us his results prior to pub-
point, 9 'ication. Partial support from the U.S.—Israel Binational

be chosen to match the large plate separation of the pressuté

: . : oundation(B.S.F) under Grant No. 98-00429, and the Is-
in our model. When this is done, an apparent repulsive force . )

) . rael Science Foundation founded by the Israel Academy of
appears in our model at very small plate separations

(=5 A), as compared with the fitted PB pressure Sciences and Humanities-Centers of Excellence Program is

The second contribution to the pressure is the direct Solgratefully acknowledged.

vent mediated attraction between ion pairs in the two halves
of the system. This latter term can become dominant at plate
separations between5 A and ~20A. It can induce a net APPENDIX: DERIVATION OF THE PRESSURE

?ttractlr:/e mtt_arahqnﬁn between the two plates when the sur- The free energy of the system is given by the sum,

ace charge 1s nign. . . Q=Qpgt+AQ with Qpg andAQ defined as follows:
Attraction between like-charged surfaces is never pre-

dicted by PB theory>*® On the other hand, mechanisms € (d/d¥)? d Ci

; ; ; : pe=5— | | == | dz+kgT > Ci| In——1]dz,

involving correlations can lead to attraction. Several ap- 87 )y !\ dz 05 I3

proaches have shown that ion—ion correlations can have this

effect, in the framework of the primitive mod&i-*°In prac- 1 d (9., , .

tice, this attraction can be strong enough to overcome the A= 2kBTiz,j 0 dz 0 dz’ ci(2)e;(2')B;j(2'~2).

mean field repulsion when divalent ions are present in the (A1)

?oluupn. When thelref are ?]nly monovatl1ent IOI?S mffthet S;’\Iu'\/Ve now imagine that the separation between the two plates

e o e o o s increased frond to d + 5z by adding a “slice” of width

ofher mechanis at can lead to attraction 1S th€ van deg, ,onyeen the planeg, andz,+ 6z. We map the regions

Waals force, arising from correlations between the polariza; : - :
. ’ S : 0=z=<z, andzy<z=d in the original system to the regions
tions on the two surfaces. As we find in this work, solvent 0 0 9 y 9

. ) ; 0=z=<z, andzy+ éz=z=<d+ 6z in the modified system, re-
mediated forces, related to ion—solvent correlations, are arg— 0 0 y

) . . . ectively. We then have
other mechanism that can induce intersurface attraction. Inp y
some case@nonovalent ions, small separation, large surface € Jd , ( d‘l’) 5( av

We wish to thank S. Mamdja for numerous valuable

d Ci
@ +kBTf0 dzE o6ciIn—

charge they are the leading mechanism for attraction. 5QPB:E dz i I3
A strong deviation from PB predictions is indeed

measuret!*? between charged surfaces in aqueous solution
at separation below 20 A. The force includes an oscillatory
contribution, with a period corresponding to the water mo-

lecular size. This force is due to the structuring of water in (A2)

0

+ 6z

%(%)ZJABTZ ci(ln%—lﬂ i

Z*ZO
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The first term can be integrated by parts. With the con-

ventions described above, the boundary terms can be written

as follows:
\Md\y % \delf d . AV e dv
r . +Ve ] =W (zp) T(Zo)—g(zo)
0
dw
new
T T4z (zo+ 02)+ E(ZO)
d>
=- \I,(ZO)F(ZO) 0z, (A3)

where use of the boundary conditionszat0 andz=d has
been made. Using this relation and the Poisson equéiion
we obtain

5052 S ewe + =Y i
Pe= 07 4 ST g G
Ci
+kgT Y, ci(ln——l)
. ¢ 2
d Ci
+f dz>, sc; ei\I’+kBTIn? . (Ad)
o

To computeSAQ), AQ can be separated to the following
three terms:

1 ) 29
AQ=—kBT2 dzf dz'ci(z)ci{(z2')B;; (' —2)
2 1 Jo 0 ! !
1 d d
+ —kBTE dzJ dz’'ci(z)c;(z")B;jj(z' — 2)
2 1,] Zy Zy

Z d
+kgTD, dzf dz' ¢i(z)ci(z')Bij(z' —2).
[ 0 4
(A5)
The variation ofc; in these three terms gives
d d
5AlekBTZ dzj dz’ ci(z) ocj(z')Bjj(z' - 2).
i Jo 0
(A6)

The variation of the third term in EqA5) gives two addi-
tional contributions, one from the variation B{z' —z) un-
der the insertion of the “slice” agg,

)
dz

SAQ,= 867 kg T,
i,j 0

ded’ @622 (7~
Z'Ci(Z2)Ci(Z )——(Z2 —2),
2 ! J dz

(A7)
and the other from the integration over the “slice” itself,

d
SAQ ;=52 kBTizj fo dzG(z0)ci(2)Bij(z—20).  (A8)

Summing up all the contributions t8() we have

Y. Burak and D. Andelman

(SQ: 5QPB+ 5AQ]_+ 5A02+ 5A93

€ [d¥)\2
=022 ¢i(z0)% 5(5) (20) +e¥(20)
+kgT]|In Ci(gz") —1}

d
+ kBTE f dzg(z)Bjj(z— zo)]
] 0

ci(2)

+fddzz 5ci(z)><[ei\lf(z)+kBTIn
0 i 4

d
+kBTZ Jodz’cj(z’)Bij(z’—z)]
i
z d
+6szTZ Oodzj dz’ci(z)ci(z')
ij 7q

Xx—1 (2 —3). (A9)

dz
Using the equilibrium equatiofv) this reduces to
5Q (d\p) 2
oz dz
%

oz
4 d
—kgT> dzf dz'ci(2)¢;(2')
ij 0 2y

€

8

= kBTEi Ci(Zp) —

(A10)

If all the ion species interact through the same short range
interaction, Eq(A10) reduces to Eq(18).
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