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Discrete aqueous solvent effects and possible attractive forces
Y. Buraka) and D. Andelmanb)

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69 978, Israel

~Received 11 July 2000; accepted 18 October 2000!

We study discrete solvent effects on the interaction of two parallel charged surfaces in ionic aqueous
solution. These effects are taken into account by adding a bilinear nonlocal term to the free energy
of Poisson–Boltzmann theory. We study numerically the density profile of ions between the two
plates, and the resulting interplate pressure. At large plate separations the two plates are decoupled
and the ion distribution can be characterized by an effective Poisson–Boltzmann charge that is
smaller than the nominal charge. The pressure is thus reduced relative to Poisson–Boltzmann
predictions. At plate separations below;20 Å the pressure is modified considerably, due to the
solvent mediated short-range attraction between ions in the system. For high surface charges this
contribution can overcome the mean-field repulsion giving rise to a net attraction between the plates.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1331569#
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I. INTRODUCTION

Aqueous ionic solutions are abundant in biological a
chemical systems. Often they play a prominent role in de
mining the properties of charged macromolecules that
immersed in them.1 The mean field theory of electrolytes
known as Poisson–Boltzmann~PB! theory and its linearized
version, Debye–Hu¨ckel theory,1–6 are known for many de-
cades and have proved to be useful and important tools
theory was applied in the study of colloidal dispersions7,8

biological membranes,6 synthetic and biologica
polyelectrolytes,9,10 and complex systems such as DNA-lip
complexes.11 Nevertheless, PB theory is known to have im
portant limitations. Being a mean field theory, ion–ion co
relations are ignored. In addition, the finite size of ions
neglected. These effects have been studied extensively u
various approaches12 such as liquid state13–16 and density
functional17 theories, simulations,18–20 field theory,21,22 and
other modifications to the PB theory.23–26

Most of the studies of corrections to PB have conc
trated on the so-called primitive model, where ions are
sumed to interact with each other through the electrost
interaction and a hard core steric repulsion. Although t
model can describe many effects that are neglected in
theory, it still neglects some physical features that are pre
in real systems. Most notably, the aqueous solvent is tre
as a continuous medium, whereas in reality ions interact w
discrete solvent molecules.

Solvent effects are strong especially in water, beca
the polar water molecules interact very strongly with ion
The most significant result is that the electrostatic ion–
interaction is reduced by a factore.78 at room temperature
due to screening by the dielectric environment. However,
discreteness of the solvent results in a more complicated
ture. When ions approach each other at separations of a

a!Electronic mail: yorambu@post.tau.ac.il
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water molecular diameters, the effective interaction betw
them is modified considerably. Figure 1 shows the correct
to the 1/er potential between two Na1 ions in water. This
effective potential was calculated, using a simulati
scheme,27 for a bulk NaCl solution of concentration 0.55 M
at room temperature. Note that the short-range potential
maining after the subtraction of the Coulomb interaction,
oscillatory and predominantly attractive.

The possibility to calculate the effective potential b
tween ions in water leads naturally to the model depic
schematically in Fig. 2. The water is treated as a continu
medium, with a dielectric constante. In addition to the elec-
trostatic interaction, a short-range interaction is included
tween ion pairs. The short-range potential, denoted asui j (r ),
is taken as an input to the model~from simulation!, and can
in general depend on the ion speciesi andj. For example, the
potential shown in Fig. 1 is used between Na1 –Na1pairs.
The effective potential is calculated in a bulk solution a
thus depends only on the ion–ion separation. However,
tems containing charged surfaces can lead to inhomogen
or anisotropy in the ion distribution.

The model described above was suggested in Ref.
and was studied in planar geometry using the anisotro
hypernetted chain~AHNC! approximation14 in Refs. 29–32.
In Ref. 33 we presented a simplified approach to the sa
model. In this latter approach, a term accounting for
short-range solvent-mediated ion–ion interaction is adde
the PB free energy. The formalism obtained in this way
simple although less accurate than the AHNC approxim
tion, and in particular neglects ion–ion correlations. On
other hand, numerical calculations can be done fairly eas
and are feasible in nonplanar geometries. In addition, vari
analytical results can be obtained, and the discrete sol
effects can be readily understood in terms of basic phys
principles. In the present paper, which can be regarded
follow-up of Ref. 33, we use the same formalism to stu
discrete solvent effects on interacting charged and pla
plates.
1 © 2001 American Institute of Physics

AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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In the present work, following Refs. 29–33, we do n
take into account an effective ion–surface potential. A n
merical calculation of such a potential, using a realis
model for the water molecules, is currently not availab
Moreover, we neglect the dependence of the effective io
ion potentials on the ion positions relative to the surfa
Other limitations of the current model are discussed in R
33. Despite these approximations, the model is a good s
ing point for studying qualitative effects of the discrete s
vent.

The outline of the paper is as follows: Section II review
the model and discusses its application to two charged
planar plates. In Sec. III we discuss the corrections to the
density profile. In Sec. IV we obtain expressions for the
terplate pressure and derive a generalized contact theo
The resulting pressure curves are studied numerically
analytically in Sec. V. Finally, Sec. VI offers some conclu
ing remarks. The technical details in the derivation of t
pressure are presented in the Appendix.

FIG. 1. Short-range effective potential between Na1 ion pairs, adapted from
Ref. 27 using simulations in a bulk NaCl aqueous solution of concentra
0.55 M, at room temperature~Ref. 35!. The potential is shown in units o
kBT, as a function of the distance between the ion centers. The Coul
interaction is subtracted to show only the short-range hydration effect du
the water molecules. For ion–ion separations below 2.9 Å a hard core i
action is taken.
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II. THE MODEL

A. Free energy

The free energy of the system can be written as a fu
tional of the local ion densities, consisting of the usual P
term and a hydration correction term. Assuming that
boundary conditions are of fixed charges, the following a
proximated form for the free energy can be obtained:33

V5
e

8pE ~¹C!2d3r1kBTE (
i

ci S ln
ci

z i
21Dd3r

1E L~r !S“2C1
4p

e (
i

ciei D d3r

1
kBT

2 (
i , j

E ci~r !cj~r 8!Ui j ~r2r 8! d3rd3r 8, ~1!

whereC is the electrostatic potential,ci are the ion densities
ei are their respective charges,e is the dielectric constant
kBT is the thermal energy, and the potentialUi j is defined
below. The bulk ion densitiescb,i are determined by the
fugacities z i5exp(bmi)/lT

3 , where m i are the chemical
potentials,lT is the de Broglie thermal wavelength, an
b51/kBT. Note that the simple PB relationcb,i5z i is al-
tered with the inclusion of hydration interactions, as will b
explained below~Sec. II B!. A detailed discussion of the
various approximations involved in Eq.~1! is given in Ref.
33. Here we shall briefly discuss each of the terms, and
line the way in which Eq.~1! is obtained.

The first three terms in Eq.~1! form the usual PB ex-
pression for the free energy. The first term is the electrost
free energy and the second term is the entropy of the io
The electrostatic potentialC is a functional of the ion den-
sitiesci , and is determined by the Poisson equation and
boundary conditions imposed by the surface charges. Ins
of writing this dependence explicitly in the free energy, it
convenient to add a third term toV, containing a Lagrange
multiplier L(r ).

The fourth term in Eq.~1! accounts for the hydration
interaction, and is quadratic in the ion densities. T
weighted potentialUi j is defined as

Ui j 512e2bui j (ur2r8u), ~2!

n

b
to
r-
c

-

p-
FIG. 2. Schematic description of the
pair potential model. An aqueous ioni
solution confined between two
charged plates in~a! is replaced by
ions in a continuum dielectric medium
with electrostatic and short-range in
teractionsui j (r )5ui j (ur u) in ~b!. The
coordinatesz50 and z5d designate
the contact positions of the ions with
the plates. The distance of closest a
proach is equal todhc/2, wheredhc is
the hard-core diameter of the ions.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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3273J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Discrete aqueous solvent effects
where ui j is the nominal short-range hydration interacti
between ions of speciesi andj ~Fig. 1!. To obtain Eq.~1! we
first treat33 the short-range interactionui j using a virial ex-
pansion of the grand canonical potential, keeping terms u
the quadratic order. The electrostatic interaction is th
treated exactly as in PB theory, using a mean field appr
mation for the electrostatic potentialC. As an alternative
approach Eq.~1! can be obtained from a field theory expa
sion of the grand partition function.34

B. Density equations

The density profiles are obtained by minimizing the fr
energyV with respect to the ion densitiesci . The third term
in Eq. ~1!, containing the Lagrange multiplierL(r ) allows us
to regard the densitiesci(r ) and the electrostatic potentia
C(r ) as independent fields, and require thatV has an extre-
mum with respect to the three fieldsci , C, andL. Requir-
ing thatV has an extremum with respect toC gives

L5
e

4p
C, ~3!

and the extremum condition with respect toci then gives

ln
ci~r !

z i
1(

j
E cj~r 8!Ui j ~r2r 8!d3r 81beiC~r !50,

~4!

where relation~3! has been substituted to expressL in terms
of C. This equation is supplemented by the Poisson eq
tion,

¹2C52
4p

e (
i

eici . ~5!

Since Eq.~4! is an integral equation, theci cannot be written
as a simple function ofC. Therefore, a single equation fo
C, analogous to the PB equation, cannot be obtained,
we are left with the two coupled equations~4! and~5!. These
equations should be solved together to obtain the elec
static potential and density profiles. ForU→0, Eq. ~4! re-
duces to the Boltzmann equationci5z i exp(2beiC). In the
bulk C50, leading to the relationcb,i5z i . Combining these
relations with Eq.~5! reproduces the PB equation,

“

2C52
4p

e (
i

cb,ieie
2beiC ~PB!. ~6!

Equations~4! and ~5! were solved for a single charge
and planar plate in Ref. 33. The treatment of two para
plates is very similar, and is outlined below for comple
ness. The system is shown schematically in Fig. 2~b!. The
plate positions are designated byz50 andz5d, using the
convention that these are the coordinates of closest appr
of the ions to the plates@while the potentialsui j (r ) are mea-
sured from thecentersof the ions#. The two plates are nega
tively charged, each one with a uniform surface charges.
No discreteness of surface charge is taken into account in
present work. We assume an electrolyte of valencyz1 :z2 ,
i.e., a solution of positive and negative ions of charg
e656z6e, wheree is the electron charge.
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In order to simplify the equations further, the intera
tions between the different pairs of ion species can be ta
to be equal, i.e.,Ui j (r )5U11(r )[U(r ), whereU11 is the
weighted potential between the~positive! counterions. The
exact choice ofU12 and U22 is expected to be of only
minor significance, as the co-ions are repelled from the s
face neighborhood and only the positive counterio
reach high densities there. From charge neutrality
have cb[cb,15(z2 /z1)cb,2 and similarly z[z1

5(z2 /z1)z2 , where the relation betweencb andz will be
determined later.

Due to the one-dimensional symmetry imposed by
charged and planar planes, the integration in Eq.~4! can be
performed over thex–y plane to obtain

c6~z!5z6e7bez6C expF2E
0

d

c~z8!B~z2z8!dz8G , ~7!

where c5c11c2 is the total ion density andB(z) is the
effective interaction between two layers of ions, expresse
an integral ofU(r ) in the plane of constantz. Using cylin-
drical coordinates,

B~z!52pE
0

`

r drU~Az21r2!. ~8!

The Poisson equation~5! reads

d2C

dz2
5

4pe

e
zz1~ebez2C2e2bez1C!

3expF2E
0

d

c~z8!B~z2z8! dz8G . ~9!

Equations~7! and ~9! are supplemented by the followin
boundary conditions:

dC

dz U
z50

52
4p

e
s;

dC

dz U
z5d/2

50 ~10!

since the problem with two plates of equal charge atz50
andz5d is symmetric about the midplanez5d/2.

Finally, the relation betweenz and the bulk densitycb

can be obtained from Eq.~7!. We imagine that the two plate
are immersed in a bath of electrolyte. In the region outs
the plates an equation similar to Eq.~7! holds, where the
integration inside the exponent is performed in the exter
region. Far away from the plates, asC becomes zero,c1 and
c2 assume their asymptotic constant, bulk values. The in
grand inside the exponential can be replaced
2(11z1 /z2)cbB(z2z8) leading to the result

cb5z expF2S 11
z1

z2
DBtcbG , ~11!

where

Bt[E
2`

`

dz B~z!5E d3r U~r ! ~12!

is also equal to 2B2 , the second virial coefficient. The limi
Btcb→0 is the limit in which the short-range interaction b
comes negligible in the bulk. In this limit the relation be
tween the bulk density and fugacity of Eq.~11! tends to the
ideal gas relationcb5z5exp(bm)/lT

3 .
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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In the next section we will concentrate on a symmetric 1
electrolyte, where Eqs.~7! and ~9! take the form,

c6~z!5ze7beC expF2E
0

d

c~z8!B~z2z8! dz8G
d2C

dz2
5

8pe

e
z sinh~beC!

3expF2E
0

d

c~z8!B~z2z8! dz8G ~13!

and

cb5z exp~22Btcb!. ~14!

C. Definitions and parameters

For the short-range ion-ion potentialu(r ) we use the
effective potential between Na1 –Na1ion pairs, shown in
Fig. 1. For ion-ion separations below 2.9 Å a hard core
teraction is assumed. Figure 3 shows the effective lay
layer interactionB(z), as was derived from this potentia
using Eq.~8!. This effective interaction is mostly attractive
as B(z) is negative on most of its range, and has a char
teristic range of approximately 7 Å. The structure ofB(z)
reflects the oscillatory behavior ofu(r ).

It is useful to introduce the length scales characteriz
the PB density profiles.6 The Gouy–Chapman length, de-
fined asb5ekBT/(2peusu), characterizes the width of th
diffusive counterion layer close to a single charged pl
with a surface charge densitys, in the absence o
added salt. The Debye–Hückel screening length,
lD5(8pcbe2/ekBT)21/2, equal to 19.6 Å forcb50.025 M
at room temperature characterizes the decay of the scre
electrostatic interaction in a solution with added salt. T
strength of the electrostatic interaction can also be expre
using theBjerrum length, l B5e2/(ekBT). This is the dis-
tance at which the electrostatic interaction between two
charges in a dielectric medium becomes equal to the the

FIG. 3. The effective layer-layer interactionB(z) in a planar geometry, as
obtained from the potential of Fig. 1 using Eq.~8! ~solid line!. The oscillat-
ing structure of the radial potential shown in Fig. 1 is apparent in the s
ondary minima ofB(z).
Downloaded 27 Feb 2001 to 132.66.16.6. Redistribution subject to 
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energy. It is equal to about 7 Å in water at room temp
ature. In terms of the Bjerrum lengthb5e/2p l Busu and
lD5(8pcbl B)21/2.

The inclusion of the hydration interaction introduces a
ditional length scales in the system. For the interaction
Figs. 2 and 3, the range of the interactiondhyd is approxi-
mately 7 Å, over twice the hard core diameterdhc52.9 Å.
The strength of the hydration interaction is characterized
the second virial coefficientB25Bt/2, with Bt.2(7.9 Å)3

as is calculated from Eq.~12!.

III. DENSITY PROFILES

Equations~7! and ~9! are a set of three nonlinear inte
grodifferential equations. We treat them numerically usi
an iterative scheme, based on the assumption that the p
tive ion density profile is dominated by the electrostatic
teraction. We start with the PB profile and calculate ite
tively corrections to this profile, as result from Eqs.~7! and
~9!. For a 1:1 electrolyte we iteratively solve the equation

d2C (n)

dz2
5

8pe

e
z sinh~beC (n)!

3expF2E
0

d

c(n21)~z8!B~z2z8!dz8G , ~15!

where the superscriptn stands for thenth iteration,

c6
(n)~z![ze7beC(n)

3expF2E
0

d

c(n21)~z8!B~z2z8! dz8G , ~16!

and the zeroth order densitiesc6
(0) are taken as the densit

profiles generated by the PB equation~6!. The boundary con-

FIG. 4. Counterion density profile~solid line! obtained from numerical so-
lution of Eq. ~7! with the hydration interaction as of Fig. 3, plotted on
semilog plot. The bulk ion density iscb50.025 M and the surface charge
usu50.333 C/m2.1 e/48 Å2. The dielectric constant ise578 and the tem-
perature is 298 K. The distance between the plates isd550 Å. The density
profile is symmetric about the midplane atz525 Å. The dotted line shows
the corresponding density profile obtained from the PB equation. The s
bols ~3! show the density profile obtained in the AHNC approximatio
using the same parameters~Ref. 35!.

c-
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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3275J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Discrete aqueous solvent effects
ditions ~10! are satisfied by the electrostatic potential in
iterations. The solution converges after several iterations
is interesting to note that the first iteration captures mos
the effect. This observation can lead to various analyt
results, as shown in Ref. 33 for a single plate.

In the following sections we will concentrate on th
pressure between the plates. First we discuss briefly
modification to the PB density profiles. Let us begin by co
sidering a large plate separationd. In this case the results ar
similar to the single-plate case, sinced is larger than all other
length scales in the system, and we present them for c
pleteness.

Figure 4 shows the density profile of the positive
charged counterions~solid line! between two charged plate
with d550 Å. Only one-half of the system is shown, sin
the profile is symmetric around the midplane. The surfa
charge, usu50.333 C/m2 corresponds to approximatel
48 Å2 per unit charge. This is a typical high surface char
obtained for mica plates. It corresponds to a Gouy–Chapm
length b51.06 Å, at a temperature of 298 K, withe578.
The electrolyte bulk concentration is 0.025 M, correspond
to a Debye–Hu¨ckel screening lengthlD519.58 Å. The den-
sity profile is compared to the result of PB theory~dotted
line!.

The main effect is that the short-range attraction dra
additional counterions to the vicinity of the charged pla
Note, however, that the contact density remains very clos
the PB density, as will be explained later. The increase of
counterion density near the plate is followed by a deplet
further away. This can be understood in the no-salt c
since the total number of counterions is fixed. In our case
salt concentration is low. The Debye–Hu¨ckel screening
length is large compared to the Gouy–Chapman length
compared to the range of the short-range interaction, so
salt has a minor effect.

The counterion density profile is also compared with
sults of the AHNC approximation35 that were obtained using
the same short-range hydration potential~3 symbols!. The
qualitative effect is similar in our model and in the AHNC
Specifically, both density profiles follow the PB densi
curve for the first few angstroms from the plate and show
considerable decrease in the positive ion density, relativ
PB, starting at a distance of about 5 Å from the plate. T
maximal decrease in the density is approximately 30% in
model and almost 50% in the AHNC profile, both relative
the PB profile.

The effect of the short-range ion–ion interactio
strongly depends on the surface charge. This is demonstr
in Fig. 5. The ratio of the counterion density and its P
value,c1/c1

PB, is shown for three values ofs. The effect of
the hydration potential is very minor for small surface cha
(usu50.0333 C/m2.1 e/480 Å2), where the ratioc1/c1

PB is
approximately 2% at its maximum, and considerable fo
surface charge of 0.333 C/m251 e/48 Å2, where it reaches
approximately 40%.

As the plate separation decreases, the modification toc1
PB

is expected to remain similar to the single plate case as
asd/2 is large compared tob and todhyd. This can indeed be
seen in Fig. 6, where a high surface charge, as in Fig. 4
Downloaded 27 Feb 2001 to 132.66.16.6. Redistribution subject to 
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considered. In this caseb.1 Å!dhyd.7 Å, so a deviation
from the single plate curve is expected whend/2&dhyd

.7 Å. The ratioc1/c1
PB is shown for several plate separ

tions between 5 and 50 Å. The results are very similar
d550, 35, and 20 Å@Fig. 6~a!#. In particular, note that the
contact density remains very close to the PB value in
three separations. This is a result of the generalized con
theorem, derived in Sec. IV. For smallerd, equal to 5 and
10 Å @Figs. 6~b! and 6~c!, respectively# the behavior is dif-
ferent, and in particular the contact density deviates from
PB value. The effect of decreasingd was found to be similar
for smaller surface charge~e.g., 0.1 C/m2,) and for salt con-
centration up to 0.1 M.

The most important effect on the density profile is th
the ion density is depleted far away from the charged pla
When the two plates are highly separated from each other
ion density can be described, far away from the plates, us
an effective PB surface charge. This effective charge w
calculated in Ref. 33, and is smaller than the nominal cha
~for example, for the surface charge used in Fig. 4 it
smaller by a factor of;3.8). The reduced density leads to
reduced pressure, relative to PB, as will be explained in
following sections.

IV. PRESSURE EQUATION AND CONTACT THEOREM

The pressurePin in the region between the two plate
can be obtained by differentiating the free energyV with
respect to the plate separationd,

Pin52
dV

dd
. ~17!

To computedV we can imagine that a ‘‘slice’’ of widthdd
is inserted at some positionz0 between the two plates. Add
ing up all the contributions todV, and using Eq.~7! and the
boundary conditions~10! we obtain

FIG. 5. The ratio of the positive ion density obtained from Eq.~7! and the
value obtained from PB theory, for surface chargesusu50.333 C/m2

.1 e/48 Å2 ~dashed line!, 0.1 C/m2.1 e/144 Å2 ~solid line!, and
0.0333 C/m2.1 e/480 Å2 ~dotted line!. All other parameters are as in
Fig. 4.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 6. The ratio between the positive ion density obtained from Eq.~7! and its PB value, for plate separationsd equal to~a! 50 Å ~solid line!, 35 Å ~dashed
line!, 20 Å ~solid line!, ~b! 10 Å, and ~c! 5 Å. All other parameters are as in Fig. 4. Each curve is shown between the plate atz50 and the midplane
z5d/2.
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Pin5kBT(
i

ci~z0!2
e

8p S dC

dz D 2U
z0

2kBT(
i j

E
0

z0
dzE

z0

d

dz8 ci~z!cj~z8!
dB

dz
~z82z!.

~18!

This result is correct for any combination of ion speciesi,
assuming the same short-range interactionui j between dif-
ferent ion pairs. The full derivation is given in the Append
The pressure is equal throughout the plate spacing
therefore, independent on the choice ofz0 .

The net pressureP between the plates is the differenc
between the pressure inside and outside the plates. The
is equal throughout the region outside the plates. In part
lar, it is equal to the bulk pressurePbulk , so we have

P5Pin2Pbulk . ~19!

To obtainPbulk , we note that an equation similar to Eq.~18!
holds in the bulk, with constant electrostatic potential a
with ci constant and being equal to the bulk densities.
the case of a 1:1 electrolyte, we find

Pbulk52kBTcb~11Btcb!. ~20!

SinceBt is negative, the bulk pressure is lower than its P
value. Note that in the case of no added saltPbulk50.

Expression~18! assumes a particularly simple form if w
set z0 to zero, namely, on one of the plates. Then the th
term in ~18! vanishes and the second term is fixed by
boundary conditions, giving

P5kBT(
i

ci~0!2
2p

e
s22Pbulk . ~21!

Alternatively, if we choosez0 at the midplane,z5d/2, by
symmetry the second term in~18! vanishes and the pressu
is expressed as

P5kBT(
i

ci~d/2!2kBT(
i j

E
0

d/2

dzE
d/2

d

dz8 ci~z!cj~z8!

3
dB

dz
~z82z! 2 Pbulk. ~22!
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The equality of these two expressions for the pressure res
in the generalized contact theorem,1,36

(
i

ci~0!5
2pb

e
s21(

i
ci~d/2!

2(
i j

E
0

d/2

dzE
d/2

d

dz8 ci~z!cj~z8!
dB

dz
~z82z!.

~23!

The very small relative change of the contact density, co
pared to PB theory, at large plate separations can be un
stood from this result. We consider first the case of h
surface charge, where the Gouy–Chapman length is s
compared to the Debye–Hu¨ckel screening length,b!lD . In
this case, the second and third terms on the right-hand sid
Eq. ~23! become negligible compared to the first term wh
d@b,dhyd, wheredhyd is the range of the hydration interac
tion. The contact ion density is then dominated by the po
tive ion density, and is very close to the PB value. Wh
there are only counterions in the solution andd→` ~or
equivalently, in the case of one isolated plate!, we have ex-
actly, as in PB theory,

c1~0!5
2pb

e
s2 ~one plate, no salt!. ~24!

If b is not small compared tolD , the correction to the
contact density is still small for large enough plate sepa
tions, assuming that the hydration interaction is negligible
the bulk, i.e.,2Btcb52Bt /(8p l BlD

2)!1. Whend@lD and
d.dhyd, the coupling between the two plates is negligib
and Eq.~23! becomes

(
i

ci~0!.
2pb

e
s21Pbulk . ~25!

The only difference in this expression relative to the PB co
tact density is the change in the bulk pressure. This chang
negligible if the hydration interaction is small enough in t
bulk.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 7. ~a! Pressure between two plates with surface chargeusu50.333 C/m2.1 e/48 Å2, as a function of the plate separationd, on a semilogarithmic plot.
All the parameters are as in Fig. 4. The solid line shows the overall pressureP obtained from Eq.~22!. The dashed line shows the contributionPm resulting
from the midplane density and the dotted line shows the PB pressure.~b! The same curves on a linear scale, in the region where the overall pressure be
negative, i.e., attractive.
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For smallerd, the integral in~23! can contribute to a
significant change in the contact density relative to
theory. This can be seen in Fig. 6, whereb!lD , at plate
separations below;10 Å.

V. PRESSURE CURVES

A. Pressure beyond Poisson–Boltzmann

We would like to compare the pressure from our mo
with the PB pressure, which can be written as follows:

PPB5kBT(
i

@cPB,i~d/2!2cb,i #, ~26!

wherecPB,i(d/2) is the PB density of thei th ion species at
the midplane. Using Eqs.~22! and ~20!, the pressure in ou
model can be written as the sum of the following three term

P5Pm1Phyd22kBTBtcb

5kBT(
i

@ci~d/2!2cb,i #

2kBT(
i j

E
0

d/2

dzE
d/2

d

dz8 ci~z!cj~z8!
dB

dz
~z82z!

22kBTBtcb
2. ~27!

A symmetric 1:1 electrolyte is assumed for simplici
throughout this section. The first term in Eq.~27!,

Pm5kBT(
i

@ci~d/2!2cb,i # ~28!

is similar in form to the PB pressure~26!, but the midplane
density in Eqs.~28! and ~26! can be different. The secon
term in Eq.~27!, which we denote as the hydration pressu

Phyd52kBT(
i j

E
0

d/2

dzE
d/2

d

dz8 ci~z!cj~z8!
dB

dz
~z82z!

~29!
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,

is the integrated short-range force acting between ion pair
the two halves of the system. The third term is the chang
the bulk pressure relative to PB theory, due to the inclus
of a second virial coefficient in the bulk equation of state

Some simple observations can be made immedia
from Eq. ~27!. These observations will be useful in the ne
subsection, where the numerically calculated pressure cu
are presented~Figs. 7 and 8!. For now, let us assume that th
third term in Eq.~27! is negligible as compared to the firs
two. Of these two terms, the first,Pm , is linear in the density
whereas the second term,Phyd, is quadratic. As a result, the
relative importance ofPm and Phyd depends on the plate
separationd. At larged the density in the midplane region i
small, so thatPhyd!Pm . The main correction to the PB pres
sure~26! then comes from the change of the midplane d
sity, c(d/2)2cPB(d/2). Far away from the two plates, th

FIG. 8. The repulsive pressure between two plates with surface ch
usu50.119 C/m2.1 e/135 Å2, as a function of the plate separationd. All
other parameters are as in Fig. 4. The solid line shows the overall pres
P, the dashed line shows the contributionPm of the midplane density, and
the dotted line shows the results of PB theory.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 9. Comparison between the pressure obtained~a! in our model and~b! in the AHNC approximation~Ref. 35!, using the same short-range hydratio
potential~solid lines!. All the parameters are as in Fig. 7~usu50.333 C/m2.1 e/48 Å2). The pressure is shown as a function of the plate separationd. A
semilogarithmic scale is used in the main plots and a linear scale is used in the insets. In~a! the dotted line shows the PB pressure. In~b! the dotted line shows
the pressure obtained in the AHNC approximation when the ion–ion interaction includes only the hard core and the electrostatic interactions.
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system behaves as predicted by PB theory with a modifi
effective surface charge. The midplane density is deple
relative to PB, since counterions are attracted to the vicin
of the charged plates. Hence the pressure is smaller tha
PB theory. As the plate separation decreases and the
plane density increases,Phyd can become important.

B. Numerical results

The general arguments of the previous section can
verified by calculating numerically the pressure using E
~27!. Figure 7 shows the pressure as a function of the p
separationd for a large surface chargeusu50.333 C/m2

.1 e/48 Å2 and bulk ion densitycb50.025 M ~solid line!.
The pressure is compared withPPB ~dotted line!. The contri-
bution of Pm , the first term in Eq.~27!, is also shown
~dashed line!.

The behavior of the pressure at a large range of p
separations is shown in Fig. 7~a! on a semilogarithmic plot.
At large d, the pressure is dominated byPm , as expected. It
is considerably smaller than the PB pressure, due to the
duced effective charge on the plates. At lowerd the second
term in Eq.~27!, Phyd, becomes dominant, and the over
interaction is attractive at plate separations between 6
12 Å. Note that the apparent sharp decrease in the pressu
a separation of approximately 13 Å is artificial, and resu
from the divergence of the logarithmic scale as the press
approaches zero. Figure 7~b! shows the same pressure usi
a linear scale, in the region in which it becomes negat
~attractive!. The net pressure crosses smoothly from posit
to negative values due to a steady increase in the magn
of the ~negative! Phyd. At very short separationsPm domi-
nates again, and the pressure coincides with the predict
of PB theory.

Figure 8 shows the effect of the hydration potential fo
smaller surface charge,usu50.119 C/m2.1 e/135 Å2. In
this case and for all surface charge,usu&0.25 C/m2, the
pressure is repulsive at all plate separations. The correc
over the PB result is much smaller than in Fig. 7, but s
significant. At plate separations of approximately 5–20
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Phyd is the dominant contribution to the deviation from P
and results in a considerably reduced pressure. At largd
the pressure is reduced mainly because of the change in
midplane density.

C. Comparison with AHNC

Figure 9 shows a side by side comparison of the press
obtained in our model~a! and in the AHNC approximation37

~b!. The same surface chargeusu50.333 C/m2.1 e/48 Å2

and short-range hydration potential are used in the two
culations. The main plots show the pressure using a loga
mic scale. The insets show the pressure on a linear sca
the region where it becomes attractive. The full press
~solid line! is compared in Fig. 9~a! with the PB pressure
~dotted line!. In Fig. 9~b! the AHNC pressure~solid line! is
compared with the pressure obtained using an electros
and hard core interaction only~dotted line!. Since the AHNC
approximation accounts for ion–ion correlations, there
differences between the pressure curves in our mode
compared to the AHNC approximation. However, a compa
son of Figs. 9~a! and 9~b! shows that very similar qualitative
and even semiquantitative effects of the hydration interac
are found in the two calculations.

A comparison for smaller usu50.119 C/m2.
1 e/135 Å2 is shown in Fig. 10. The solid line is the pressu
in our model and the dashed line is the AHNC pressure. T
dotted line shows the PB pressure. As in Fig. 9, the qual
tive effect is similar in the two calculations.

Since the AHNC approximation takes into account ion
ion correlations, the comparison allows us to assess the
tive importance of correlations and discrete solvent effe
The results shown in Figs. 7 and 9 indicate that for larges
discrete solvent effects can be much larger than correla
effects induced by the electrostatic interaction. For sma
surface charge, as in Figs. 8 and 10, these effects ar
similar order of magnitude. In the AHNC approximation th
pressure includes an electrostatic term due to correlat
between ions in the two halves of the system, in addition
the hydration and midplane density contributions. In Fig.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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this term is of similar order of magnitude asPhyd, and is the
main source for the difference between the solid line~our
model! and dashed line~AHNC!. For larger surface charge
as in Fig. 9,Phyd becomes much larger than the electrosta
contribution.

The case of divalent ions, where correlation effects
stronger, is briefly discussed in Sec. V.D.4.

D. Further analysis
1. Large plate separations

As discussed above, the hydration term becomes sma
larged, compared to the change in the midplane density
order to study the contribution of the midplane density to
pressure, let us assume that the plate separationd is much
larger than all other length scales in the system,b,dhyd,lD .
The two plates are then decoupled and the midplane pote
can be written asC(d/2).2C1(d/2), whereC1(d/2) is the
electrostatic potential at a distanced/2 from a single plate.
We assume also thatlD@b, which is usually the case whe
the surface charge density is large. At a large distance f
the plate, the single plate profile is a PB profile, correspo
ing to a renormalized surface chargeseff .

33 The contribution
Pm to the pressure can then be written as follows:6

Pm.
8kBT

p l BlD
2 S 12

2beff

lD
De2d/lD, ~30!

where beff51/(2p l Buseffu) is the effective Gouy–Chapma
length. A similar expression holds for the PB pressure, w
the nominal Gouy–Chapman lengthb used instead ofbeff .
We thus find that

Pm

PPB
.

122beff /lD

122b/lD
.122

beff2b

lD
. ~31!

In Ref. 33 an analytical expression forbeff2b is found. Its
general behavior is

beff2b;2
Bt

l Bb
~32!

FIG. 10. Comparison between the pressure obtained in our model~solid
line! and the AHNC approximation~dashed line!, for a surface charge
usu50.119 C/m2.1 e/135 Å2. All the parameters are as in Fig. 8. Th
pressure is shown as a function of the interplate separationd using a semi-
logarithmic plot. The dotted line shows the PB pressure.
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with a numerical prefactor of 1/12p in the limit b!dhyd

and a numerical prefactor 1/4p in the limit b@dhyd. The
parameters of the hydration interactiondhyd.7 Å and Bt.
2500 Å3 are as defined in Sec. II C.

A careful treatment of Eq.~27! shows that the secon
and third terms also add a contribution to the pressure
should be regarded as linear in the density, although
contribution is small. For large enoughd the integration
range in the second term of Eq.~27! can be extended to b
between2` and 1` because dB/dz has a finite range. In
addition, all quantities can be replaced by their midpla
values. We then find that the second term (Phyd) and third
term of Eq.~27! give

Phyd22kBTBtcb
2. 1

2 kBTBt(
i j

@ci~d/2!2cb#@cj~d/2!2cb#

12kBTBtcb(
i

@ci~d/2!2cb#. ~33!

The first term is quadratic in@ci(d/2)2cb# and can be ne-
glected relative toPm at larged. The second term is linear
although small becauseBtcb!1. It accounts for the smal
difference between the dashed and solid lines at larged in
Fig. 7~a!.

2. Hydration pressure

The behavior ofPhyd, the hydration pressure term, ca
be understood as follows. As a zero-th order approximat
the ion density is dominated by electrostatics and can
replaced in Eq.~29! by its PB value. Figure 11 shows tha
this gives a very good approximation. Hence we can wri

Phyd.(
i j

E
0

d/2

dzE
d/2

d

dz8 cPB,i~z!F~z82z!cPB,j~z8!,

~34!

where

FIG. 11. The hydration pressurePhyd as a function of the plate separationd
~solid line!. All the parameters are as in Fig. 4. The dashed line shows
approximation toPhyd obtained by replacing the ion density in the integr
of Eq. ~29! by the PB ion density.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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F~z![2kBT
dB~z!

dz
~35!

represents the force between two planar ion layers sepa
by a distancez. The following behavior ofF(z) can be in-
ferred from Fig. 3. At interlayer separationsz,dhc52.9 Å
F(z) is positive ~repulsive!. At larger z the value ofB(z)
increases from its large negative value atz5dhc to zero over
a few angstroms, leading to a strongly attractive~negative!
F(z). A closer inspection of Fig. 3 shows thatF(z) is oscil-
latory, due to the local maxima and minima ofB(z). As we
shall see below, these fine details are smoothed away w
two diffusive layers of finite thickness interact.

The behavior ofPhyd in Fig. 11 can now be understoo
as follows. Most of the counterions are concentrated n
the two plates, in layers whose thickness is of ord
b51.06 Å. Note thatb is small compared todhyd.7 Å.
Whend.dhyd these two layers do not interact directly wi
each other through the short-range interaction. Ions in
two sides of the midplane interact with each other, leading
a negative~attractive! Phyd. As d is decreased towardsdhyd,
larger and larger ion densities come into contact throu
F(z) and the magnitude of the negativePhyd increases ac-
cordingly. The gradual increase in the magnitude ofPhyd

reflects the algebraic decay of the density profile near e
layer. Whend decreases below;2dhyd.14 Å, the magni-
tude of Phyd increases more rapidly, as the ions in the tw
layers interact with ions in the midplane region.

The behavior ofPhyd changes whend decreases below
dhyd. Most of the contribution toPhyd now comes from the
interaction between the dense counterion layers near the
plates. Asd decreases these layers are separated by c
spondingly decreasing distances. The hydration pres
follows roughly the structure ofF(z). It is strongly attractive
for d*dhc and repulsive ford,dhc. The fine details of
F(z) are smoothed due to the thickness of the diffusive
layers.

As the plate separation decreases belowdhc towards
contact Phyd tends to zero, as it should sinc
F(0)52kBT(dB/dz) uz5050. One implication of this resul
is that Pm returns to be the dominant contribution to th
pressure, even for high surface charges. Another implica
is that the short-range interaction becomes unimportant
in PB theory, the ions in the region between the two pla
become essentially a confined ideal gas, and their total n
ber is determined by charge neutrality. ThusPm coincides
with the PB pressure matching thenominal surface charge
densitys. This is seen clearly in Fig. 7.

3. Small plate separations

In experiments, the actual surface charge is usually
exactly known, because the number of ions dissociating fr
the surface is uncontrolled. The PB charge is then fitted
the large separation behavior. This charge can be sig
cantly smaller than the actual surface charge, as discu
above. The interpretation of our results is then as follows.
plate separations below approximately 20 Å, an attrac
force appears, due toPhyd. This force can reduce the ne
repulsion, or even induce a net attraction, depending on
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surface charge on the plates. As the plate separa
decreases below the range of the hydration interac
dhyd.7 Å, Phyd decreases and eventually tends to zero. T
pressure then coincides with the PB pressure matching
nominalsurface charge. As was pointed out in Ref. 28, t
leads to an apparent strong repulsive force when comp
with the PB curve fitted to the large separation behavior.
an example, the pressure corresponding tos50.25 C/m2.
1 e/64 Å2 is shown in Fig. 12 as a function ofd ~solid line!
using a linear scale. The dashed line shows the PB pres
curve using an effective surface charge chosen to match
large d behavior of the solid line. When the two lines a
compared, a strong~apparent! repulsive contribution is seen
in the solid line belowd.5 Å, and an attractive contribu
tion is seen for 5 Å&d& 15 Å.

4. Divalent ions

When divalent ions are present in the solution, corre
tion effects become much larger than in the monoval
case18,19and can lead in some cases to attraction between
plates. Discrete solvent effects are also modified, since
effective short-range interaction mediated by the solven
different in the two cases. A numerical calculation of the
potentials is currently not available, but some general ob
vations can be made.

When the charge on the ions is doubled, the electrost
interaction between two ions increases by a factor of 4. T
ion–ion separation where the electrostatic interaction
equal tokBT increases froml B.7 Å to almost 30 Å. On this
electrostatic scale, the water molecular size (;3 Å) is much
smaller than in the monovalent case. Hence we can ex
the solvent to be more similar to a continuous dielectric m
dium. Indeed, the correction to the 1/er potential between
two ~artificial! Na21 ions in water38 is found to be purely
repulsive, and is significant only at separations bel
;10 Å, where the electrostatic interaction is considera

FIG. 12. The total~repulsive! pressure between two plates with surfa
chargeusu50.25 C/m2.1 e/64 Å2, as a function of the plate separationd,
using a linear plot~solid line!. All other parameters are as in Fig. 4. Th
pressure is compared with the PB pressure curve fitted to the large se
tion behavior, withuseffu.0.09 C/m2.1 e/180 Å2 ~dashed line!.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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larger thankBT. Thus we expect discrete solvent effec
resulting from effective ion–ion potentials, to reduce in t
divalent case, whereas correlation effects, which are no
cluded in our model, increase.

Let us now comment on the effective ion–surface pot
tial, which is not taken into account in the present work. T
distance from the charged plate, where the electrostatic i
surface interaction is equal tokBT, decreases fromb in the
monovalent case tob/2 in the divalent case. On this smalle
scale, the discreteness of the solvent becomes more
nounced. Hence we expect the importance of the effec
ion–surface potential to increase in the divalent case, as
posed to that of the effective ion–ion potential. This effe
lies outside the scope of the present work and merits a s
rate study.

VI. CONCLUDING REMARKS

Summarizing our results on the pressure, we find t
hydration effects can be understood as arising from two c
tributions. The first contribution is the change in the m
plane ion density. This contribution dominates at large pl
separations and can be understood in terms of an effec
PB surface charge in our model. The effective PB charg
smaller than the nominal charge due to the accumulatio
counterions in the vicinity of the charged plates. Thus
pressure is reduced relative to PB theory, using the s
surface charge.

As an alternative viewpoint, the PB surface charge c
be chosen to match the large plate separation of the pres
in our model. When this is done, an apparent repulsive fo
appears in our model at very small plate separation
(&5 Å), as compared with the fitted PB pressure.

The second contribution to the pressure is the direct
vent mediated attraction between ion pairs in the two hal
of the system. This latter term can become dominant at p
separations between;5 Å and ;20 Å. It can induce a ne
attractive interaction between the two plates when the
face charge is high.

Attraction between like-charged surfaces is never p
dicted by PB theory.39,40 On the other hand, mechanism
involving correlations can lead to attraction. Several a
proaches have shown that ion–ion correlations can have
effect, in the framework of the primitive model.17–19In prac-
tice, this attraction can be strong enough to overcome
mean field repulsion when divalent ions are present in
solution. When there are only monovalent ions in the so
tion, ion–ion correlations have a much smaller effect. A
other mechanism that can lead to attraction is the van
Waals force, arising from correlations between the polari
tions on the two surfaces. As we find in this work, solve
mediated forces, related to ion–solvent correlations, are
other mechanism that can induce intersurface attraction
some cases~monovalent ions, small separation, large surfa
charge! they are the leading mechanism for attraction.

A strong deviation from PB predictions is indee
measured41,42 between charged surfaces in aqueous solu
at separation below;20 Å. The force includes an oscillator
contribution, with a period corresponding to the water m
lecular size. This force is due to the structuring of water
Downloaded 27 Feb 2001 to 132.66.16.6. Redistribution subject to 
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layers between the surfaces. In addition to this oscillat
contribution, an additional strong contribution is seen, wh
is often referred to as the hydration force.1,41 The aqueous
pair potential model of Ref. 28 was a first step towards
understanding of this force. A more realistic picture w
probably emerge if a proper effective ion–surface interact
will be included, in addition to the effective ion–ion intera
tion. Furthermore, the modification to the ion–ion effecti
potential in a confined geometry may also be important.
order to assess the importance of these effects, further s
lation results are needed as an input to the model.

The aqueous pair potential and the free energy~1! in-
volve various approximations, which are discussed ext
sively in Refs. 33 and 43. Nevertheless, the large modifi
tion to the PB pressure, as obtained also using the AH
approximation,31,32,35indicates that the solvent effects on th
ion distribution are a crucial ingredient in the origin of h
dration forces.28,44The semiquantitative agreement of our r
sults with the AHNC approximation indicates that our fo
malism captures the important effects and suggests its fur
application in nonplanar geometries, where the AHNC a
proximation is too difficult to apply.
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APPENDIX: DERIVATION OF THE PRESSURE

The free energy of the system is given by the su
V5VPB1DV with VPB andDV defined as follows:

VPB5
e

8pE0

dS dC

dz D 2

dz1kBTE
0

d

(
i

ci S ln
ci

z
21Ddz,

DV5
1

2
kBT(

i , j
E

0

d

dzE
0

d

dz8 ci~z!cj~z8!Bi j ~z82z!.

~A1!

We now imagine that the separation between the two pla
is increased fromd to d1dz by adding a ‘‘slice’’ of width
dz between the planesz0 and z01dz. We map the regions
0<z<z0 andz0<z<d in the original system to the region
0<z<z0 andz01dz<z<d1dz in the modified system, re
spectively. We then have

dVPB5
e

4pE0

d

dz S dC

dz D dS dC

dz D1kBTE
0

d

dz(
i

dci ln
ci

z

1dzF e

8p S dC

dz D 2

1kBT(
i

ci S ln
ci

z
21D G

z5z0

.

~A2!
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The first term can be integrated by parts. With the co
ventions described above, the boundary terms can be wr
as follows:

Cd
dC

dz U
0

z0

1Cd
dC

dz U
z0

d

5C~z0!FdCnew

dz
~z0!2

dC

dz
~z0!

2
dCnew

dz
~z01dz!1

dC

dz
~z0!G

52C~z0!
d2C

dz2
~z0!dz, ~A3!

where use of the boundary conditions atz50 andz5d has
been made. Using this relation and the Poisson equation~5!,
we obtain

dVPB5dzF(
i

eiCci1
e

8p S dC

dz D 2

1kBT(
i

ci S ln
ci

z
21D G

z0

1E
0

d

dz(
i

dciFeiC1kBT ln
ci

z G . ~A4!

To computedDV, DV can be separated to the followin
three terms:

DV5
1

2
kBT(

i , j
E

0

z0
dzE

0

z0
dz8ci~z!cj~z8!Bi j ~z82z!

1
1

2
kBT(

i , j
E

z0

d

dzE
z0

d

dz8ci~z!cj~z8!Bi j ~z82z!

1kBT(
i , j

E
0

z0
dzE

z0

d

dz8 ci~z!cj~z8!Bi j ~z82z!.

~A5!

The variation ofci in these three terms gives

dDV15kBT(
i , j

E
0

d

dzE
0

d

dz8 ci~z!dcj~z8!Bi j ~z82z!.

~A6!

The variation of the third term in Eq.~A5! gives two addi-
tional contributions, one from the variation ofB(z82z) un-
der the insertion of the ‘‘slice’’ atz0 ,

dDV25dz•kBT(
i , j

E
0

z0
dz

3E
z0

d

dz8ci~z!cj~z8!
dBi j

dz
~z82z!, ~A7!

and the other from the integration over the ‘‘slice’’ itself,

dDV35dz•kBT(
i , j

E
0

d

dzci~z0!cj~z!Bi j ~z2z0!. ~A8!

Summing up all the contributions todV we have
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dV5dVPB1dDV11dDV21dDV3

5dz(
i

ci~z0!3H e

8p S dC

dz D 2

~z0!1eiC~z0!

1kBTF ln
ci~z0!

z
21G

1kBT(
j
E

0

d

dzcj~z!Bi j ~z2z0!J
1E

0

d

dz(
i

dci~z!3H eiC~z!1kBT ln
ci~z!

z

1kBT(
j
E

0

d

dz8cj~z8!Bi j ~z82z!J
1dz kBT(

i j
E

0

z0
dzE

z0

d

dz8ci~z!cj~z8!

3
dBi j

dz
~z82z!. ~A9!

Using the equilibrium equation~7! this reduces to

2
dV

dz
5kBT(

i
ci~z0!2

e

8p S dC

dz D 2U
z0

2kBT(
i j

E
0

z0
dzE

z0

d

dz8ci~z!cj~z8!

3
dBi j

dz
~z82z!. ~A10!

If all the ion species interact through the same short ra
interaction, Eq.~A10! reduces to Eq.~18!.
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