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Hydration interactions: Aqueous solvent effects in electric double layers

Yoram Burak and David Andelman
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69 97
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A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The
short-range interaction is accounted for by adding a quadratic nonlocal term to the Poisson-Boltzmann free
energy. The model is used to study solvent effects in a planar electric double layer. The counterion density is
found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease
at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the
plate is dominated only by counterions. Further away from the plate the density distribution can be described
using a Poisson-Boltzmann theory, with an effective surface charge that is smaller than the actual one.

PACS number~s!: 61.20.Qg, 82.45.1z, 61.20.Gy, 68.45.2v
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I. INTRODUCTION

Electrolytes, in contact with charged surfaces or mac
ions, play an important role in determining the properties
many biological and chemical systems. One of the m
widely used tools for studying ions in aqueous solutions
the Poisson-Boltzmann~PB! theory@1–6#. The mathematica
and conceptual simplicity of this theory makes it very a
pealing both for numerical computation@7# and for gaining
insight into the underlying physical principles. Although th
theory contains important simplifications, it has proven to
a useful and accurate tool in the study of systems such
colloidal dispersions@8,9#, biological membranes@6#, poly-
electrolytes @10#, and complex systems, e.g., proteins
DNA interacting with charged membranes@11–13#.

The Poisson-Boltzmann theory is obtained by making t
simplifying approximations. The first approximation is th
treatment of the electrostatic interactions on a mean-fi
level. The ions are treated as independent charged part
interacting with an external electrostatic potential, deriv
self-consistently from the mean charge density distributi
Thus correlations between ion positions are not taken
account. The second approximation is the treatment of
ions as pointlike objects, interacting only through the el
trostatic interaction in a dielectric medium. In reality, ions
aqueous solutions have more intricate interactions@5#. These
include a non-Coulombic interaction between ion pa
which is mainly a short-range steric repulsion, interactio
with the polar solvent molecules, and short-range inter
tions with the confining charged surfaces.

Various models have been proposed for the inclusion
effects not accounted for by PB theory. These include liq
state theory approaches@14–18#, field theory expansions
@19,20#, computer simulations@21–23#, and other modifica-
tions to the PB theory@24–27#. Most of these models remai
within the framework of the so-called ‘‘primitive model,’’ in
which the interaction between the ions is modeled a
purely repulsive hard-core interaction. On the other ha
relatively few works have explicitly addressed the discr
nature of the solvent molecules@18,28–30#. Clearly, the re-
placement of the solvent by a continuous medium canno
precise when the interion distance is comparable to the
vent molecular size. Therefore, when the ions reach h
PRE 621063-651X/2000/62~4!/5296~17!/$15.00
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densities the discreteness of the solvent is expected to
an important effect on the ionic distribution. This is of pa
ticular importance for water. Due to its high polarity, th
strong screening of the electrostatic interaction~represented
by the dielectric constant! is modified at small ion separa
tions.

Using the surface force apparatus@5#, it is possible to
measure precisely the force between charged mica pla
These measurements supply evidence for the importanc
the solvent structure in aqueous solutions@31,32#. At inter-
plate separations below approximately 20 Å, significant
viations are found from the prediction of the Derjagui
Landau-Verwey-Overbeek~DLVO! theory @8,33#. The
measured force is oscillatory, or consists of a series of st
with a period corresponding to the water molecular size. O
cillatory forces are known to arise as a result of the solv
structuring in layers between surfaces@5#. However, a repul-
sive contribution is found in addition to the oscillatory forc
at plate separations below several nanometers@31,32#. This
repulsive force is often referred to as the ‘‘hydration force
@5,31#, and its origin is not yet completely understood@29#.

A. Aqueous pair potential model

Recently @34,35#, an aqueous pair potential model wa
proposed for electrolytes, in which the effect of the solve
on the ions is described as a short-range two-body interac
between the ions. The solvent is replaced by a continu
dielectric medium as in PB theory, but the ions also inter
through a two-body short-range hydration interaction@34#.
This is shown schematically in Fig. 1.

This aqueous pair potential model@34,35# involves sev-
eral simplifying assumptions. One is that the effect of t
solvent can be represented as a linear superposition of
body potentials between all ion pairs. Another simplificati
is that the effective potential between the ions is taken as
effective potential in the bulk, regardless of the ion conce
tration, and of the geometry imposed by the charged s
faces. Finally, a short-range surface-ion effective poten
should be included in addition to the ion-ion effective pote
tial. Despite the simplifications made in the aqueous p
potential model, it offers a first step toward a qualitati
understanding of solvent effects on the ion distribution,
particular near highly charged surfaces.
5296 ©2000 The American Physical Society
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PRE 62 5297HYDRATION INTERACTIONS: AQUEOUS SOLVENT . . .
FIG. 1. Schematic description of the aqueo
pair potential model. An aqueous ionic solutio
in contact with a charged plate in~a! is replaced
in ~b! by ions in a continuum dielectric medium
having a dielectric constant«, with electrostatic
and short-range interactionsui j (r )5ui j (ur u). The
z coordinate designates the distance from t
charged plate, withz50 corresponding to the
distance of closest approach of the ions to t
plate. The distance of closest approach is equa
dhc/2, wheredhc is the hard-core diameter of th
ions.
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B. Effective ion pair interaction

For short-range ion-ion interaction, the so-called poten
of mean force between ions in solution can be used. Po
tials of mean force are defined as2kBT loggij(r ), where
gi j (r ) are the ion-ion radial distribution functions for io
pairs of speciesi andj. The radial distribution functions hav
been calculated numerically for a single ion pair immersed
an aqueous solution using molecular dynamics techniq
@36–38#.

An alternative approach has been proposed in R
@39,40#. In this approach, a Hamiltonian consisting of a pa
wise effective potential between the ions is obtained us
the so-called ‘‘reverse Monte Carlo’’ approach. The ion-i
radial distribution functions are first calculated using a m
lecular dynamics simulation for a system including solve
molecules and a finite concentration of ions. The ion-
effective potential in the system without the solvent is th
adjusted iteratively until the same distribution functions a
obtained using Monte Carlo simulations.

The different available calculations of potentials of me
force differ in their quantitative predictions. This may be
result of high sensitivity of the models to detailed featu
used for the water molecules and for the intermolecular
teractions@36#. However, all the potentials of mean force
well as the effective potentials@39# are qualitatively similar
@41#. Thus, for the purpose of the present work, aiming a
qualitative understanding of solvent effects, any one of th
potentials may be used.

At large ionic separations the ion-ion effective potentia
well approximated by a screened electrostatic interact
with the water dielectric constant in the continuum limit. A
a short ionic separation, the difference between the tota
fective potential and the screened electrostatic interaction
short-range potential reflecting the structure of water m
ecules in the ion vicinity. Figure 2 shows the short-ran
contribution~excluding the screened electrostatic part! to the
effective potential calculated between Na1 - Na1 pairs in the
reverse Monte Carlo approach@39#. Below about 2.9 Å, the
electrostatic repulsion between the ions becomes unscree
Therefore, it is much larger than the screened repulsion
the dielectric medium, and the effective potential is stron
repulsive. The unscreened electrostatic potential leads t
effectively enlarged hard-core separation between the i
relative to a hard-core diameter of about 2.3 Å used in
short-range part of the bare ion-ion potential. At larger se
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rations, the effective potential is oscillatory, and mainly
tractive. It has a distinct minimum at an ion-ion separation
about 3.6 Å, followed by a maximum and a second minimu
at approximately 6 Å.

C. Present work

The replacement of the discrete solvent by a continu
medium, with electrostatic and short-range interactions
tween the ions, is a considerable simplification. Still the s
tistical mechanical treatment of an electrolyte solution in t
model is difficult, and requires the use of further approxim
tions, or simulations.

The anisotropic hypernetted chain~AHNC! approxima-
tion @15# was previously used to calculate the effects of h
dration interactions in the aqueous pair potential mo
@41,42#. When the ion concentration is large enough, e
near a highly charged surface, the hydration interaction
found to have a significant effect on the distribution of io
in the solution. It was also proposed that so-called repuls
‘‘hydration forces’’ between surfaces arise from the ion
structure near highly charged surfaces. According to this

FIG. 2. Short-range effective potential between Na1 ion pairs,
adapted from Ref.@39# using simulations in a bulk NaCl solution o
concentration 0.55 M, at room temperature@44#. The potential is
shown in units ofkBT, as a function of the distance between the i
centers. For ion separations smaller than 2.9 Å a hard-core inte
tion was assumed. The Coulomb interaction is subtracted to s
only the short-range hydration effect due to the water molecule
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5298 PRE 62YORAM BURAK AND DAVID ANDELMAN
scription, at large distances from the plate, the ion distri
tion follows a PB profile with a reduced effective surfa
charge. When two plates approach each other, the ions
the surfaces come into contact, giving rise to an appa
new repulsive force.

In the present work a simple description for ions intera
ing through electrostatic and short-range attractive inte
tions as mediated by the solvent molecules is introduced.
apply this description to the aqueous pair potential mod
Our aim is limited to describe the important effects of t
short-range interaction, and not to provide an accurate
for their calculation. Therefore our model follows PB theo
as closely as possible, and describes the short-range int
tion using a simplified term added to the free energy. T
advantage of this approach over more elaborate treatm
such as the AHNC approximation@41,42# is that it provides
simple equations that can be treated numerically and ana
cally with relative ease, as well as allowing extensions
nonplanar geometries. In a planar geometry, we show
the effect of the ion-ion hydration interaction can be und
stood as a perturbation over the PB results. An increas
the concentration of counterions near the charged surfac
found, and this results in an apparent surface charge whic
reduced relatively to the PB theory.

In addition to the calculation of charge distributions, t
effect of the hydration interaction on the force betwe
charged particles or surfaces can be studied, and will be
sented elsewhere@43#. Since we will not discuss intersurfac
forces in this paper, it is worthwhile to mention that th
results obtained using our model are in good agreement
AHNC calculations@44#, and may provide an explanation t
the hydration forces as observed in surface force meas
ments@31,32#. For high surface charge and plate separati
up to approximately 20 Å, important modifications of the P
predictions are found.

The outline of the paper is as follows. Section II prese
the model. In Sec. III we apply the model to a single charg
plate, present numerical results for the ion density profi
and discuss the modifications to the PB theory due to
addition of short-range interactions. In Sec. IV we pres
analytical results in the low salt limit. We calculate the e
fective PB surface charge and the effect of the hydrat
interaction on the density profile of counterions in a syst
with no added salt.

II. MODEL

A. Free energy

We start from an approximated free energy, written a
functional of the various ion densities. We choose the e
trostatic boundary conditions to be of fixed surface cha
densities, and write the free energy as a sum of the usua
term and a correction term, due to hydration, as will be
plained below:

V5VPB1DV. ~1!

We discuss first how the PB free energy is obtained, and t
generalize this result to include the short-range hydra
interaction.
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1. Poisson-Boltzmann free energy

The Hamiltonian of the system is

H5
1

2 (
i
E

V
d3r eir i~r !f~r !1

1

2 R
]V

d2r s s~r s!f~r s!

~2!

whereV is the volume occupied by the electrolyte solutio
s(r s) is the surface charge density of immobile charges
the boundaries]V, andei is the charge of thei th ion species.
The ion densitiesr i(r ) are

r i~r ![(
j 51

Ni

d~r2r i
j !, ~3!

wherer i
j is the position of thej th ion of thei th species, and

the electrostatic potentialf(r ) is a function the different ion
positions,

f~r !5(
j
E

V
d3r 8

ejr j~r 8!

«ur2r 8u
1 R

]V
d2r s

s~r s!

«ur2r su
, ~4!

where «578 is the dielectric constant of water. The P
theory is obtained by using a mean-field approximation
the electrostatic interaction. The Hamiltonian in Eq.~2! is
first replaced by a mean-field Hamiltonian, where the el
trostatic potentialf(r ) is replaced by an external fieldC(r ).
In the thermodynamic limit the free energy can then be w
ten as a functional of the mean densities of the ion spec
ci(r )5^r i(r )&MF ,

VMF5kBTE
V
(

i
ciF log

ci

z i
21Gd3r1

1

2EV
(

i
eiC~r !

3ci~r !d3r1
1

2 R
]V

d2r ss~r s!C~r s!, ~5!

wherekBT is the thermal energy, andz i is the fugacity of the
i th ion species. The mean-field approximation is obtained
requiring that the external potentialC(r ) is the thermody-
namical average of Eq.~4! in the system with the mean-fiel
HamiltonianC(r )5^f(r )&MF , i.e.,

C~r !5(
i
E

V
d3r 8

eici~r 8!

«ur2r 8u
1 R

]V
d2r s

s~r s!

«ur2r su
. ~6!

This relation is equivalent to the Poisson equation

“

2C52
4p

« (
i

eici ~7!

supplemented by the boundary condition

“C•n̂urs
52

4p

«
s~r s! on the charged surfaces,~8!

where the normal vectorn̂ points away from the charge
surfaces into the volume occupied by the ionic solution. U
ing this boundary condition and Eq.~7!, the second and third
terms of Eq.~5! can be re-expressed as



he

tio
r
x
ti

-

s

e

ces.

tion

B
ems

-
p-
the
to

an-

in
ts,
ote

ge

ore,
the

ion
by

h

en-
nd
in
n in
in

he

e-

alid
.
n

PRE 62 5299HYDRATION INTERACTIONS: AQUEOUS SOLVENT . . .
1

2EV
(

i
eiC~r !ci~r !d3r1

1

2 R
]V

d2r ss~r s!C~r !

5
«

8pEV
~“C!2d3r . ~9!

Substituting this relation into Eq.~5! we obtain the PB free
energy

VPB5
«

8pE ~“C!2d3r1kBTE (
i

ciF log
ci

z i
21Gd3r

1E l~r !S“2C1
4p

« (
i

eici D d3r . ~10!

The first term inVPB is the electrostatic free energy, and t
second term is the entropy of the ions. The fugacityz i in the
second term is equal in PB theory to the bulk concentra
cb,i of the i th ion species,z i5cb,i , as for an ideal gas. Fo
more generalized free energies, a different relation may e
between the fugacity of each ion species, and its respec
bulk concentration. The electrostatic potentialC is a func-
tional of the ion densitiesci , and is determined by the Pois
son equation~7! and the boundary conditions~8! imposed by
the surface charges. Alternatively, in Eq.~10! C is regarded
as an independent field, and a third term containing
Lagrange multiplierl(r ) is added toVPB. The PB equilib-
rium mean densitiesci(r ) result from minimizingVPB. With
the introduction ofl(r ) the minimization is equivalent to
requiring an extremum ofVPB with respect to the three field
ci , C, and l, subject to the boundary condition~8!. By
requiring first an extremum ofVPB with respect toC andci ,
the following relations are obtained:

l5
«

4p
C ~11!

and

ci5z i exp~2beiC!, ~12!

where b51/(kBT) and z i5cb,i . The extremum condition
with respect tol gives the Poisson equation

“

2C52
4p

« (
i

eici . ~13!

Combining these relations, we obtain the PB equation

“

2C52
4p

« (
i

z ieiexp~2beiC!. ~14!

Alternatively, the first two relations, obtained from th
extremum condition with respect toC and ci , can be sub-
stituted into Eq.~10!. Formally, this givesVPB as a func-
tional of l. Using Eq.~11!, the expression obtained forVPB
can be written as a functional ofC,
n

ist
ve

a

VPB52
«

8pEV
~“C!2d3r1 R

]V
sCd2r s

2kBTE
V
d3r(

i
z iexp~2beiC!, ~15!

where the second integration is over the charged surfa
Requiring an extremum of this functional with respect toC
is another way to obtain the Poisson-Boltzmann equa
~14!.

A more formal derivation of the mean field and the P
free energy, and a discussion on its generalization to syst
with nonelectrostatic interactions, are presented in Ref.@45#.
The PB free energy@Eq. ~10!# can also be derived by formu
lating the problem using field theory methods. In this a
proach the mean-field approximation is obtained as
saddle point of the functional integral, and corrections due
ion-ion correlations can be obtained in a systematic exp
sion @19,20#.

2. Inclusion of the hydration interaction

As discussed in Sec. I, our starting point is a model
which the hydration interaction, arising from solvent effec
is described as an effective ion-pair interaction. We den
this short-range potential between ions of speciesi and j at
distancer asui j (r ). The potential is taken as the short-ran
effective potential between ions immersed in abulk ionic
solution having a specific, constant concentration. Theref
ui j (r ) is assumed to be isotropic, and does not depend on
ion positions or the confining geometry.

Our aim is to treat the long-range electrostatic interact
on the mean-field level, as in PB theory. Thus, we begin
considering the free energy of a system placed in somear-
bitrary potential C(r ), where the ions interact with eac
other only through the two-body potentialui j (r ). Due to the
short-range nature of the hydration interaction, the free
ergy can be obtained from a virial expansion of the gra
canonical partition function. Since we will be interested
highly inhomogeneous systems, we perform an expansio
the inhomogeneous ion density. The derivation is given
Appendix A. Including terms up to the quadratic order in t
expansion, we obtain

Vh5kBTE (
i

ciF log
ci

z i
21Gd3r1E (

i
eiciCd3r

1
kBT

2 (
i , j

E ci~r !Ui j ~r2r 8!cj~r 8!d3rd3r 8, ~16!

whereC(r ) is an external potential coupled to thei th ion
charge densityeici . The short-range weighted potentialUi j
in the third term ofVh is defined as

Ui j 512e2bui j (ur2r8u), ~17!

whereui j is the nominal short-range interaction potential b
tween ions of speciesi and j. This form of describing the
short-range interaction is a rather crude approximation, v
only in the low density limit. Its advantage is its simplicity
The free energyVh amounts to setting the direct correlatio
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5300 PRE 62YORAM BURAK AND DAVID ANDELMAN
function c2(ur2r 8u) equal to2U(ur2r 8u), and all higher
order direct correlation functions equal to zero@46#.

Having found the hydration free energyVh , the electro-
static interaction can be treated on the mean-field level. T
is done by consideringC(r ) as the electrostatic potentia
and imposing the self-consistency requirement of the Pois
equation~7!. This is essentially the approximation we us
to derive the PB equation~14!, with the difference that the
free energy of a dilute, noninteracting ion distribution is r
placed by the free energyVh of Eq. ~16!. The result is the
free energy of Eq.~1!, with DV defined as follows:

DV5
kBT

2 (
i , j

E ci~r !Ui j ~r2r 8!cj~r 8!d3rd3r 8. ~18!

We conclude this section with some remarks on the
proach presented above. Important solvent effects are alr
introduced in the PB theory by using an electrostatic int
action with a dielectric constant«578 of water, instead of
the bare electrostatic interaction. In the modified mode
more precise effective potential between the ions is us
The separation of this potential into a long-range elec
static term and a short-range hydration term allows each
these two interactions to be treated in a simple though
proximated form. The virial expansion is a standard cho
for approximating short-range interactions. Such an exp
sion fails for the electrostatic interaction due to its long ran
@47#. On the other hand, the wide success of PB theory d
onstrates that the electrostatic interaction can be treated
well in the mean-field approximation. Therefore, we use t
approximation for the long-range part of the interaction, a
in this respect we remain within the framework of PB theo

The free energy@Eq. ~1!# can also be obtained by rewri
ing the grand canonical partition function as a field theo
partition function. By using a density expansion for t
short-range interaction and a loop expansion for the elec
static interaction, Eq.~1! is obtained up to second order
the density expansion and first order in the electrostatic
tential @48#.

The simplicity of our approach can lead to elegant a
lytical results, but has several limitations. The use of only
second term in the virial expansion implies that we are us
a low density approximation. The validity of such an a
proximation for a bulk fluid can be assessed by conside
B2c, whereB2 is the second virial coefficient in the expa
sion of the pressure, andc is the ion density. Qualitatively, if
B2c is small compared to unity, the correction to the ide
gas behavior is small and truncating the virial expansion
ter the second term is sensible. For nonhomogeneous c
the corresponding quantity is12 ( j*dr 8c(r 8)Ui j (r2r 8). For
the relatively high surface charges considered here, this
tegral approaches values of order unity near the charged
faces, indicating that the approximation should only be
pected to give qualitative results. Another deficiency of
virial expansion to second order can be seen from the
that the direct correlation function is simply2Ui j (r ). This
implies that the hard-core interaction is not described ac
rately in our treatment. A faithful description would requi
the vanishing of the pair correlation functionh2(r ) for sepa-
rations smaller than the hard-core diameter. Hence it sho
be kept in mind that our main concern is to study the effe
is

on

-

-
dy
-

a
d.
-

of
p-
e
n-
e
-

ite
s
d
.

y

o-

o-

-
e
g
-
g

l
f-
es,

n-
ur-
-

e
ct

u-

ld
s

of a short-range interaction with a dominant attractive pa
Finally, the fact that we describe the electrostatic interact
in the mean-field approximation implies that ion-ion corre
tions are ignored, as they are in PB theory. When our
proach is applied for the aqueous pair potential model, th
approximations should also be kept in mind. In particular,
follow Ref. @34#, and do not include an effective ion-surfac
potential@49#.

B. Density equations

The mean density distribution is obtained by minimizin
the total free energyV5VPB1DV. From Eqs.~1!, ~10!, and
~18! we have

V5
«

8pE ~“C!2d3r1kBTE (
i

ci S log
ci

z i
21Dd3r

1
kBT

2 (
i , j

E ci~r !Ui j ~r2r 8!cj~r 8!d3rd3r 8

1E l~r !S“2C1
4p

« (
i

ciei D d3r , ~19!

wherem i andz i5exp(bmi)/lT
3 are the chemical potential an

the fugacity of the ion speciesi, respectively. The thermal d
Broglie wavelengthlT is equal toh/(2pmkBT)1/2, whereh
is the Planck constant andm is the ion mass. Requiring a
extremum ofV with respect toC givesl5(«/4p)C as in
Eq. ~11!. Taking the variation with respect toci then gives

log
ci~r !

z i
1(

j
E cj~r 8!Ui j ~r2r 8!d3r 81beiC~r !50.

~20!

This equation is supplemented by the Poisson equation~7!.
Since Eq.~20! is an integral equation,ci cannot be written as
a simple function ofC as in the PB case. Therefore, a sing
equation forC, analogous to the PB equation, cannot
obtained, and we are left with the two coupled integrodiffe
ential equations~20! and ~7!. These equations should b
solved together to obtain the electrostatic potential and d
sity profiles. In the caseU→0, Eq.~20! reduces to the Bolt-
zmann relationci5z i exp(2beiC), with z i5cb,i . Combin-
ing this relation with Eq.~7! reproduces the PB equatio
~14!.

In order to simplify the set of equations, we assume
same short-range interaction between the different pairs
ion species. Assuming that the charged surfaces are n
tively charged, we chooseui j (r )5u11(r )[u(r ), where
u11(r ) is the short-range effective potential between t
~positive! counterions. This assumption is not exact for t
effective potentials of ions in water@39#. However, since
only the counterions reach high densities, close to the op
sitely charged surfaces, and the coions are repelled from
surface neighborhood, the exact choice of the potent
u12(r ) andu22(r ) is expected to be of only minor signifi
cance.
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We now consider an electrolyte of valencyz1 :z2 , i.e., a
solution of positive and negative ions of chargese65
6z6e, wheree is the electron charge. We designate the s
face charge density on the plate as a constants and the bulk
densities of the positive and negative ions ascb[cb,1 and
cb,2 , respectively. Due to charge neutrality in the bu
cb,25(z1 /z2)cb and similarly, z25(z1 /z2)z where z
[z1 . Equation~20! can then be written as

c6~r !5z6e7bez6C expF2E c~r 8!U~r2r 8!d2r 8G ,
~21!

where c(r )5c1(r )1c2(r ) is the total ion density, and
U(r )5U11(r ) is obtained fromu(r ) using Eq.~17!. From
the Poisson equation~7!, we obtain

“

2C52
4pe

«
~z1c12z2c2!

5
4pe

«
zz1~ebez2C2e2bez1C!

3expF2E c~r 8!U~r2r 8!d3r 8G . ~22!

Note that in addition to the explicit dependence on the
valenciesz6 in Eqs.~21! and~22!, in a more realistic mode
the details of the potentialu(r ) should also depend on th
type of counterion species present in the problem.

III. SINGLE CHARGED PLATE

A. Density equations

After presenting the general formalism let us consider
an example, a single negatively charged planar surface~Fig.
1!. The charged surface is in contact with an electrolyte
valencyz1 :z2 . We designate the axis perpendicular to t
plate as thez axis, and consider the ion solution in the regi
z.0. For simplicity we consider positive and negative io
of the same hard-core diameterdhc. The coordinate of clos-
est approach of the ions to the plate is designated asz50.
Hence the ‘‘real’’ surface lies at a distance of one ion rad
dhc/2 from the actualz50 plate position, as shown in Fig
1~a!. When we refer to conventional PB results, however,
ions are pointlike, and the plate should be understood to
positioned exactly atz50.

Due to the one-dimensional symmetry imposed by
uniformly charged planar plate, the integration in Eq.~21!
can be performed over thex-y plane, leaving us with profiles
depending only onz, the distance from the plate,

c6~z!5z6e7bez6C expF2E
0

`

c~z8!B~z2z8!dz8G ,
~23!

wherec(z)5c1(z)1c2(z) is the total ion density, andB(z)
is the integral ofU(r ) in the plane of constantz. Using
cylindrical coordinates

B~z!52pE
0

`

rdrU~Az21r2!, ~24!
r-

,

n

s

f

s

e
e

e

and the Poisson equation~22! reads

d2C

dz2
5

4pe

«
zz1~ebez2C2e2bez1C!

3expF2E
0

`

c~z8!B~z2z8!dz8G . ~25!

Equations~23! and ~25! are supplemented by the bounda
conditions

dC

dz U
z50

52
4p

«
s,

dC

dzU
z→`

50. ~26!

Finally, the relation betweenz and the bulk densitycb can
be obtained from Eq.~23!. As z→`, C becomes zero, and
c6 assume their asymptotic constant, bulk values. Thus
integrand inside the exponential can be replaced
2(11z1 /z2)cbB(z2z8). Recalling thatc15cb and c2

5(z1 /z2)cb , we obtain

cb5z expF2S 11
z1

z2
DBtcbG , ~27!

where

Bt[E
2`

`

dzB~z!5E d3rU~r ! ~28!

is also equal to 2B2, with B2 equal to the second virial co
efficient. Note thatB(z) andBt are negative for an attractiv
interaction. The limitBtcb→0 is the limit in which the short-
range interaction becomes negligible in the bulk. In this lim
the relation between the bulk density and fugacity of Eq.~27!
tends to the ideal gas relationcb5z5exp(bm)/lT

3 .
Two special cases will be of particular interest in the fo

lowing sections. The first is the case of a monovalent
electrolyte, where we have

c6~z!5ze7beC expF2E
0

`

c~z8!B~z2z8!dz8G
d2C

dz2
52

4p

«
c~z! ~29!

and

cb5z exp~22Btcb!. ~30!

The second case is that of no added salt. The solution c
tains only monovalent counterions (z151, z250). This
case can be obtained by formally taking the limitz→0 of
Eq. ~29!, or by repeating the derivation from Eq.~19! with
only one type of ions, of chargee. The term
2kBT*d3rc log(z) in V is then a Lagrange multiplier adde
to impose the condition*0

`dzec(z)5usu. The following
equations are then obtained:
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c~z!5z0e2beC expF2E
0

`

c~z8!B~z2z8!dz8G ,
~31!

d2C

dz2
52

4pe

«
c~z!,

wherez0 is an arbitrary reference fugacity. The choice ofz0
determines the~arbitrary! position in whichC is zero. Note
that the electrostatic potentialC diverges in the bulk. This
divergence exists also in the usual PB theory, because
system is effectively one dimensional with no screening
added salt. AlthoughC(z) has a weak logarithmic diver
gence, the density of counterions decays to ze
limz→`c(z)50, as it should.

B. Parameters and length scales

For the ion-ion potentialu(r2r 8) we use an effective
potential between Na1-Na1 ion pairs. The potential was ca
culated using a Monte-Carlo simulation@39# for an NaCl
ionic solution of concentration 0.55 M, at room temperatu
The electrostatic interaction between the ions is subtrac
and the net short-range potential is shown in Fig. 2.
ion-ion separations below 2.9 Å, a hard-core interaction
assumed. Figure 3 shows the functionB(z), derived from
this potential, using Eq.~24!. Note thatB(z) has several
local maxima and minima. These correspond to the lo
maxima and minima ofu(r ). Thus the structure ofB(z)
reflects the oscillatory behavior of the effective potential.

We use the effective potential calculated forcb50.55 M,
regardless of the actual bulk ion concentration in the syst
Since the important effects occur near the charged surf
where the ion concentration is much larger thancb , it seems
reasonable to use an effective potential calculated in
presence of a rather high salt concentration. The choic
cb50.55 M is still somewhat arbitrary, and we rely on th
fact that the dependence of the effective potential on the
concentration is weak@39#.

FIG. 3. The effective interaction in a planar geometryB(z)
obtained from the potential of Fig. 2, using Eq.~24!. The oscillating
structure of the radial potential shown in Fig. 2 is apparent in
secondary minima ofB(z).
he
y

,

.
d,
r
s

al

.
e,

e
of

n

It is useful to employ two length scales that character
the PB density profiles@6#. The Gouy-Chapman length, de-
fined asb5«kBT/(2peusu), characterizes the width of th
diffusive counterion layer close to a single plate charg
with a surface charges, in the absence of added salt. Th
Debye-Hu¨ckel screening lengthlD5(8pcbe2/«kBT)21/2,
equal to 19.6 Å forcb50.025 M at room temperature, cha
acterizes the decay of the screened electrostatic interactio
a solution with added salt. The strength of the electrost
interaction can also be expressed using theBjerrum length
l B5e2/(«kBT). This is the distance at which the electrosta
interaction between two unit charges becomes equal to
thermal energy. The Bjerrum length is equal to about 7 Å in
water at room temperature.

The inclusion of hydration interactions introduces ad
tional length scales in the system. For the interaction sho
in Figs. 2 and 3, the range of the interactiondhyd can be seen
to be approximately 7 Å, over twice the hard-core diame
dhc52.9 Å. The strength of the hydration interaction is cha
acterized byBt.2(7.9 Å)3, as is calculated from Eq.~28!.

C. Numerical results

Equations~23! and ~25! are a set of three nonlinear inte
grodifferential equations. We treat them numerically usi
an iterative scheme, based on the assumption that the p
tive ion density profile is dominated by the electrostatic
teraction. We start with the analytically known PB profi
close to a single charged plate, and iteratively calculate c
rections to this profile, as result from Eqs.~23! and~25!. For
a 1:1 electrolyte we iteratively solve the equation

d2C (n)

dz2
5

8pe

«
z sinh~beC (n)!

3expF2E
0

`

c(n21)~z8!B~z2z8!dz8G , ~32!

wherec(z)5c1(z)1c2(z) is the total ion density, and the
superscriptn stands for thenth iteration. Forn.0,

c6
(n)~z![ze7beC(n)

expF2E
0

`

c(n21)~z8!B~z2z8!dz8G ,
~33!

and the zeroth order densitiesc6
(0) are taken as the densit

profiles generated by the PB equation~14!. Boundary condi-
tions ~26! are satisfied by the electrostatic potentialC (n) in
all the iterations. Note that using our iterative scheme,
~32! is an inhomogeneous differential equation, because
integral in the exponential is a known function ofz, calcu-
lated numerically in then21 iteration. A similar iterative
scheme, based on Eq.~31! can be used when only counter
ons are present in the solution.

Figure 4 shows the calculated density profile of the co
terions on a semilogarithmic scale, for a charged plate wit
surface charge,usu50.333C/m2, corresponding to an area o
approximately 48 Å2 per unit charge. This is a typical hig
surface charge obtained with mica plates. It corresponds
Gouy-Chapman lengthb51.06 Å, at a temperature of 298 K
with «578. No salt is present in the solution. The calculat

e
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density profile~solid line! is compared to the PB predictio
~dotted line!. The short-range attraction favors an increas
concentration of counterions in the vicinity of the charg
plate. This results in an increase of the concentration rela
to the PB prediction. For a surface charge as in Fig. 4,
increase of the concentration is seen at distances from
plate up to approximately 4.5 Å. The overall number
counterions is fixed by the requirement of charge neutra
Therefore, the increase in the density of counterionsnear the
plate is balanced by a reduced concentrationfurther away.

When salt is present in the solution, the short-range att
tion draws additional ions from the bulk solution to the d

FIG. 4. Counterion density profile~solid line! obtained from a
numerical solution of Eq.~31!, with the hydration interaction as in
Fig. 3, plotted on a semilog plot. No salt is present in the soluti
The surface charge isusu50.333 C/m2. The dielectric constant is
«578, and the temperature isT5298 K. The dotted line shows th
corresponding density profile obtained from the PB equation.

FIG. 5. The ratioc1 /c1
PB between the positive ion density ob

tained from Eq.~29! and the value obtained from PB theory, for
surface chargeusu50.333 C/m2 and several values ofcb . Other
parameters are as in Fig. 4. The three values ofcb : 0.1, 0.025, and
0.00625 M correspond to Debye-Hu¨ckel screening lengthslD

.9.8, 19.6, and 39.2 Å, respectively.
d

e
n
he
f
.

c-

fuse electrical layer near the plate. This can be seen in Fig
in a comparison of counterion profiles for different values
the bulk concentrationcb . For each salt concentration, th
figure shows the ratio between the counterion density and
density predicted by PB theory, as a function of the dista
from the plate. The dotted line shows the result in the no-
limit. As the salt concentration increases, the counterion c
centration increases relative to the PB concentration at
distances from the charged plate. Qualitatively, however,
hydration effect on the counterion profile is similar in all th
curves. As long as the Debye-Hu¨ckel screening length is
large compared to the Gouy-Chapman length,b51.06 Å, the
density profile in the vicinity of the plate is dominated by th
balancing counterions, and the salt has only a small effe

The effect of the hydration interaction is strongly depe
dent on the surface charges. As s is increased, the ion
density near the surface increases too. The exponential in
~29! deviates more strongly from unity, leading to a larg
deviation from PB theory. The dependence ons is demon-
strated in Fig. 6. The ratio of the positive ion density to
PB value is shown for three values of the surface charge.
effect of the hydration potential is very minor for small su
face charge,usu50.0333 C/m2 ~dotted line!, where the de-
viation from PB is less than 2% at its maximum, and co
siderable for a surface charge of 0.333 C/m2 ~dashed line!,
where the deviation from PB reaches almost 40%.

The numerical scheme, described above, requires sev
iterations to converge fully. It is interesting to note, howev
that the first iteration captures most of the effect of the sh
range interaction. This indicates that the density profile
dominated, as we assumed, by the electrostatic interac
and assures that the convergence of the iterative schem
good with the PB density profile as the zeroth order appro
mation. On the theoretical level this indicates that the eff
of the hydration interaction can be seen as a perturba
over the PB results. The fact that the first iteration provide
good approximation to the full iterative result can lead
further analytical approximations. For example, the corr

.

FIG. 6. The ratioc1 /c1
PB between the positive ion density ob

tained from Eq.~29! and the value obtained from PB theory, fo
surface chargesusu50.333 C/m2 ~dashed line!, 0.1 C/m2 ~solid
line! and 0.0333 C/m2 ~dotted line!. The bulk salt concentrationcb

is 0.025 M. Other parameters are as in Fig. 4.
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5304 PRE 62YORAM BURAK AND DAVID ANDELMAN
tions to the density profiles, in the no added salt limit, a
studied analytically in Sec. IV, based on this observation

As an example for the results of the first iteration, w
compare, in Fig. 7, the correction to the counterion den
profile obtained in the first iteration~dashed line!, with the
full iterative result~solid line!. We use a high surface charg
of 0.333 C/m2, where the differences between the exact p
file and that of the first iteration are relatively pronounce
The two density profiles differ by at most 3.2%, where t
ion density deviates from the PB value by 30%. For sma
surface charge the results obtained in the first iteration
even better.

D. Contact density and the contact theorem

The contact density of the ions is barely modified as co
pared with the PB prediction. This is evident in Figs. 4–
As long as the Debye-Hu¨ckel screening length is large com
pared to the Gouy-Chapman length, or the hydration inte
tion is negligible in the bulk, the modification remains sma
This result can be obtained from a generalization of the
contact theorem@5,50#

Pbulk5(
i

ci~0!2
2pb

«
s2, ~34!

wherePbulk is the bulk pressure of the ionic solution. Equ
tion ~34! is derived in detail for the free energy used in o
model in Ref.@43#. It is obtained from the equality of the
internal pressure in the electrolyte solution at different d
tances from the charged plate. Far away from the char
plate the pressure must be equal to the bulk pressure o
ionic solution, because the densities approach their bulk
ues and the electrostatic potential becomes constant. A
contact plane between the plate and the solution, the pres
involves only an electrostatic contribution and an osmo
contribution, as in PB theory. This is due to the fact that
our model no short-range interaction between the plate

FIG. 7. The positive ion density profile obtained after one ite
tion of Eq. ~32! ~dotted line!, compared to the full solution of Eq
~29! ~solid line!. Parameters are as in Fig. 5. The maximal deviat
between the two density profiles is 3.2%, where the deviation fr
PB is approximately 30%.
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the ions is included. Equating the pressure at the con
plane and far away from the plate results in Eq.~34!.

The contact density, as expressed by Eq.~34!, differs
from the PB prediction only due to the change in the act
value of Pbulk . This change is negligible if the short-rang
interaction is not of importance in the bulk. In addition, if th
surface charge is high, such thatb!lD , Pbulk is negligible
compared to the second term in the right hand side of
~34!. Thus the contact density remains very close to the
prediction. In the no-salt limitPbulk is zero, and the contac
density coincides exactly with the PB result:c1(0)
5(2pb/«)s2.

IV. ANALYTICAL SOLUTIONS

The simplicity of the model makes it possible to obta
various analytical results. The effect of the hydration on
ion distribution can be characterized by several quantit
such as the magnitude of the deviation from the PB re
and the effective PB surface charge density seen at a dist
from the plate. Using several simplifying assumptions it
possible to obtain analytical expressions for these quanti

First we assume that the hydration interactions can
neglected in the bulk, i.e.,Btcb!1. In this case, the effect o
the hydration potential is significant only in the vicinity o
the charged surface, where the ion density becomes larg
addition, the Debye-Hu¨ckel screening lengthlD is taken to
be large compared to the Gouy-Chapman lengthb
5e/(2p l Busu). Since lD@b, the negative coion density
near the negatively charged surface can be neglected c
pared to the positive counterion density. Far away from
charged plate, the system is well described using the
equation, with an effective surface charge densityseff differ-
ent from the actual charge densitys. The result of the above
two simplifying assumptions is that the salt is of minor im
portance in the region where the effective surface charg
determined. The effective surface charge can then be infe
by considering the case in which only counterions a
present in the solution~no added salt!.

Equation~31! can now be recast in a simpler form, b
consideringh[ log(c/z0), as expressed by Eq.~31!, and tak-
ing its second derivative

d2h

dz2
5

4p

«
be2z0eh2E

0

`

z0eh(z8)
d2B~z2z8!

dz2
dz8. ~35!

The PB density profilecPB(z)[z0eh0(z) for the same
surface charge satisfies the equationd2h0 /dz2

5(4pbe2z0 /«)exp(h0). Its exact solution is known to be

cPB~z!5z0eh0(z)5
1

2p l B

1

~z1b!2
. ~36!

Note that only in the PB equationh(z) is the reduced elec
trostatic potentialeC(z)/kBT. From the generalized contac
theorem@Eq. ~34!#, the surface density in the no added s
case and in the presence of one plate isc(0)52pbs2/«, as
in PB theory. Therefore,

h~z50!5h0~z50!. ~37!

-

n
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From the derivative ofc(z) @Eq. ~31!#, we find

dh

dz
52be

dC

dz
2E

0

`

dz8c~z8!
dB~z2z8!

dz
, ~38!

and, using boundary condition~26!,

dh

dz U
z50

5
dh0

dz U
z50

1E
0

`

dz8c~z8!
dB~z8!

dz8
, ~39!

where the odd parity ofdB/dz has been used. This relatio
can be used together with Eq.~37! as a second boundar
condition atz50, instead of the boundary condition of va
ishing dh/dz at infinity.

Linearizing Eq.~35! with respect to

w[h2h05 log~c/cPB!, ~40!

which is valid for relatively small deviations from the P
profile, results in the following equation:

d2w

dz2
2

4p

«
be2cPB~z!w~z!

52E
0

`

dz8„11w~z8!…cPB~z8!
d2B~z2z8!

dz2
.

~41!

This equation can be further simplified by omittingw(z8)
from the integrand in the right hand side. This approximat
was motivated in Sec. III C, and is equivalent to stopping
iterative scheme@Eq. ~32!# after the first iteration. The den
sity profile is then replaced by the PB density profile in t
term that involves the hydration interactionB(z). This re-
sults in the equation

d2w

dz2
2

4p

«
be2cPB~z!w~z!1G~z!50, ~42!

whereG(z) is the convolution integral:

G~z!5
1

2p l B
E

0

`

dz8
1

~z81b!2

d2B~z2z8!

dz2
. ~43!

The corresponding boundary conditions, obtained from E
~37! and ~39! using the same approximations, are

w~z50!50,
~44!

dw

dzU
z50

5E
0

`

dz8cPB~z8!
dB~z8!

dz8
.

Equation~42! is a second order inhomogeneous linear diff
ential equation forw(z), and can be solved analytically. Th
solution, given in detail in Appendix B, is expressed in ter
of the convolution integralG(z) of Eq. ~43!. The effective
surface charge and the effect of the hydration on the den
profile can then be calculated in several limits, described
detail in Appendix B. Here we outline the main results.
n
e

s.

-

s

ity
in

A. Slowly varying density: bšdhyd

In the limit b@dhyd, the PB distribution varies slowly on
the scale of the hydration interaction, described byB(z), and
the theory effectively becomes a local density function
theory. The specific form ofB(z) is not important, and all
the results simply depend onBt5*2`

` B(z)dz. The deviation
of the effective Gouy-Chapman lengthbeff from the actual
Gouy-Chapman lengthb depends linearly onBt and on the
surface charges;1/b. This can be expected since we use
linearized equation. Thus we have, on dimensional groun
beff2b;Bt / l Bb. The detailed calculation gives the nume
cal prefactor

beff2b>
2Bt

4p l B

1

b
. ~45!

SinceBt is negative,beff is larger thanb, and the effective
surface chargeseff is smaller than the actual surface char
s. This result should be expected. The short-range inte
tion attracts counterions to the vicinity of the charged pl
and the surface charge is screened more effectively tha
the PB equation.

The correction to the counterion density profile, describ
by w(z)5 log@c(z)/cPB(z)#, is found to be

w~z!5
2Bt

2p l B
H 3

2~z1b!2
2

1

b~z1b!J . ~46!

The density profile is increased relative to PB theory
distances smaller thanb/2, and decreased for larger dis
tances. The deviation from PB theory,w(z), is maximal at
z50, where it is equal to2Bt /(4p l Bb2), and minimal at
z52b, where it is equal toBt /(12p l Bb2).

Figure 8 shows the approximated functionw(z) of Eq.
~46! for b521.2 Å, corresponding tob/dhyd'3 ~dotted line!.

FIG. 8. The logarithm of the ratio between the counterion d
sity obtained with the inclusion of the hydration interaction and
value in PB theory,w(z), as a function of the distance from
charged plate, with no added salt in the solution. The solid l
shows the functionw(z) obtained from the exact solution, forb
521.2 Å. The dotted line shows the approximated curve obtai
from the linearization with respect tow, Eq. ~42!, in the limit b
@dhyd, Eq. ~46!.
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5306 PRE 62YORAM BURAK AND DAVID ANDELMAN
The approximation is compared with the functionw(z) ob-
tained from the exact solution of Eq.~31! for the case of no
added salt~solid line!. Although b is not much larger than
dhyd, the approximation describes well the correction to
PB profile. Note thatw(z), as expressed by Eq.~46!, is
maximal atz50, whereas according to the contact theor
w(0) should be zero. This apparent inconsistency res
from neglecting the range of the hydration potential relat
to b. In the precise solution of Eq.~31!, w(0) is zero, as it
should be. The prediction of Eq.~46! is valid only for dis-
tancesz*dhyd, as can be seen in Fig. 8. The range of val
ity of the linearization procedure can be found by requiri
that the minimal and maximal values ofw(z) are small com-
pared to unity:

2Bt

4p l Bb2
!1. ~47!

B. Surface layer limit: b™dhyd

In the limit in which b!dhyd, the ion density effectively
becomes a dense layer concentrated atz50 on the scale of
the hydration interaction. The effective Gouy-Chapm
length has the same form as in the limit of slowly varyi
density,b@dhyd, but having a different prefactor:

beff2b>
2Bt

12p l B

1

b
. ~48!

The effective surface charge is, therefore, smaller than
actual surface charge. Note thatbeff depends onB(z), in this
limit, only through Bt . The linear dependence ons;1/b
follows from the linearization leading to Eq.~42!, as in the
previous limit.

FIG. 9. The logarithm of the ratio between the counterion d
sity obtained with the inclusion of the hydration interaction and
value in PB theory,w(z), as a function of the distance from
charged plate, with no added salt in the solution. The solid
shows the functionw(z), obtained from the exact solution, forb
51.06 Å. The dotted line shows the approximated curve obtai
from the linearization with respect tow @Eq. ~42!#, in the limit b
!dhyd @Eq. ~B12!#.
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It should be stressed that althoughb is small compared to
dhyd we still assume thatb is large enough for the lineariza
tion to be valid, i.e., we assume thatw(z) is small compared
to unity. Furthermore, the counterion density should be sm
enough that we can sensibly use only the quadratic term
the virial expansion. To check the validity of these assum
tions, the correction to the density profile should be cons
ered.

The form ofw(z) depends, in the surface layer limit, o
the specific form ofB(z). In order to studyw(z) analyti-
cally, we use an approximated form ofB(z), described in
Appendix B. A typical form of the approximatedw(z), ob-
tained using this approximation@Eq. ~B12!#, is shown in Fig.
9 ~dotted line!. The Gouy-Chapman length isb51.06 Å,
corresponding tob/dhyd'0.15. In addition, the function
w(z) obtained from the exact solution of Eq.~31! is shown
for comparison~solid line!. The approximated curve capture
well the qualitative behavior of the correction to the PB pr
file. Note that the discrepancy between the approximated
actual profiles results not only from the linearization a
smallb limit, but also from the loss of detail due to the use
an approximated form forB(z).

The deviation from the PB profile,w(z), can be qualita-
tively described as follows. Forz,dhc, w(z) increases qua-
dratically from zero~with an additional term of the form
z2 logz) to its value atz5dhc. It then decreases from it
maximum positive value to a minimum, negative value, on
scale of the range of the attractive part ofB(z). This mini-
mum value is equal to approximatelyBt/(6p l Bbdhyd). For
distances larger than the interaction range,w(z) assumes the
form w(z);1/z, characterizing a PB profile with a modified
effective surface charge. For finite values ofb, we can expect
the above behavior to be smoothed over a scale of ordeb.

The validity of the linearization can be found by requirin
that uw(z)u!1. This requirement results in the followin
condition:

2Bt

6p l Bbdhyd
!1. ~49!

The validity of stopping the virial expansion at the quadra
order can be shown to have the same condition. For
hydration potential of Fig. 2, the condition expressed in E
~49! implies that the various approximations we use star
break down whenb becomes smaller than approximately
Å, or s*0.022e/Å2. Whenb is of this order, it is well below
dhyd, making the surface layer limit a sensible approxim
tion.

C. Effective surface charge

In the two limits described above, the effective Gou
Chapman length was found to be of the formbeff2b;
2Bt / l Bb, with different prefactors in the two limits. Fo
intermediate values ofb, the effective charge depends on th
specific structure of the functionB(z). In order to study this
dependence, we use a simple approximated form forB(z),
described in Appendix B. Using this approximation, an an
lytical expression can be obtained for the effective Gou
Chapman length for all values ofb.
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FIG. 10. The effective Gouy-Chapman lengthbeff ~a! andbeff2b ~b!, as a function of the Gouy-Chapman lengthb. The solid lines show
the behavior predicted by Eq.~B14!, with Bt.2500 Å3, dhc52.9 Å, andB0541.8 Å2. The dotted lines show the asymptotic limits of Eq
~45! and ~48!. The symbols show results extracted from numerical solutions of Eq.~29!, usingB(z) of Fig. 3, with salt concentrations o
1027 M ~circles! and 0.1 M~crosses!. The salt has a very small effect.
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Figures 10~a! and 10~b! show the predictedbeff and
beff2b, respectively~solid lines! as a function ofb, together
with the asymptotic limits~45! and~48! ~dotted lines!. As the
surface charge increases from zero~and b decreases from
infinity!, the effective chargeuseffu increases too~but is al-
ways smaller than the actual surface charge!. Whenb reaches
a certain valuebmin, beff starts increasing with further reduc
tion of b, i.e., the effective charge decreases with increas
surface charge aboveusumax5e/(2p l Bbmin). The value of
bmin depends on the structure of the functionB(z), but can
be estimated to be between the values predicted by
asymptotic expressions~45! and ~48!. From the condition
dbeff /dbub5bmin50, we find

A 2Bt

12p l B
,bmin,A2Bt

4p l B
~50!

and

beff
min'2bmin. ~51!

For the hydration interaction of Fig. 2,Bt is approximately
2500 Å3. The value ofbmin is then between 1.36 and 2.3
Å, corresponding to a surface charge density between
and 0.26 C/m2. The values obtained from the approximat
curve, shown in Fig. 10, arebmin.1.5 Å andbeff

min.3.4 Å.
For small enough values ofb, the effective surface charg

useffu should increase again with an increase ofusu and be-
come larger thanusu. This effect cannot be predicted by ou
model because of the low density approximation used for
hard-core interaction. In particular, the hard core of the io
should cause the density to saturate at the close packing
sity, leading to a reduced screening of the surface cha
relative to PB theory@25,26,51#. In our model, as in PB
theory, the counterion density near the surface is
bounded, and increases indefinitely ass is increased. Al-
though our model includes the steric repulsion between io
this repulsion is ‘‘softened,’’ and is always outweighed
the attractive part of the ion-ion interaction.

In addition to the prediction obtained using the lineariz
approximation, Fig. 10 shows values ofbeff extracted from
g

he

15

e
s
en-
ge

t

s,

numerical solutions of the full equation~29!, using the origi-
nal interactionB(z). The equation was solved with two dif
ferent salt concentrations: 1027 M ~circles! and 0.1 M
~crosses!. The value ofbeff was estimated from the positiv
ion density at large distances from the plate, by finding
value ofb that would result in the same calculated values
the density in a solution of the PB equation. Note that
both salt concentrations,beff is very close to its predicted
value, meaning that the salt has a very small effect onseff .
This result is not obvious for the high salt concentration
0.1 M. The Debye-Hu¨ckel screening length is approximate
9.6 Å , not much larger than the range of the hydration
teraction,dhyd.7 Å, and comparable to the Gouy-Chapm
length at the largeb region of the plot.

V. CONCLUSIONS AND OUTLOOK

In this work we have studied the effects due to the d
creteness of the solvent in aqueous ionic solutions. Hydra
interactions are found to have a significant effect on
structure of the diffusive layer near highly charged surfac
The counterion density is increased in the vicinity of t
charged surface, relative to the PB prediction, and decrea
further away. The distance from the charged plate in wh
the density is increased, and the magnitude of the devia
from the PB density, depend strongly on the surface cha
and on the parameters of the short-range hydration inte
tion between ion pairs.

The ion-ion hydration interaction can be describ
roughly using two parameters. The first parameter is
range of the hydration interaction,dhyd, equal to approxi-
mately 7 Å for Na1-Na1 pairs. The second parameterBt has
dimensions of volume, and characterizes the strength of
hydration interaction. It is equal to approximately2500 Å3

for Na1-Na1 pairs. Two limits can be considered, where t
Gouy-Chapman lengthb;1/s is small or large compared to
the range of the hydration interactiondhyd. In both of these
limits we assume that the Debye-Hu¨ckel screening lengthlD
is large compared tob anddhyd.

In the limit b@dhyd, the counterion density becomes d
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5308 PRE 62YORAM BURAK AND DAVID ANDELMAN
pleted, relative to the PB prediction, starting at a distancz
.b/2 from the charged plate. The maximum absolute va
of w(z)5 log@c(z)/cPB(z)# scales as2Bt / l Bb2. In the other
limit b!dhyd, the distance from the plate, where the cou
terion density becomes lower than the PB prediction, is
tweenz5dhc andz5dhyd. The maximum absolute value o
w(z) scales as2Bt /( l Bdhydb).

Far away from the charged plate, the density profile c
be well described using the PB theory with an effective s
face charge that can be calculated analytically. The cor
tion to the Gouy-Chapman length in the two limitsb@dhyd
andb!dhyd is always positive, and scales as2Bt / l Bb, but
has different numerical prefactors. When the surface cha
on the plate is increased, the effective surface chargeseff is
found to reach a certain maximal value. Above this maxim
valueseff decreases with a further increase of the actuals on
the plate. The various approximations we use start to br
down when b is smaller than approximatel
2Bt/(6p l Bdhyd), corresponding tob&1 Å.

An important outcome of this work is that the correctio
of the PB ion density due to the hydration interaction
significant near highly charged surfaces. The electrostatic
teraction dominates the ionic distribution, and the hydrat
interaction can be seen as a perturbation. For a high sur
charge density of, say, one unit charge per 48 Å2 the coun-
terion density deviates from its Poisson Boltzmann value
at most 30%. The effective change in the surface charg
more significant, from 1e/48 Å2 to about 1e/13 Å2.

The hydration effect on inter-surface forces can be v
pronounced, as opposed to the effect on the ion distribut
This result will be presented elsewhere@43#. Our model pre-
dicts an attractive contribution to the pressure between
parallel charged plates. At distances below several nan
eters this contribution can outweigh the electrostatic rep
sion and lead to an overall attraction between the plates.
two-plate findings can also be compared with availa
AHNC results@41,44#, showing good qualitative agreeme
both for the ion density profile and pressure.

The formalism we present can be readily generalized
other geometries. This could lead to an estimation of
aqueous solvent effects on phenomena such as the Man
condensation on cylindrical polyions@52#, and charge renor
malization of spherical mycelles or colloids@9#. In this re-
spect our formalism offers an advantage over the AH
approximation which was applied so far only in a plan
geometry. Another interesting extension of this work wou
be to consider the combination of fluctuation and hydrat
effects. This is particularly important for ionic solutions wi
divalent counterions, where fluctuation effects become la
@21,22,24#.
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APPENDIX A: INHOMOGENEOUS VIRIAL EXPANSION

We consider an inhomogeneous system of particles wi
short-range two-body interaction, and aim to express the
energy of the system in the low density limit as a function
of the density distribution. For simplicity we consider on
one species of particles. The inhomogeneity of the sys
arises from the inclusion of an external fieldw(r ), or from
the boundary conditions imposed on the system. We be
by considering the grand canonical ensemble. The grand
nonical partition function is

ZG5(
N

1

N! S ebm

lT
3 D N

QN , ~A1!

wherem is the chemical potential,lT is the de Broglie ther-
mal wavelength, andQN is

QN5E )
i 51

N

d3r ie
2bUN($r i %), ~A2!

UN~$r i%!5(
i

w~r i !1
1

2 (
i j

u~ ur i2r j u!. ~A3!

We proceed on similar lines as the usual virial expansion
a bulk fluid, expanding logZG in powers of the activity. Up
to second order, we have

logZG5S ebm

lT
3 D Q11

1

2 S ebm

lT
3 D 2

~Q22Q1
2!

5S ebm

lT
3 D E d3r e2bw(r )1

1

2 S ebm

lT
3 D 2E d3rE d3r 8

3e2b„w(r )1w(r8)…~e2bu(ur2r8u)21!. ~A4!

This can be seen as an expansion in powers of the fi
exp@b„m2w(r )…#/lT

3 . The local densityc(r ) can be ex-
pressed in a similar expansion:

c~r !52
1

b

d logZG

dw~r !

5S ebm

lT
3 D e2bw(r )1S ebm

lT
3 D 2

e2bw(r )E d3r 8

3e2bw(r8)~e2bu(ur2r8u)21!. ~A5!

This relation can be inverted to obtain an expansion
exp@b„m2w(r )…#/lT

3 in powers ofc(r ). Up to second order

eb„m2w(r )…

lT
3

5c~r !1c~r !E d3r 8c~r 8!~12e2bu(ur2r8u)!,

~A6!

and by substituting this relation into Eq.~A4!, logZG can be
expressed as an expansion inc. Up to second order,
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logZG5E d3r c~r !1
1

2E d3rE d3r 8c~r !c~r 8!

3~12e2bu(ur2r8u)!. ~A7!

The grand canonical potential can be obtained from the r
tion V52kBT logZG , with logZG given by Eq.~A7!. In this
expression,c(r ) is the mean density profile for the impose
external fieldw(r ) and a given chemical potentialm. We
would like to expressV as a functional of a general io
densityc(r ), whose minimization with respect toc(r ) would
give the equilibrium mean density. Regarding2kBT logZG
as a functional ofx(r )[w(r )2m, we have

2kBT
d logZG

dx~r !
5c~r !. ~A8!

The Legendre transform of this relation can be obtained
defining

Q52kBT logZG2E d3r c~r !x~r !, ~A9!

and expressing logZG andx as functionals ofc(r ). We have
already expressed logZG as a functional ofc(r ) in Eq. ~A7!.
An expression forx(r ) as a functional ofc(r ) can be ob-
tained from Eq.~A6!. Up to first order inc we have

b@w~r !2m#52 logHlT
3c~r !F11E d3r 8c~r 8!

3~12e2bu(ur2r8u)!G J
52 log@lT

3c~r !#2E d3r 8c~r 8!

3~12e2bu(ur2r8u)!1O~c2!. ~A10!

Using this relation and Eq.~A7!, we obtain, up to second
order in c,

bQ~$c~r !%!5E d3r c~r !@ log„lT
3c~r !…21#

1
1

2E d3rE d3r 8c~r !c~r 8!~12e2bu(ur2r8u)!.

~A11!

The functionalQ of c(r ) has the property that

dQ

dc~r !
52x~r !52@w~r !2m#, ~A12!

or, equivalently,

d

dc~r !
HQ1E d3rc~r !@w~r !2m#J 5

dV„$c~r !%…

dc~r !
50.

~A13!

Thus, using Eq.~A11!, we obtain
a-

y

V„$c~r !%…5kBTE d3r c~r !S log
c~r !

z
21D

1E d3r c~r !w~r !1
1

2
kBTE d3rE d3r 8

3c~r !c~r 8!~12e2bu(ur2r8u)!, ~A14!

wherez5exp(bm)/lT
3 . The derivation of Eq.~A14! can be

readily generalized to the case of several ion species of
ferent charges and different pair interactionsui j (r ), resulting
in Eq. ~16!.

A similar, more elaborate diagrammatic expansion of
thermodynamic potentials in the presence of an external fi
is presented in Ref.@53#. A variational principal for the
grand canonical potentialV is obtained in whichV is ex-
pressed as a functional of the mean densityc(r ) and the pair
correlation functionh2(r1 ,r2). This expression is equivalen
to Eq.~A14! up to the second order in the cluster expansi

APPENDIX B: DETAILS OF ANALYTICAL RESULTS

In this appendix we present details of the analytical a
proximations of Sec. IV. We first consider the analytical s
lution of Equation~42!. This equation is a second order lin
ear differential equation forw(z). Note that the function
cPB(z) is a known function ofz, given by Eq.~36!. The
solution of Eq.~42!, with the boundary conditions of Eq
~44!, is

w~z!5
1

z1bE0

z

dz2~z21b!2E
z2

` dz1

~z11b!
G~z1!, ~B1!

whereG(z) is the convolution integral, defined by Eq.~43!.
By writing G(z) as

G~z!5E
0

`

dz8G~z8!d~z2z8!, ~B2!

whered(z) is the Dirac delta function,w(z) can be rewritten
in the following form:

w~z!52
1

z1b H b3

3 E
0

`

dz8
G~z8!

z81b
2

1

3E0

z

dz8~z81b!2G~z8!J
1

~z1b!2

3 E
z

`

dz8
G~z8!

z81b
. ~B3!

The effective chargeseff ~or equivalently, the effective
Gouy-Chapman lengthbeff) can be calculated from the coe
ficient of z21 in w(z), asz approaches infinity:

w~z!;
2~b2beff!

z
, z→`. ~B4!

We thus find

beff2b5
1

6E0

`

dzF b3

z1b
2~z1b!2GG~z!. ~B5!
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A simple form for the convolution integralG(z) can be ob-
tained in the limits in whichb is small or large relative to
dhyd, the characteristic range of the hydration potential.

1. Slowly varying density: bšdhyd

In the limit b@dhyd, the PB distribution varies slowly on
the scale of the hydration interaction. The convolution in
gral G(z) of Eq. ~43! can then be approximated in the fo
lowing way:

G~z!5
1

2p l B
E

2`

`

dz8
H~z8!

~z81b!2

d2B

dz2
~z2z8!

5
1

2p l B
E

2`

`

dz8F 1

b2

dd~z!

dz
2

2

b3
d~z!1

6H~z!

~z1b!4GB~z2z8!

.
Bt

2p l B
F 1

b2

dd~z!

dz
2

2

b3
d~z!1

6H~z!

~z1b!4G , ~B6!

whereH(z) is the Heaviside function@H(z)50 for z,0 and
H(z)51 for z.0]. Inserting this expression into Eq.~B5!,
we obtain Eq.~45! for the effective Gouy-Chapman length
By substituting equation~B6! in Eq. ~B3!, the form ofw(z),
given in Eq.~46!, is obtained.

2. Approximated form for B„z…

Some of the following results depend on the spec
structure of the hydration interaction, characterized by
function B(z). In order to obtain analytical expressions, w
use a simple approximated formBapp(z) instead ofB(z).
Assuming that the hydration interaction consists of a ha
core interaction and a short-range attractive part, the func
B(z) has some general characteristics that should be pre
in Bapp(z). For z,dhc, B(z) always has the parabolic form
2(B01pz2), where B052B(z50). We assume that th
attractive part of the interaction dominates over the sh

FIG. 11. The effective interaction in a planar geometryB(z),
obtained from the potential of Fig. 2, and the corresponding
proximated functionBapp(z), defined by Eq.~B7! ~dashed line!. The
parabolic dependance foruzu,dhc is identical in the two curves
D53.0 Å.
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range repulsion, so thatB0 is positive. Forz larger than some
finite valuedhc1D, B(z) is practically zero due to the sho
range of the interaction. Fordhc,z,dhc1D, B(z) varies
from 2(B01pdhc

2 ) to zero in a functional form that depend
on the details of the attractive potential. The most sim
way to model this behavior ofB(z) is to have a linear in-
crease ofBapp(z) betweenz5dhc andz5dhc1D, and to set
Bapp to be zero forz larger thandhc1D:

Bapp~z!5H 2~B01pz2!, uzu<dhc

2~B01pdhc
2 !

~dhc1D2z!

D
, dhc,uzu<dhc1D

0, dhc1D,uzu.
~B7!

The parameters in this expression should be chosen to m
approximately, the form ofB(z). Settingdhc to be the hard-
core diameter of the real potential, and settingB052B(0),
ensures thatB(z) andBapp(z) are identical forz,dhc. The
width D can then be set such thatBt

app5Bt :

2B0dhc1
2p

3
dhc

3 1D~B01pdhc
2 !52Bt . ~B8!

This is desirable in light of Eqs.~45! and ~48!, since the
effective surface charge depends only onBt in these limits.
Figure 11 showsB(z) andBapp(z) for the hydration potential
of Fig. 2.

3. Surface layer limit: b™dhyd

In the limit b!dhyd, the convolution integral in Eq.~43!
becomes

G~z!.
usu
e

B9~z! 5
1

2p l Bb
B9~z!. ~B9!

The prefactor ofG(z) in Eq. ~B5! is 2 1
6 z21O(b), and

therefore the effective Gouy-Chapman length is

beff2b>
21

12p l BbE0

`

dz z2B9~z!5
2Bt

12p l B

1

b
. ~B10!

This result is independent of the specific form ofB(z).
To obtainw(z), Eq.~B9! can be substituted into Eq.~B3!.

Up to leading order inb, the following expression is ob
tained:

w~z!5
1

6p l Bb

1

zE0

z

dz8B9~z8!z82

1
1

6p l Bb
z2E

z

`

dz8
1

z8
B9~z8!. ~B11!

Using Bapp(z), the approximated form ofB(z) presented in
Appendix B 2, this gives

-
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w~z!55
1

6p l Bb
z2S 4p

3
1

B01pdhc
2

dhc~dhc1D!
22p log

dhc

z D , uzu<dhc

1

6p l Bb Fdhc
2 S 4p

3
dhc1

B01pdhc
2

D D 1

z
2

B01pdhc
2

D~dhc1D!
z2G , dhc,uzu<dhc1D

Bt

6p l Bb

1

z
, dhc1D,uzu.

~B12!

The minimal, negative value ofw(z) is assumed atz5dhc1D and is equal to

w~dhc1D!5
Bt

6p l Bb~dhc1D!
.

Bt

6p l Bbdhyd
. ~B13!

This results in condition~49! for the validity of the linearization in the surface layer limit.
Using only the quadratic term in the virial expansion is sensible if*0

`dz8c(z8)B(z2z8) is small compared to unity. In the
surface layer limit, this integral is simply (usu/e)B(z)5B(z)/(2p l Bb). Estimating the maximum value ofuB(z)u to be
approximately2Bt /(2dhyd) we obtain the requirement2Bt /(4p l Bbdhyd)!1, which is analogous to Eq.~49!.

4. Effective Gouy-Chapman length

Using Bapp(z) in Eqs.~43! and ~B5! we find the following approximation for the effective Gouy-Chapman length:

beff2b5
1

12p l Bb H 2Bt
app2pdhc

2 b12pdhcb
212B0 logS b1dhc1D

b Db

2
2

D
~pdhc

2 D1pdhc
3 1B0dhc!logS b1dhc

b1dhc1D Db22p logS b1dhc

b Db3J . ~B14!

This expression is shown in Fig. 10, and discussed in Sec. IV. In the limitsb@dhyd andb!dhyd it reduces to the asymptoti
expressions~45! and ~48!, respectively.
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