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Hydration interactions: Aqueous solvent effects in electric double layers
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A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The
short-range interaction is accounted for by adding a quadratic nonlocal term to the Poisson-Boltzmann free
energy. The model is used to study solvent effects in a planar electric double layer. The counterion density is
found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease
at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the
plate is dominated only by counterions. Further away from the plate the density distribution can be described
using a Poisson-Boltzmann theory, with an effective surface charge that is smaller than the actual one.

PACS numbdis): 61.20.Qg, 82.45:z, 61.20.Gy, 68.45:v

[. INTRODUCTION densities the discreteness of the solvent is expected to have
an important effect on the ionic distribution. This is of par-
Electrolytes, in contact with charged surfaces or macroticular importance for water. Due to its high polarity, the
ions, play an important role in determining the properties ofstrong screening of the electrostatic interacticgpresented
many biological and chemical systems. One of the mosby the dielectric constaphis modified at small ion separa-
widely used tools for studying ions in aqueous solutions igONs. o _
the Poisson-Boltzman(®PB) theory[1—6]. The mathematical Using the surface force apparatfs], it is possible to
and conceptual simplicity of this theory makes it very ap-measure precisely the force be_tween chargeq mica plates.
pealing both for numerical computatidid] and for gaining These measurements supply evidence for the importance of

insight into the underlying physical principles. Although thethe solvent structure in agueous solutigBs,33. At inter-

theory contains important simplifications, it has proven to béjlate separations below approximately 20 A, significant de-

a useful and accurate tool in the study of systems such \gatlons are found from the prediction of the Derjaguin-

) X . ) . andau-Verwey-Overbeek(DLVO) theory [8,33]. The
colloidal dispersion38,9), biological membranef]. po_ly— measured force is oscillatory, or consists of a series of steps,
electrolytes[10], and complex systems, e.g., proteins or

) ) . with a period corresponding to the water molecular size. Os-
DNA interacting with charged membrangl ~13. cillatory forces are known to arise as a result of the solvent

_ The Poisson-Boltzmann theory is obtained by making tWogr,cturing in layers between surfad&s. However, a repul-
simplifying approximations. The first approximation is the sjye contribution is found in addition to the oscillatory force
treatment of the electrostatic interactions on a mean-fielgy pjate separations below several nanoméd@ts32. This
level. The ions are treated as independent charged particlegpylsive force is often referred to as the “hydration force”

interacting with an external electrostatic potential, deriveds 31 and its origin is not yet completely understoi@9].
self-consistently from the mean charge density distribution.

Thus correlations between ion positions are not taken into
account. The second approximation is the treatment of the
ions as pointlike objects, interacting only through the elec- Recently[34,35, an aqueous pair potential model was
trostatic interaction in a dielectric medium. In reality, ions in proposed for electrolytes, in which the effect of the solvent
aqueous solutions have more intricate interact{@jsThese on the ions is described as a short-range two-body interaction
include a non-Coulombic interaction between ion pairsbetween the ions. The solvent is replaced by a continuum
which is mainly a short-range steric repulsion, interactiondielectric medium as in PB theory, but the ions also interact
with the polar solvent molecules, and short-range interacthrough a two-body short-range hydration interactj@d].
tions with the confining charged surfaces. This is shown schematically in Fig. 1.

Various models have been proposed for the inclusion of This aqueous pair potential mode4,35 involves sev-
effects not accounted for by PB theory. These include liquiceral simplifying assumptions. One is that the effect of the
state theory approachdd4-18, field theory expansions solvent can be represented as a linear superposition of two-
[19,20, computer simulation21—-23, and other modifica- body potentials between all ion pairs. Another simplification
tions to the PB theor}24—-27. Most of these models remain is that the effective potential between the ions is taken as the
within the framework of the so-called “primitive model,” in effective potential in the bulk, regardless of the ion concen-
which the interaction between the ions is modeled as aration, and of the geometry imposed by the charged sur-
purely repulsive hard-core interaction. On the other handfaces. Finally, a short-range surface-ion effective potential
relatively few works have explicitly addressed the discreteshould be included in addition to the ion-ion effective poten-
nature of the solvent molecul¢$8,28—30Q. Clearly, the re- tial. Despite the simplifications made in the aqueous pair
placement of the solvent by a continuous medium cannot bpotential model, it offers a first step toward a qualitative
precise when the interion distance is comparable to the solinderstanding of solvent effects on the ion distribution, in
vent molecular size. Therefore, when the ions reach higlparticular near highly charged surfaces.

A. Aqueous pair potential model
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Do s € FIG. 1. Schematic description of the aqueous
- @ %)o @ R £ @ @ pair potential model. An aqueous ionic solution

in contact with a charged plate {@) is replaced
in (b) by ions in a continuum dielectric medium
having a dielectric constant, with electrostatic

u, (r)

%% ----------- -2 g e | z and short-range interactions (r) =u;;(|r|). The
@ ?p @ 2 @ z coordinate designates the distance from the
T e charged plate, witte=0 corresponding to the
O(% obﬂ of &, L5 distance of closest approach of the ions to the
d% @ Do “Cg (b«a plate. The distance of closest approach is equal to
| g 9 @ e @ d,J/2, whered, is the hard-core diameter of the
: . ' ions.
t t
2=0 @ 220 )
B. Effective ion pair interaction rations, the effective potential is oscillatory, and mainly at-

For short-range ion-ion interaction, the so-called potentiafractive. It has a distinct minimum at an ion-ion separation of
of mean force between ions in solution can be used. PoterPout 3-6.'&! followed by a maximum and a second minimum
tials of mean force are defined askgT logg;(r), where at approximately 6 A.
gij(r) are the ion-ion radial distribution functions for ion
pairs of speciesandj. The radial distribution functions have
been calculated numerically for a single ion pair immersed in

an aqueous solution using molecular dynamics techniques The replacement of the discrete solvent by a continuum

[36A_n3£§élternative aoproach has been proposed in Ref medium, with electrostatic and short-range interactions be-
P brop Sween the ions, is a considerable simplification. Still the sta-

[39,40. In this approach, a Hamiltonian consisting of a pair-,." - ! S
stical mechanical treatment of an electrolyte solution in this

wise effective potential between the ions is obtained usiné'n o . )
the so-called “reverse Monte Carlo” approach. The ion-ion odel is difficult, and requires the use of further approxima-
tions, or simulations.

radial distribution functions are first calculated using a mo- ) : )
lecular dynamics simulation for a system including solvent 1he anisotropic hypernetted chaiAHNC) approxima-

molecules and a finite concentration of ions. The ion-iontion [15] was previously used to calculate the effects of hy-
effective potential in the system without the solvent is thendration interactions in the aqueous pair potential model
adjusted iteratively until the same distribution functions arel41,42. When the ion concentration is large enough, e.g.,
obtained using Monte Carlo simulations. near a highly charged surface, the hydration interaction is

The different available calculations of potentials of meanfound to have a significant effect on the distribution of ions
force differ in their quantitative predictions. This may be ain the solution. It was also proposed that so-called repulsive
result of high sensitivity of the models to detailed features‘hydration forces” between surfaces arise from the ionic
used for the water molecules and for the intermolecular instructure near highly charged surfaces. According to this de-
teractiond 36]. However, all the potentials of mean force as
well as the effective potentia[89] are qualitatively similar 4
[41]. Thus, for the purpose of the present work, aiming at a
gualitative understanding of solvent effects, any one of these 3 .
potentials may be used.

At large ionic separations the ion-ion effective potential is
well approximated by a screened electrostatic interaction,
with the water dielectric constant in the continuum limit. At
a short ionic separation, the difference between the total ef-
fective potential and the screened electrostatic interaction is a
short-range potential reflecting the structure of water mol-
ecules in the ion vicinity. Figure 2 shows the short-range
contribution(excluding the screened electrostatic péotthe ) 4 6 8 10 12
effective potential calculated between NaNa" pairs in the Separation [ A]
reverse Monte Carlo approa¢B9]. Below about 2.9 A, the P
electrostatic repulsion between the ions becomes unscreened. |G, 2. Short-range effective potential between*Nen pairs,
Therefore, it is much larger than the screened repulsion iRdapted from Ref39] using simulations in a bulk NaCl solution of
the dielectric medium, and the effective potential is stronglyconcentration 0.55 M, at room temperatiief]. The potential is
repulsive. The unscreened electrostatic potential leads to &hown in units okgT, as a function of the distance between the ion
effectively enlarged hard-core separation between the iongenters. For ion separations smaller than 2.9 A a hard-core interac-
relative to a hard-core diameter of about 2.3 A used in thaion was assumed. The Coulomb interaction is subtracted to show
short-range part of the bare ion-ion potential. At larger sepaenly the short-range hydration effect due to the water molecules.

C. Present work

Effective potential
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scription, at large distances from the plate, the ion distribu- 1. Poisson-Boltzmann free energy
tion follows a PB profile with a reduced effective surface
charge. When two plates approach each other, the ions near
the surfaces come into contact, giving rise to an apparent 1 3 1 5
new repulsive force. H=5 E. fvd repi(né(r+3 ﬁvd rs o(rs)h(rs)
In the present work a simple description for ions interact- )
ing through electrostatic and short-range attractive interac-
tions as mediated by the solvent molecules is introduced. WehereV is the volume occupied by the electrolyte solution,
apply this description to the aqueous pair potential modelo(rs) is the surface charge density of immobile charges on
Our aim is limited to describe the important effects of thethe boundariegV, ande; is the charge of théth ion species.
short-range interaction, and not to provide an accurate toolhe ion densitie;(r) are
for their calculation. Therefore our model follows PB theory N,
as closely as possible, and describes the short-range interac- -(r)zz S(r—rl) 3)
tion using a simplified term added to the free energy. The Pi =1 e
advantage of this approach over more elaborate treatments .
such as the AHNC approximatide1,42 is that it provides wherer! is the position of thgth ion of theith species, and
simple equations that can be treated numerically and analytthe electrostatic potentia#(r) is a function the different ion
cally with relative ease, as well as allowing extensions topositions,
nonplanar geometries. In a planar geometry, we show that
the effect of the ion-ion hydration interaction can be under- 3 &pi(r’) ,  olrs)
stood as a perturbation over the PB results. An increase in d’(r):E f d°r -7 jg d rsmv 4
the concentration of counterions near the charged surface is b elr—r'| N s
found, and thils results in an apparent surface charge which {§nhere =78 is the dielectric constant of water. The PB
reduced relatively to the PB theory. o theory is obtained by using a mean-field approximation for
In addition to the calculation of charge distributions, thehe glectrostatic interaction. The Hamiltonian in E8) is
effect of the hydration interaction on the force betweengqi replaced by a mean-field Hamiltonian, where the elec-
charged particles or surfaces can be studied, and will be prez,siatic potentiats(r) is replaced by an external fiet(r).
sented elsewhel&3]. Since we will not discuss intersurface In the thermodynamic limit the free energy can then be writ-

forces in this paper, it is worthwhile to mention that the (g 55 a functional of the mean densities of the ion species,
results obtained using our model are in good agreement WIIE_(r):<p_(r)>MF
I | 1

AHNC calculationg44], and may provide an explanation to

the hydration forces as observed in surface force measure-

ments[31,37. For high surface charge and plate separations Qme= kBTf 2 Ci

up to approximately 20 A, important modifications of the PB v

predictions are found. 1
The outline of the paper is as follows. Section Il presents X ci(r)d3+ > § d?reo(ry) W (rs), 5

the model. In Sec. Il we apply the model to a single charged N

plate, present numerical results for the ion density profile

and discuss the modifications to the PB theory due to th

addition of short-range interactions. In Sec. IV we presen equiring that the external potentidi(r) is the thermody-

analytical results in the low salt limit. We calculate the ef- : . ; o
fective PB surface charge and the effect of the hydratior]r:’;;rrr]:'icl:taoI n?;ﬁ@?s 82?2?;;” th?;‘,ystem with the mean-field
= MFs 1€,

interaction on the density profile of counterions in a system
with no added salt.

The Hamiltonian of the system is

i 1
Iog%—l}d3r+ EJ > e¥(r)
i Vi

wherekgT is the thermal energy, anf is the fugacity of the
[th ion species. The mean-field approximation is obtained by

v(n=3 fvoﬁr'eic‘(Ir i ﬁver SO

IIl. MODEL elr—r’| Sefr—rl’
A. Free energy This relation is equivalent to the Poisson equation
We start from an approximated free energy, written as a 4
. . . s a
functional of the various ion densities. We choose the elec- VA =— — 2 ec; (7)
€ 5

trostatic boundary conditions to be of fixed surface charge
densities, and write the free energy as a sum of the usual PB .
term and a correction term, due to hydration, as will be exSupplemented by the boundary condition
plained below:

. A
0=0pgtAQ. ) vv. n|rs= — ?cr(rs) on the charged surfaces, (8)

where the normal vecton points away from the charged
We discuss first how the PB free energy is obtained, and thesurfaces into the volume occupied by the ionic solution. Us-
generalize this result to include the short-range hydratioring this boundary condition and E), the second and third
interaction. terms of Eq.(5) can be re-expressed as
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1 1 e
—J > eixp(r)ci(r)d3r+—§> d?reo(ro)W(r) QPB=——J (V¥)2d3 + 3@ oWd?rg
2 v 2 N 8m \% N
€ 3
:—J (VW)2d3r. (9 —kBTJ dr>, Ziexp(—Bew), (15)
8wy v i
Substituting this relation into Eq5) we obtain the PB free where the second integration is over the charged surfaces.
energy Requiring an extremum of this functional with respectito
is another way to obtain the Poisson-Boltzmann equation
. (14).
QPB:if (V\If)2d3r+kBTj 2 Ci Iog&—l}d% A more formal derivation of the mean field and the PB
87 [ i free energy, and a discussion on its generalization to systems

. with nonelectrostatic interactions, are presented in R,
+ J )\(r)( Vo 4+ — 2 eiCi)dsf- (10) The PB free energlEq. (10)] can also be derived by formu-
€ i lating the problem using field theory methods. In this ap-
proach the mean-field approximation is obtained as the

The first term inQ) pg is the electrostatic free energy, and the saddle point of the functional integral, and corrections due to
second term is the entropy of the ions. The fugagjtin the  ion-ion correlations can be obtained in a systematic expan-
second term is equal in PB theory to the bulk concentratiorsion[19,20.
cp; of theith ion species{j=cy;, as for an ideal gas. For
more generalized free energies, a different relation may exist 2. Inclusion of the hydration interaction
between the fugacity of each ion species, and its respective ag giscussed in Sec. I, our starting point is a model in
bulk concentration. The electrostatic potentialis a func-  whjch the hydration interaction, arising from solvent effects,
tional of the ion densities; , and is determined by the Pois- is described as an effective ion-pair interaction. We denote
son equatiort7) and the boundary conditiori8) imposed by  thjs short-range potential between ions of spetiaadj at
the surface charges. Alternatively, in E40) 'V is regarded  gjstancer asuj(r). The potential is taken as the short-range
as an independent field, and a third term containing &ffective potential between ions immersed irbalk ionic
Lagrange multiplien(r) is added tpg. The PB equilib-  sojytion having a specific, constant concentration. Therefore,
rium mean densities;(r) result from minimizingQeg. With (1) is assumed to be isotropic, and does not depend on the
the introduction of\(r) the minimization is equivalent to jon positions or the confining geometry.
requiring an extremum df)pg with respect to the three fields  Qur aim is to treat the long-range electrostatic interaction
¢, ¥, and A, subject to the boundary conditiaf8). By  on the mean-field level, as in PB theory. Thus, we begin by

requiring first an extremum d@pg with respect to¥ andc;,  considering the free energy of a system placed in same
the following relations are obtained: bitrary potential ¥ (r), where the ions interact with each
other only through the two-body potential (r). Due to the
€ short-range nature of the hydration interaction, the free en-
A= E\P 1D ergy can be obtained from a virial expansion of the grand

canonical partition function. Since we will be interested in
highly inhomogeneous systems, we perform an expansion in
the inhomogeneous ion density. The derivation is given in
Appendix A. Including terms up to the quadratic order in the

and

Ci=diexp—pe V), (12 expansion, we obtain
where B=1/(kgT) and {;=cy;. The extremum condition Ci
with respect to\ gives the Poisson equation Qh:kBTf EI Ci |092:—1 d3r+f EI eicwd’r
47 kgT
var=-""3 e 13 +% .2, f ci(NU(r—r")c;(r)d3d%’, (16)
I )

whereW(r) is an external potential coupled to tiéa ion
charge densitg;c; . The short-range weighted potentla);
in the third term of(},, is defined as

Combining these relations, we obtain the PB equation

€ I I_ —€e IJ(‘ ‘)1 (

Alternatively, the first two relations, obtained from the whereu;; is the nominal short-range interaction potential be-
extremum condition with respect 8 andc;, can be sub- tween ions of speciesandj. This form of describing the
stituted into Eq.(10). Formally, this givesQ)pg as a func-  short-range interaction is a rather crude approximation, valid
tional of . Using Eq.(11), the expression obtained féfp,g  only in the low density limit. Its advantage is its simplicity.
can be written as a functional df, The free energy),, amounts to setting the direct correlation
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function c,(|[r—r']) equal to—U(|r—r’|), and all higher of a short-range interaction with a dominant attractive part.
order direct correlation functions equal to z¢4®). Finally, the fact that we describe the electrostatic interaction

Having found the hydration free enerdy,, the electro- in the mean-field approximation implies that ion-ion correla-
static interaction can be treated on the mean-field level. Thi§ons are ignored, as they are in PB theory. When our ap-
is done by considering¥(r) as the electrostatic potential, Proach is applied for the aqueous pair potential model, these
and imposing the self-consistency requirement of the PoissoaPProximations should also be kept in mind. In particular, we
equation(?)_ This is essentia"y the approximation we usedfO”OW Ref. [34], and do not include an effective ion-surface
to derive the PB equatiofl4), with the difference that the potential[49].
free energy of a dilute, noninteracting ion distribution is re-
placed by the free energf, of Eq. (16). The result is the . .
free energy of Eq(1), with AQ) defined as follows: B. Density equations

. The mean density distribution is obtained by minimizing
T =Qpgt+AQ.
AQ— % IEJ ci(r)Uij(r—r’)cj(r’)d3rd3r’. (18) Egg)tcxglg;eveeenergyl QpgtAQ. From Egs(1), (10), and

C.
Iog—'—l)d?’r

We conclude this section with some remarks on the ap- — if (V\P)2d3r+kBTf 2 c
8 i gi

proach presented above. Important solvent effects are already
introduced in the PB theory by using an electrostatic inter- T
action with a dielectric constant=78 of water, instead of B ) r—r Ve (r ) d3r A3r !
the bare electrostatic interaction. In the modified model a 2 Z, Gi(NU;(r=rfe;(rdrd™
more precise effective potential between the ions is used.
The_ separation of this potential intq a long-range electro- +J )\(r)(VZ\If+4—Tr E ciei)d3r, (19)
static term and a short-range hydration term allows each of e 5
these two interactions to be treated in a simple though ap-
proximated form. The virial expansion is a standard choice
for approximating short-range interactions. Such an expanaherey; andg“i:exp(B,tLi)/)\$ are the chemical potential and
sion fails for the electrostatic interaction due to its long rangethe fugacity of the ion speciésrespectively. The thermal de
[47]. On the other hand, the wide success of PB theory demBroglie wavelength\ is equal toh/(2mksT)*2, whereh
onstrates that the electrostatic interaction can be treated quiig the Planck constant and is the ion mass. Requiring an
well in the mean-field approximation. Therefore, we use thisextremum ofQ) with respect to¥ givesk=(e/47)¥ as in
approximation for the long-range part of the interaction, andeg. (11). Taking the variation with respect tg then gives
in this respect we remain within the framework of PB theory.

The free energyEq. (1)] can also be obtained by rewrit- )
ing the grand canonical partition function as a field theory Cilr , a3 _
partition function. By using a density expansion for the Iog§—i+; fcj(r JUij(r=r")d*r’+ pe;¥(r)=0.
short-range interaction and a loop expansion for the electro- (20)
static interaction, Eq(1) is obtained up to second order in
the density expansion and first order in the electrostatic po-
tential [48]. This equation is supplemented by the Poisson equdfipn

The simplicity of our approach can lead to elegant anaSince Eq(20) is an integral equatiorg; cannot be written as
lytical results, but has several limitations. The use of only thea simple function ofV' as in the PB case. Therefore, a single
second term in the virial expansion implies that we are usingequation for¥, analogous to the PB equation, cannot be
a low density approximation. The validity of such an ap-obtained, and we are left with the two coupled integrodiffer-
proximation for a bulk fluid can be assessed by consideringntial equations(20) and (7). These equations should be
B,c, whereB, is the second virial coefficient in the expan- solved together to obtain the electrostatic potential and den-
sion of the pressure, ards the ion density. Qualitatively, if  sity profiles. In the casel— 0, Eq.(20) reduces to the Bolt-
B,c is small compared to unity, the correction to the idealzmann relatiorc;= {; exp(—BgW¥), with {;=c,;. Combin-
gas behavior is small and truncating the virial expansion afing this relation with Eq.(7) reproduces the PB equation
ter the second term is sensible. For nonhomogeneous cas€t4).
the corresponding quantity %Ejfdr’c(r’)uij(r—r’). For In order to simplify the set of equations, we assume the
the relatively high surface charges considered here, this inrsame short-range interaction between the different pairs of
tegral approaches values of order unity near the charged supn species. Assuming that the charged surfaces are nega-
faces, indicating that the approximation should only be extively charged, we choose;(r)=u, (r)=u(r), where
pected to give qualitative results. Another deficiency of theu, ,(r) is the short-range effective potential between the
virial expansion to second order can be seen from the fadipositive counterions. This assumption is not exact for the
that the direct correlation function is simplyU;;(r). This  effective potentials of ions in wat€i39]. However, since
implies that the hard-core interaction is not described accuenly the counterions reach high densities, close to the oppo-
rately in our treatment. A faithful description would require sitely charged surfaces, and the coions are repelled from the
the vanishing of the pair correlation functibig(r) for sepa- surface neighborhood, the exact choice of the potentials
rations smaller than the hard-core diameter. Hence it should, _(r) andu__(r) is expected to be of only minor signifi-
be kept in mind that our main concern is to study the effectcance.
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We now consider an electrolyte of valenzy:z_, i.e.,a and the Poisson equatid@2) reads
solution of positive and negative ions of charges=
+z.e, wheree s the electron charge. We designate the sur- d>¥ 4xe
face charge density on the plate as a constaand the bulk — =——(z,(efeEV —eFerY)
densities of the positive and negative ionscgs=c,, . and dz? e
Cp—, respectively. Due to charge neutrality in the bulk, o
Cp—=(z+/z_)c, and similarly, {_=(z;/z_){ where { Xex;{—f c(z')B(z—2z')dZ |.
=/, . Equation(20) can then be written as 0

(25

_ Equations(23) and (25) are supplemented by the boundar
C+(r)=§+e*ﬁez+‘l’exr{—fc(r’)U(r—r’)dzr’ , cc?nditions( ) @9 PP y y
(21
dw 4 dv
where c(r)=c,(r)+c_(r) is the total ion density, and az == %% 4z =0. (26)
U(r)=U_ .(r) is obtained fromu(r) using Eq.(17). From z=0 z—0

the Poisson equatiofY), we obtain ] ] )
Finally, the relation betweefiand the bulk densitg, can

) dme be obtained from Eq¢(23). As z—«, ¥ becomes zero, and
VW =-—-I(zc,-z.C) c. assume their asymptotic constant, bulk values. Thus the
integrand inside the exponential can be replaced by:

4me —(1+2z,./z_)cyB(z—2'). Recalling thatc, =c, and c_
=— Bez. W _ o—pez,. ¥ + b : +=Cp
e {z.(e € ) =(z,/z_)c,, we obtain

Xex;{—fc(r’)U(r—r’)d?’r’ . (22 cb=§exp{— 1+z_+ Bcy |, 27)
Note that in addition to the explicit dependence on the ion
valenciesz.. in Egs.(21) and(22), in a more realistic model Where
the details of the potential(r) should also depend on the
type of counterion species present in the problem. B,= foc dzB(z):f d3ru(r) (28)

Ill. SINGLE CHARGED PLATE
is also equal to B,, with B, equal to the second virial co-
efficient. Note thaB(z) andB, are negative for an attractive
After presenting the general formalism let us consider, asnteraction. The limiB,c,— 0 is the limit in which the short-
an example, a single negatively charged planar surfleice  range interaction becomes negligible in the bulk. In this limit
1). The charged surface is in contact with an electrolyte ofthe relation between the bulk density and fugacity of @)
valencyz, :z_. We designate the axis perpendicular to thetends to the ideal gas relatiag= ¢ =expBu)/\3.
plate as the axis, and consider the ion solution in the region  Two special cases will be of particular interest in the fol-
z>0. For simplicity we consider positive and negative ionsjowing sections. The first is the case of a monovalent 1:1
of the same hard-core diamet#y.. The coordinate of clos- electrolyte, where we have
est approach of the ions to the plate is designated=a@.
Hence the “real” surface lies at a distance of one ion radius ®
dpe/2 from the actuak=0 plate position, as shown in Fig. c.(z)=(e PV exp{ —j c(z')B(z—2')dzZ
1(a). When we refer to conventional PB results, however, the 0
ions are pointlike, and the plate should be understood to be
positioned exactly ar=0. d2y 4o
Due to the one-dimensional symmetry imposed by the P - ¢2 (29)
uniformly charged planar plate, the integration in ERl)
can be performed over they plane, leaving us with profiles
depending only orz, the distance from the plate,

A. Density equations

_ o Cp={exp—2Bcy). 30
c.(z)=C. e PezV ex[{—f c(z’)B(z—z’)dz’} b= £ XL~ 2BiCy) (30
0
(23)  The second case is that of no added salt. The solution con-
tains only monovalent counterionz (=1, z_=0). This
wherec(z) =c.(z)+c_(z) is the total ion density, anB(z)  case can be obtained by formally taking the liniit-0 of
is the integral ofU(r) in the plane of constant. Using  Eq. (29), or by repeating the derivation from E(L9) with

cylindrical coordinates only one type of ions, of chargee. The term
—kgTfd%rc log(?) in Q is then a Lagrange multiplier added
_ - to impose the condition/,dze¢z)=|c|. The following
B(z)=2m | pdpU(VZZ+p?), (24 ' 0
0 equations are then obtained:
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' ' It is useful to employ two length scales that characterize
the PB density profile§6]. The Gouy-Chapman lengthde-
fined asb=ekgT/(2me|a]|), characterizes the width of the
diffusive counterion layer close to a single plate charged
with a surface charge, in the absence of added salt. The
Debye-Huekel screening lengthyp=(8mc,e?/ekgT) 2,
equal to 19.6 A forc,=0.025 M at room temperature, char-
acterizes the decay of the screened electrostatic interaction in
a solution with added salt. The strength of the electrostatic
interaction can also be expressed using Bjerrum length
lg=¢€%/(ekgT). This is the distance at which the electrostatic
interaction between two unit charges becomes equal to the
thermal energy. The Bjerrum length is equal to abod in

-80p L ! ! ] water at room temperature.
-10 0 10 The inclusion of hydration interactions introduces addi-
Z [A] tional length scales in the system. For the interaction shown

in Figs. 2 and 3, the range of the interactigy can be seen
FIG. 3. The effective interaction in a planar geomeByz) O be approximately 7 A, over twice the hard-core diameter
obtained from the potential of Fig. 2, using E84). The oscillating  dhe=2.9 A. The strength of the hydration interaction is char-
structure of the radial potential shown in Fig. 2 is apparent in theacterized byB,=— (7.9 A)3, as is calculated from E428).
secondary minima oB(z).
C. Numerical results

c(2)=Coe PV exp — Jmc(z’)B(z—z’)dz’ , Equation_s(23) and_ (25) are a set of three nonli_near int_e-
0 grodifferential equations. We treat them numerically using
(3D an iterative scheme, based on the assumption that the posi-

d2w Ame tive ion density profile is dominated by the electrostatic in-

—=——0(2), teraction. We start with the analytically known PB profile

d7 2 ' iterati i
close to a single charged plate, and iteratively calculate cor

_ _ _ _ rections to this profile, as result from Eq23) and(25). For
where/ is an arbitrary reference fugacity. The choicefgf a 1:1 electrolyte we iteratively solve the equation
determines théarbitrary position in whichW is zero. Note

that the electrostatic potentidl diverges in the bulk. This d?>v(™M 8re "
divergence exists also in the usual PB theory, because the 472 =T§S|nf(,3€‘1’ )
system is effectively one dimensional with no screening by
added salt. Although¥(z) has a weak logarithmic diver- S
gence, the density of counterions decays to zero, xexg — J'O c"N(z)B(z-2")dZ'|, (32
lim,_.c(z)=0, as it should.
wherec(z)=c,(2) +c_(2) is the total ion density, and the
B. Parameters and length scales superscriph stands for thenth iteration. Fom>0,
For the ion-ion potential(r—r’) we use an effective
potential between Na-Na’ ion pairs. The potential was cal- cM(2)= e Y™ oy — focc(nfl) 2\B(z—2")dZ'
culated using a Monte-Carlo simulatig®9] for an NaCl = (=4 0 (z")B( ) '
ionic solution of concentration 0.55 M, at room temperature. (33

The electrostatic interaction between the ions is subtracted,
and the net short-range potential is shown in Fig. 2. Fomnd the zeroth order densitie§”) are taken as the density
ion-ion separations below 2.9 A, a hard-core interaction isrofiles generated by the PB equatidd). Boundary condi-
assumed. Figure 3 shows the functiBiiz), derived from tions (26) are satisfied by the electrostatic potentigl® in
this potential, using Eq(24). Note thatB(z) has several all the iterations. Note that using our iterative scheme, Eq.
local maxima and minima. These correspond to the loca{32) is an inhomogeneous differential equation, because the
maxima and minima ofu(r). Thus the structure oB(z) integral in the exponential is a known function nfcalcu-
reflects the oscillatory behavior of the effective potential. lated numerically in then—1 iteration. A similar iterative
We use the effective potential calculated &ge=0.55 M,  scheme, based on E(1) can be used when only counteri-
regardless of the actual bulk ion concentration in the systenons are present in the solution.
Since the important effects occur near the charged surface, Figure 4 shows the calculated density profile of the coun-
where the ion concentration is much larger tlign it seems  terions on a semilogarithmic scale, for a charged plate with a
reasonable to use an effective potential calculated in theurface chargggs|=0.333C/m, corresponding to an area of
presence of a rather high salt concentration. The choice afpproximately 48 A per unit charge. This is a typical high
c,=0.55 M is still somewhat arbitrary, and we rely on the surface charge obtained with mica plates. It corresponds to a
fact that the dependence of the effective potential on the ioGouy-Chapman length=1.06 A, at a temperature of 298 K,
concentration is weak39]. with e =78. No salt is present in the solution. The calculated
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FIG. 4. Counterion density profilesolid line) obtained from a FIG. 6. The ratioc, /c'iB between the positive ion density ob-
numerical solution of Eq(31), with the hydration interaction as in tained from Eq.(29) and the value obtained from PB theory, for
Fig. 3, plotted on a semilog plot. No salt is present in the solutionsurface charges$o|=0.333 C/n? (dashed ling 0.1 C/n? (solid
The surface charge igr|=0.333 C/m. The dielectric constant is line) and 0.0333 C/rh(dotted ling. The bulk salt concentratiog,
£=78, and the temperature Ts= 298 K. The dotted line shows the is 0.025 M. Other parameters are as in Fig. 4.
corresponding density profile obtained from the PB equation.

fuse electrical layer near the plate. This can be seen in Fig. 5,
density profile(solid line) is compared to the PB prediction N @ comparison of counterion profiles for different values of
(dotted ling. The short-range attraction favors an increasedhe bulk concentratiow, . For each salt concentration, the
concentration of counterions in the vicinity of the chargedfigure shows the ratio between the counterion density and the
plate. This results in an increase of the concentration relativensity predicted by PB theory, as a function of the distance
to the PB prediction. For a surface charge as in Fig. 4, affom the plate. The dotted line shows the result in the no-salt
increase of the concentration is seen at distances from tH#nit- As the salt concentration increases, the counterion con-
plate up to approximately 4.5A. The overall number of Céntration increases relative to the PB concentration at all
counterions is fixed by the requirement of charge neutralitydistances from the charged plate. Qualitatively, however, the
Therefore, the increase in the density of counteriosarthe  hydration effect on the counterion profile is similar in all the
plate is balanced by a reduced concentrafiother away. ~ Curves. As long as the Debye-tkel screening length is

When salt is present in the solution, the short-range attrada/ge compared to the Gouy-Chapman length,1.06 A, the
tion draws additional ions from the bulk solution to the dif- density profile in the vicinity of the plate is dominated by the

balancing counterions, and the salt has only a small effect.
The effect of the hydration interaction is strongly depen-

T
1.4r Cc =0.1M . dent on the surface charge. As o is increased, the ion
- b density near the surface increases too. The exponential in Eq.
1.31 --- Cb=0'025M ] (29) deviates more strongly from unity, leading to a larger
126 1 ] cb=0.00625M i deviation from PB theory. The dependence w@rs demon-
_________ No Salt strated in Fig. 6. The ratio of the positive ion density to its
1.1 PB value is shown for three values of the surface charge. The

1
0.9
0.8
0.7

C /CPB
+ +

effect of the hydration potential is very minor for small sur-
face charge|o|=0.0333 C/m (dotted ling, where the de-
viation from PB is less than 2% at its maximum, and con-
siderable for a surface charge of 0.333 Efdashed ling
where the deviation from PB reaches almost 40%.

The numerical scheme, described above, requires several

iterations to converge fully. It is interesting to note, however,
that the first iteration captures most of the effect of the short-
range interaction. This indicates that the density profile is
dominated, as we assumed, by the electrostatic interaction,
and assures that the convergence of the iterative scheme is
FIG. 5. The ratioc., /cF? between the positive ion density ob- 900d with the PB density profile as the zeroth order approxi-
tained from Eq.(29) and the value obtained from PB theory, for a mation. On the theoretical level this indicates that the effect
surface chargés|=0.333 C/nf and several values af,. Other ~ Of the hydration interaction can be seen as a perturbation
parameters are as in Fig. 4. The three values,0f0.1, 0.025, and  over the PB results. The fact that the first iteration provides a
0.00625 M correspond to Debye-kkel screening lengths\p good approximation to the full iterative result can lead to
=0.8, 19.6, and 39.2 A, respectively. further analytical approximations. For example, the correc-

0'60 10 20 30 40
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the ions is included. Equating the pressure at the contact
plane and far away from the plate results in E2f).

The contact density, as expressed by Ef), differs
from the PB prediction only due to the change in the actual
value of P,. This change is negligible if the short-range
interaction is not of importance in the bulk. In addition, if the
surface charge is high, such tha&\p, Py, is negligible
compared to the second term in the right hand side of Eg.
(34). Thus the contact density remains very close to the PB
prediction. In the no-salt limiP,,, is zero, and the contact
density coincides exactly with the PB result,(0)
=(2wBle)d?.

0.6 ! ! 1 ! IV. ANALYTICAL SOLUTIONS

1
0 5 10 1§ 20 25 30 The simplicity of the model makes it possible to obtain
Z[A] various analytical results. The effect of the hydration on the
ion distribution can be characterized by several quantities,
FIG. 7. The positive ion density profile obtained after one itera-sych as the magnitude of the deviation from the PB result
tion of Eq. (32) (dotted ling, compared to the full solution of Eq. and the effective PB surface charge density seen at a distance
(29) (solid ling). Parameters are as in Fig. 5. The maximal deviationfom the plate. Using several simplifying assumptions it is
between the two density profiles is 3.2%, where the deviation from,ogsiple to obtain analytical expressions for these quantities.
PB is approximately 30%. First we assume that the hydration interactions can be
. . ! . - neglected in the bulk, i.eB;c,<1. In this case, the effect of
tions to the d(.ansny.proﬁles, in the no addgd salt I|m|.t, ar€he hydration potential is significant only in the vicinity of
studied analytically in Sec. IV, based on this observation. . charged surface, where the ion density becomes large. In

As an gxample for the resglts of the first |terat|on, W€ addition, the Debye-Htkel screening length, is taken to
compare, in Fig. 7, the correction to the counterion densit

profile obtained in the first iteratiotdashed ling with the EZ,JZ‘?F@;’"‘E?JSSA“; bth?heeggggcgpg?gn 'degr?;ﬂy
full iterative result(solid line). We use a high surface charge near theBnegétiver chaDrged surface can be neglected com-

of 0.333 C/m, where the differences between the exact pro- . - ;
file and that of the first iteration are relatively pronounced.pared (o the positive counterion density. Far away from the

. ) ) charged plate, the system is well described using the PB
The two density profiles differ by at most 3.2%, where the . . . o e
ion density deviates from the PB value by 30%. For smaIIerequatlon’ with an effective surface charge denatly differ

f h th its obtained in the first iterati ent from the actual charge density The result of the above
Z?/reﬁcbeetie?rge € results obtained in the first iteration arg, simplifying assumptions is that the salt is of minor im-

portance in the region where the effective surface charge is
determined. The effective surface charge can then be inferred
D. Contact density and the contact theorem by considering the case in which only counterions are

The contact density of the ions is barely modified as comPresent in the solutiono added salt

pared with the PB prediction. This is evident in Figs. 4—6. Equation(31) can now be recast in a simpler form, by

As long as the Debye-kikel screening length is large com- consideringn=log(c/{,), as expressed by E(31), and tak-

pared to the Gouy-Chapman length, or the hydration interadnd its second derivative

tion is negligible in the bulk, the modification remains small.

This result can be obtained from a generalization of the PB  d?7 47TIB 2 e f’ﬁg n(z,)dzB(z—z’) dz. (35
— =—pe"e"— e”?) —————dz'.
contact theoren5,50] d2 & 0 00 dz
2wB . .
Pouk =2 Ci(O)_TO'Z, (34 The PB density profilecpg(z)=Z,e™® for the same
1

surface charge satisfies the equatiom?z,/dZ?

. . ) =(4mpe?lyle)expny). Its exact solution is known to be
where Py is the bulk pressure of the ionic solution. Equa-

tion (34) is derived in detall for the free energy used in our 1
model in Ref.[43]. It is obtained from the equality of the Cpp(2) = {oe@ = I
internal pressure in the electrolyte solution at different dis- 27lg (z+b)?
tances from the charged plate. Far away from the charged

plate the pressure must be equal to the bulk pressure of tHéote that only in the PB equation(z) is the reduced elec-
ionic solution, because the densities approach their bulk valrostatic potentiaeW¥ (z)/kgT. From the generalized contact
ues and the electrostatic potential becomes constant. At thibeorem[Eg. (34)], the surface density in the no added salt
contact plane between the plate and the solution, the pressutase and in the presence of one plate(8) =27 B0/, as
involves only an electrostatic contribution and an osmoticin PB theory. Therefore,

contribution, as in PB theory. This is due to the fact that in

our model no short-range interaction between the plate and 7(z=0)=ny(z=0). (37

(36)
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From the derivative o€(z) [Eq. (31)], we find ' '

01k .

dzy dw fxd L dB(z—2") 38 0.0

a9z Peaz . Z'c(z )—dz : (39

and, using boundary conditigi26),

d d o dB(z’

P +f dzez) 82 (3

dz| _ dz| 0 z

z=0 z=0

where the odd parity ofiB/dz has been used. This relation
can be used together with E¢37) as a second boundary

condition atz=0, instead of the boundary condition of van-  _Q.005 i
ishingd»/dz at infinity. L ! !
Linearizing Eq.(35) with respect to 0 30 . 100 150

w=n—no=log(c/Cpp), (40)

FIG. 8. The logarithm of the ratio between the counterion den-
which is valid for relatively small deviations from the PB sity obtained with the inclusion of the hydration interaction and its
profile, results in the following equation: value in PB theoryw(z), as a function of the distance from a

charged plate, with no added salt in the solution. The solid line
d>w  4x shows the functiorw(z) obtained from the exact solution, fdr
5 —ﬂe Cpa(2)W(Z2) =21.2 A. The dotted line shows the approximated curve obtained
dz from the linearization with respect ta, Eq. (42), in the limit b

4Bz Z) >y, EQ. (46).

f dz'(1+w(z"))Cpe(Z' ) d7 A. Slowly varying density: b>d,q

(42) In the limit b>d;, 4, the PB distribution varies slowly on
the scale of the hydration interaction, describedlfy), and
This equation can be further simplified by omittimg(z') the theory effectively becomes a local density functional
from the integrand in the right hand side. This approximationtheory. The specific form oB(z) is not important, and all
was motivated in Sec. Il C, and is equivalent to stopping thehe results simply depend &= [ ..B(z)dz. The deviation
iterative schem¢Eq. (32)] after the first iteration. The den- of the effective Gouy-Chapman lengthy from the actual
sity profile is then replaced by the PB density profile in theGouy-Chapman length depends linearly oB; and on the
term that involves the hydration interactid(z). This re-  surface charge~ 1/b. This can be expected since we use a

sults in the equation linearized equation. Thus we have, on dimensional grounds,
be—b~B,/Igh. The detailed calculation gives the numeri-
d’w 47 cal prefactor
—— —,Be cpp(z)W(2)+1I'(2)=0, (42
dz? -B; 1
beff b= (45)

wherel'(z) is the convolution integral: 47T|B b’

) SinceB; is negative by is larger thanb, and the effective
I(z)==—— 1 f“’ 7' 1 d°B(z—2) _ (43) surface charger¢ is smaller than the actual surface charge
27l (z' +b)? dz? o. This result should be expected. The short-range interac-
tion attracts counterions to the vicinity of the charged plate
The corresponding boundary conditions, obtained from Egsand the surface charge is screened more effectively than in

(37) and (39) using the same approximations, are the PB equation.
The correction to the counterion density profile, described
w(z=0)=0, by w(z) =log[c(2)/cpg(2)], is found to be
(44)
dw _J%d ) , (z") - B; 3 1
dzf,_, Jo Z'Coe(2') dz' - w(z)= 2mlg | 2(z+b)2 b(z+b) | (48

Equation(42) is a second order inhomogeneous linear differ-The density profile is increased relative to PB theory for
ential equation fow(z), and can be solved analytically. The distances smaller thab/2, and decreased for larger dis-
solution, given in detail in Appendix B, is expressed in termstances. The deviation from PB theomy(z), is maximal at

of the convolution integral’(z) of Eq. (43). The effective z=0, where it is equal to- B;/(4mlgh?), and minimal at
surface charge and the effect of the hydration on the density=2b, where it is equal td, /(127 gb?).

profile can then be calculated in several limits, described in Figure 8 shows the approximated functiarfz) of Eq.
detail in Appendix B. Here we outline the main results. (46) for b=21.2 A, corresponding tb/dpyq~3 (dotted ling.



5306 YORAM BURAK AND DAVID ANDELMAN PRE 62

' It should be stressed that althoulglis small compared to
dyyq We still assume tha is large enough for the lineariza-
0.4- i tion to be valid, i.e., we assume thafz) is small compared

) i to unity. Furthermore, the counterion density should be small

o
(o2}
T
1

0.2 enough that we can sensibly use only the quadratic term in
the virial expansion. To check the validity of these assump-
N 0 tions, the correction to the density profile should be consid-
E ered.
-0.2 The form ofw(z) depends, in the surface layer limit, on
the specific form ofB(z). In order to studyw(z) analyti-
-0.4 cally, we use an approximated form Bf(z), described in
—0.6- | Appendix_ B. A_typical fqrm pf the approx_imated(z)_, ol_a-
tained using this approximatidieq. (B12)], is shown in Fig.
0.8 | L | L 9 (dotted ling. The Gouy-Chapman length is=1.06 A,
0 5 10 15 20 25 corresponding tob/dp,~0.15. In addition, the function
Z[A] w(z) obtained from the exact solution of E(1) is shown

for comparisor(solid line). The approximated curve captures
FIG. 9. The logarithm of the ratio between the counterion den-well the qualitative behavior of the correction to the PB pro-

sity obtained with the inclusion of the hydration interaction and itsfile. Note that the discrepancy between the approximated and
value in PB theoryw(z), as a function of the distance from a actual profiles results not only from the linearization and
charged plate, with no added salt in the solution. The solid linesmallb limit, but also from the loss of detail due to the use of
shows the functiorw(z), obtained from the exact solution, ftr ~ an approximated form foB(z).
=1.06 A. The dotted line shows the approximated curve obtained The deviation from the PB profilay(z), can be qualita-
from the linearization with respect w [Eq. (42)], in the limit b tively described as follows. Far<d,, w(z) increases qua-
<dpyq [Eq. (B12)]. dratically from zero(with an additional term of the form

Z’log2) to its value atz=d,.. It then decreases from its
The approximation is compared with the functiiz) ob-  maximum positive value to a minimum, negative value, on a
tained from the exact solution of E(B1) for the case of no scale of the range of the attractive partBz). This mini-
added saltsolid line). Although b is not much larger than  mum value is equal to approximateBy/(67l gbdyyq). For
dnyg, the approximation describes well the correction to thedistances larger than the interaction rangéz) assumes the
PB profile. Note thatw(z), as expressed by Eq46), is  form w(z)~ 1/z, characterizing a PB profile with a modified,
maximal atz=0, whereas according to the contact theoremeffective surface charge. For finite valuespfve can expect
w(0) should be zero. This apparent inconsistency resultghe above behavior to be smoothed over a scale of doder
from neglecting the range of the hydration potential relative  The validity of the linearization can be found by requiring

to b. In the precise solution of Eq31), w(0) is zero, as it that |w(z)|<1. This requirement results in the following
should be. The prediction of E¢46) is valid only for dis-  condition:

tancesz=dyq, as can be seen in Fig. 8. The range of valid-
ity of the linearization procedure can be found by requiring

that the minimal and maximal valuesw{z) are small com- _—Bt<1. (49)
pared to unity: 67l gbdhyq
~B, The validity of stopping the virial expansion at the quadratic
<l1. (47 order can be shown to have the same condition. For the

2 <
4mlgb hydration potential of Fig. 2, the condition expressed in Eq.

(49) implies that the various approximations we use start to
B. Surface layer limit: b<d;, break down wherb becomes smaller than approximately 1
y A, or =0.022/A2. Whenb is of this order, it is well below

In the limit in whichb<dy,q, the ion density effectively dhya, Making the surface layer limit a sensible approxima-
becomes a dense layer concentrated=a@ on the scale of jp.

the hydration interaction. The effective Gouy-Chapman
length has the same form as in the limit of slowly varying _
density,b>d 4, but having a different prefactor: C. Effective surface charge

In the two limits described above, the effective Gouy-
- (48)  Chapman length was found to be of the fotmgy—b~
127lg b —B,/Igb, with different prefactors in the two limits. For

intermediate values df, the effective charge depends on the
The effective surface charge is, therefore, smaller than thepecific structure of the functioB(z). In order to study this
actual surface charge. Note thmt depends o8(z), in this  dependence, we use a simple approximated formBi@),
limit, only throughB;. The linear dependence an~1/b described in Appendix B. Using this approximation, an ana-
follows from the linearization leading to E¢42), as in the lytical expression can be obtained for the effective Gouy-
previous limit. Chapman length for all values of

_Bt l
beff_bE
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FIG. 10. The effective Gouy-Chapman lendpfy; () andb.z—b (b), as a function of the Gouy-Chapman lengthThe solid lines show
the behavior predicted by E¢B14), with B,=—500 A%, d,.=2.9 A, andB,=41.8 A2. The dotted lines show the asymptotic limits of Egs.
(45) and (48). The symbols show results extracted from numerical solutions of 2, usingB(z) of Fig. 3, with salt concentrations of
107 M (circles and 0.1 M(crosses The salt has a very small effect.

Figures 10a) and 1Q@b) show the predictecbs and  numerical solutions of the full equatiq®29), using the origi-
beii— b, respectively(solid lineg as a function ob, together nal interactionB(z). The equation was solved with two dif-
with the asymptotic limit$45) and(48) (dotted line$. Asthe  ferent salt concentrations: 16 M (circley and 0.1 M
surface charge increases from zéemd b decreases from (crossels The value ofb.4 was estimated from the positive
infinity), the effective chargéo.q| increases togbut is al-  ion density at large distances from the plate, by finding the
ways smaller than the actual surface chargénhenb reaches value ofb that would result in the same calculated values of
a certain valud™", b4 starts increasing with further reduc- the density in a solution of the PB equation. Note that for
tion of b, i.e., the effective charge decreases with increasingpoth salt concentrationsy« is very close to its predicted
surface charge abovier|™*=e/(27lgb™"). The value of value, meaning that the salt has a very small effectrgp
b™" depends on the structure of the functiBz), but can  This result is not obvious for the high salt concentration of
be estimated to be between the values predicted by the@.1l M. The Debye-Hekel screening length is approximately
asymptotic expressiongt5) and (48). From the condition 9.6 A, not much larger than the range of the hydration in-
dbeg/db|p—pmin=0, we find teraction,dpyg="7 A, and comparable to the Gouy-Chapman

length at the largé region of the plot.
— B min — Bt
N 2, = Nz, (50
In this work we have studied the effects due to the dis-

b~ 2pmin, (51)  creteness of the solvent in aqueous ionic solutions. Hydration
interactions are found to have a significant effect on the
For the hydration interaction of Fig. B, is approximately  structure of the diffusive layer near highly charged surfaces.
—500 A3. The value ofo™" is then between 1.36 and 2.35 The counterion density is increased in the vicinity of the
A, corresponding to a surface charge density between 0.1&harged surface, relative to the PB prediction, and decreased
and 0.26 C/rh The values obtained from the approximatedfurther away. The distance from the charged plate in which
curve, shown in Fig. 10, ale™"=1.5 A andbl’=3.4 A.  the density is increased, and the magnitude of the deviation
For small enough values f the effective surface charge from the PB density, depend strongly on the surface charge,
|oe| should increase again with an increasd @f and be- and on the parameters of the short-range hydration interac-
come larger thaho|. This effect cannot be predicted by our tion between ion pairs.
model because of the low density approximation used for the The ion-ion hydration interaction can be described
hard-core interaction. In particular, the hard core of the iongoughly using two parameters. The first parameter is the
should cause the density to saturate at the close packing def@nge of the hydration interaction, 4, equal to approxi-
sity, leading to a reduced screening of the surface chargeatey 7 A for Na*-Na" pairs. The second parame®rhas
relative to PB theory[25,26,5]. In our model, as in PB dimensions of volume, and characterizes the strength of the
theory, the counterion density near the surface is nohydration interaction. It is equal to approximately500 A3
bounded, and increases indefinitely asis increased. Al- for Na"-Na* pairs. Two limits can be considered, where the
though our model includes the steric repulsion between iongsouy-Chapman length~ 1/o is small or large compared to
this repulsion is “softened,” and is always outweighed by the range of the hydration interactialy 4. In both of these
the attractive part of the ion-ion interaction. limits we assume that the Debye-tkel screening lengthp
In addition to the prediction obtained using the linearizedis large compared tb anddyg.
approximation, Fig. 10 shows values lofi; extracted from In the limit b>d;, 4, the counterion density becomes de-

V. CONCLUSIONS AND OUTLOOK
and
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pleted, relative to the PB prediction, starting at a distance Sciences and Humanities—Centers of Excellence Program is
=b/2 from the charged plate. The maximum absolute valuegratefully acknowledged.

of w(z)=log[c(2)/cpg(2)] Scales as-B,/Igb?. In the other

limit b<dy4, the distance from the plate, where the coun- APPENDIX A: INHOMOGENEOUS VIRIAL EXPANSION

terion density becomes lower than the PB prediction, is be-

tweenz=dp; andz=dyyq. The maximum absolute value of short-range two-body interaction, and aim to express the free

w(2) scales as- B/ (| glnyd). . i energy of the system in the low density limit as a functional
Far away from the charged plate, the density profile cany \he gensity distribution. For simplicity we consider only

be well described using the PB theory with an effective sur,q species of particles. The inhomogeneity of the system

face charge that can be calculated analytically. The correcyrises from the inclusion of an external fiedr), or from

tion to the Gouy-Chapman length in the two limiis-dyyg  the boundary conditions imposed on the system. We begin

andb<d, is always positive, and scales asB,/Igh, but by considering the grand canonical ensemble. The grand ca-
has different numerical prefactors. When the surface charggonical partition function is

on the plate is increased, the effective surface chatges
found to reach a certain maximal value. Above this maximal 1
valueo o decreases with a further increase of the actuah Zg=2, NI
the plate. The various approximations we use start to break N
down ~when b is sm_aller than  approximately whereu is the chemical potential ; is the de Broglie ther-
—By/(67lgdnyq), corresponding tb=<1 A mal wavelenath -
: ; ; . gth, an@y is

An important outcome of this work is that the correction
of the PB ion density due to the hydration interaction is N
significant near highly charged surfaces. The electrostatic in- Qn=| TT d3r,e AUntrid), (A2)
teraction dominates the ionic distribution, and the hydration =1
interaction can be seen as a perturbation. F%r %:igh surface 1
charge density of, say, one unit charge per 48tl#e coun- ) — Na T o
terion density deviates from its Poisson Boltzmann value by Un(irid) 2.“ e(r)+ 2 2,“ u(lri=ril). (A3)
at most 30%. The effective change in the surface charge is
more significant, from &/48 A? to about ¥/13 A2 We proceed on similar lines as the usual virial expansion in

The hydration effect on inter-surface forces can be verya bulk fluid, expanding logg in powers of the activity. Up
pronounced, as opposed to the effect on the ion distributiorf0 second order, we have
This result will be presented elsewhg#s]. Our model pre- )
dicts an attractive contribution to the pressure between two | B efr 1(efr 2
parallel charged plates. At distances below several nanom- Ze= NG Qi F 213 (Q2=Q1)
eters this contribution can outweigh the electrostatic repul- T T

We consider an inhomogeneous system of particles with a

e,BM N
) Qn. (A1)

T

sion and lead to an overall attraction between the plates. Our eBu 1 [ epn\?

two-plate findings can also be compared with available =\ 3 f d¥r e Aoy 5l 7F f dgrf d3r’
AHNC results[41,44], showing good qualitative agreement AT Ay

both for the ion density profile and pressure. e B+ el (g Bulr—r'D_ 1), (Ad)

The formalism we present can be readily generalized to

other geometries. This could lead to an estimation of thel’his can be seen as an expansion in powers of the field
aqueous solvent effects on phenomena such as the Manni%gqﬂ(ﬂ_(P(r))]/)\s The local densityc(r) can be ex-
condensation on cylindrical polyio§2], and charge renor- pressed in a simiIaTr. expansion:

malization of spherical mycelles or colloid8]. In this re-

spect our formalism offers an advantage over the AHNC 1 5logZg
approximation which was applied so far only in a planar C(r):_E o)
geometry. Another interesting extension of this work would ¢

be to consider the combination of fluctuation and hydration

effects. This is particularly important for ionic solutions with =
divalent counterions, where fluctuation effects become large

[21,22,24.

Bu Bu\ 2
e_3 o Beln) 4 e_3 e*M(r)j 43
e A3

x e Ber)(g=Bullr=r'h 1), (A5)

This relation can be inverted to obtain an expansion of
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1
IogZG=f dr c(r)+§j d3rJ d3r’c(r)c(r’)

X (1—e Aulr=r'hy, (A7)
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|OgT— 1

Q({c(r)})=kBTJ d®r c(r) e )

1
+f d3r c(r)e(r)+ EkBTJ d3rf d3r’

The grand canonical potential can be obtained from the rela-

tion Q= —kgT log Zs, with logZ¢ given by Eq.(A7). In this

expressiong(r) is the mean density profile for the imposed

external fielde(r) and a given chemical potential. We
would like to expresd) as a functional of a general ion
densityc(r), whose minimization with respect tfr) would
give the equilibrium mean density. RegardirgkgT log Zg
as a functional ofy(r)=¢(r) — x, we have

ologZg

BT ox(n)

c(r). (A8)

xc(rye(r’)(1—e Aulr=r'hy, (A14)
where ¢ =exp(8,u)/)\$-. The derivation of Eq(A14) can be
readily generalized to the case of several ion species of dif-
ferent charges and different pair interactiangr), resulting

in Eq. (16).

A similar, more elaborate diagrammatic expansion of the
thermodynamic potentials in the presence of an external field
is presented in Ref[53]. A variational principal for the
grand canonical potentidD is obtained in which() is ex-
pressed as a functional of the mean dens{ty) and the pair

The Legendre transform of this relation can be obtained byorrelation functiorh,(ry,r,). This expression is equivalent

defining

®=—kBTIogZG—f d3r c(r)x(r), (A9)

and expressing logg and y as functionals ot(r). We have
already expressed lfg, as a functional o€(r) in Eq. (A7).
An expression fory(r) as a functional oft(r) can be ob-
tained from Eq.(A6). Up to first order inc we have

B[@(r)—u]=—|09[?\$0(f) 1+f d®r’c(r’)

X(l_e—ﬁu(f—f’))H

=—log[\3c(r)]— J d3r'c(r’)

X(1—e Pur=r'Dy 1 O(c?).  (A10)

Using this relation and EqA7), we obtain, up to second
order in c,

poen) = [ @ c(nlioghier)-1)

1 /
+§f d3rf d3r’c(r)c(r’)(1—eAulr=r'hy,

(A11)

The functional® of c(r) has the property that
o0 _ = Al2
5o~ ~X(D=—Te(n -], (A12)

or, equivalently,

5 3 _
5C(r){+f dre(n[e(r)—ul|=

oQ({c(r)}) o
sc(r)y
(A13)

Thus, using Eq(Al1l), we obtain

to Eq.(Al14) up to the second order in the cluster expansion.

APPENDIX B: DETAILS OF ANALYTICAL RESULTS

In this appendix we present details of the analytical ap-
proximations of Sec. IV. We first consider the analytical so-
lution of Equation(42). This equation is a second order lin-
ear differential equation fow(z). Note that the function
cpg(2) is a known function ofz, given by Eq.(36). The
solution of Eq.(42), with the boundary conditions of Eqg.
(44), is
*» dz
2(z1+b)

(B1)

1 z
W(Z):mfod22(22+b)2 I'(zy),

wherel’(z) is the convolution integral, defined by E@3).
By writing I'(z) as

F(z)=foxdz’F(z’)5(z—z'), (B2)

whered(z) is the Dirac delta functiony(z) can be rewritten
in the following form:

3 re ’ z
W(Z)=—L b—f dz’r(z)—lf dz'(z' +b)?I'(z")
3Jo  zZ+b 3Jo

(B3)

(z+b)? (= T(2)
+ f dz .
3 z zZ’+b

The effective chargeo. (or equivalently, the effective
Gouy-Chapman length.) can be calculated from the coef-
ficient of 27! in w(z), asz approaches infinity:

. 2(b_ beff)

Z Z— 0, (B4)

w(2z)

We thus find

3

—— —(z+b)?

Z+b ().

(B5)

1 (>
be— b= Efo dz
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range repulsion, so th&; is positive. Forzlarger than some
finite valued,.+ A, B(2) is practically zero due to the short
range of the interaction. Fal,.<z<dp.+A, B(z) varies
from — (Bg+ rrdﬁc) to zero in a functional form that depends

M on the details of the attractive potential. The most simple
ol way to model this behavior 0B(z) is to have a linear in-
g crease oB?Nz) betweenz=d;, andz=d,.+A, and to set
N B2Pto be zero forz larger thand,.+ A:

om

—(Bo+7Z?%), |z|<dp¢
ap 2 (dhC+A_Z)
B r{Z): _(Bo+7TdhC)T, dhC<|Z|SdhC+A

O, dhC+A<|Z|.

(B7)

o o The parameters in this expression should be chosen to match,
FIG. 11. The effective interaction in a planar geomea{z), approximately, the form oB(z). Settingd,, to be the hard-

obtained from the potential of Fig. 2, and the corresponding apxgre diameter of the real potential, and settiBg= — B(0)
proximated functiorB?"q z), defined by Eq(B7) (dashed ling The ensures thaB(z) andB#Yz) are identical forz<d,.. The

parabolic dependance fde|<dy. is identical in the two curves width A can then be set such thBf""= B, :

A=3.0 A
A simple form for the convolution integrdl(z) can be ob- 2_77 3 2 _
tained in the limits in whichb is small or large relative to 2BoUhct 3 dhet A(Bo+ mdi) = — By (B8)

dnyg, the characteristic range of the hydration potential.

This is desirable in light of Eqsi45 and (48), since the
1. Slowly varying density: b>djy4 effective surface charge depends onlyBnin these limits.
In the limit b>dj,,4, the PB distribution varies slowly on Figure 11 show8(z) andB**}z) for the hydration potential
the scale of the hydration interaction. The convolution inte-of Fig. 2.
gral I'(z) of Eqg. (43 can then be approximated in the fol-

lowing way: 3. Surface layer limit: b<<dy,q
o H(z') d?B In the limit b<dy 4, the convolution integral in Eq43)
I'(z)= f 7 —(z-7') becomes
2mlg) =" (z/+b)? dz
1 1d82 2 6H(2) ro=2 e - s (B9)
:—f dZ'| — ————=8(2) + B(z—2') € 2mlgh
2mlg) = |p? dz  pd (z+b)*
The prefactor ofl'(z) in Eq. (B5) is —:z?+0O(b), and
~ i i @_ 3 7)+ 6H(2) (B6)  therefore the effective Gouy-Chapman length is
2mlg|p? dz  p3 (z+b)*]
whereH(z) is the Heaviside functiopH(z) =0 for z<0 and Dey— b= __1Jde 2B"(z)= —B E (B10)
H(z)=1 for z>0]. Inserting this expression into EB5), 127lghJo 127lg b

we obtain Eq.(45) for the effective Gouy-Chapman length.
By substituting equatiotB6) in Eq. (B3), the form ofw(z),  This result is independent of the specific formBxiz).

given in Eq.(46), is obtained. To obtainw(z), Eq.(B9) can be substituted into E(B3).
Up to leading order inb, the following expression is ob-
2. Approximated form for B(z) tained:
Some of the following results depend on the specific
structure of the hydration interaction, characterized by the 1 1(z
function B(z). In order to obtain analytical expressions, we w(z)= 67l gb Efodz B"(z")z
use a simple approximated forB®qz) instead ofB(2z).
Assuming that the hydration interaction consists of a hard- 1 o 1
core interaction and a short-range attractive part, the function + Bmigb 22 L dz’; B"(z'). (B11)

B(z) has some general characteristics that should be present

in B%Rz). For z<d,., B(z) always has the parabolic form

— (Bo+ mZ%), where By=—B(z=0). We assume that the Using B®z), the approximated form dB(z) presented in
attractive part of the interaction dominates over the shortAppendix B 2, this gives
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)
1 4w Bo+wd: dy
1 47, Bo*mhhe S -
6a1ab2 | 3 T dqdra) 27095 ) [d=dhe
1 A Bot+ 7Tdh ) Bo+ 7Tdh
={ _—— |d?| — ¢ 22 < B12
W2 Salab dhC< TR )2 Adrd) 2 |0 el =det A (812
B dpet A
| Grighz+ et A<l

The minimal, negative value af(z) is assumed at=d, .+ A and is equal to

Bt Bt
6l Bb(dhc+ A) n 67l Bbdhyd.

W(dpt+A)= (B13)

This results in conditior§49) for the validity of the linearization in the surface layer limit.

Using only the quadratic term in the virial expansion is sensibJg @z’ c(z')B(z—2’") is small compared to unity. In the
surface layer limit, this integral is simply|«|/€)B(z)=B(z)/(2mlgb). Estimating the maximum value dB(z)| to be
approximately— B, /(2dy,q) we obtain the requirement B,/(4wlghdy,g) <1, which is analogous to E¢49).

4. Effective Gouy-Chapman length
Using B z) in Egs.(43) and(B5) we find the following approximation for the effective Gouy-Chapman length:

1 b+ dpt A
h=— | _pamp_ 42 2 . he &
b~ b= g5 | ~ B~ mohd+ 2mdhdb®+ 2Bo log ——p
d2A + 7d3 + Bodpol Dt e )y o log 2 e 3 B14
—(Tf hA + odndlog brdytA m log . (B14)

This expression is shown in Fig. 10, and discussed in Sec. IV. In the lbwitd, 4 andb<d,q it reduces to the asymptotic
expressiong45) and(48), respectively.
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