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ABSTRACT: The interaction between a flexible polymer in a good solvent and smaller associating solute
molecules such as amphiphiles (surfactants) is considered theoretically. Attractive correlations, induced
in the polymer because of the interaction, compete with intrachain repulsion and eventually drive a joint
self-assembly of the two species, accompanied by partial collapse of the chain. Results of the analysis are
found to be in good agreement with experiments on the onset of self-assembly in diverse polymer-
surfactant systems. The threshold concentration for self-assembly in the mixed system (critical aggregation
concentration, cac) is always lower than the one in the polymer-free solution (critical micelle concentration,
cmc). Several self-assembly regimes are distinguished, depending on the effective interaction between
the two species. For strong interaction, corresponding experimentally to oppositely charged species, the
cac is much lower than the cmc. It increases with ionic strength and depends only weakly on polymer
charge. For weak interaction, the cac is lower but comparable to the cmc, and the two are roughly
proportional over a wide range of cmc values. Association of small molecules with amphiphilic polymers
exhibiting intrachain aggregation (polysoaps) is gradual, having no sharp onset.

I. Introduction
Aqueous solutions containing polymers and smaller

solute molecules are common in biological systems and
industrial applications. In many cases, the small mol-
ecules are amphiphilic (surfactants) and may self-
assemble with the polymer chains into joint aggregates.
Such systems, synthetic as well as biological, have been
the subject of extensive research in the past few
decades.1,2 The possibility to achieve polymer-surfac-
tant aggregation using very low surfactant concentra-
tion offers a delicate control over the properties of the
solution, a feature being used in numerous applica-
tions.3

The current article presents a theory for the onset of
self-assembly in such mixed systems.4 The theory
considers the various interactions in a very general way,
not taking into account microscopic details of the small
molecules or the polymer. Indeed, the particular struc-
ture of a surfactant may affect the details of its ag-
gregation. Nevertheless, we suggest that the onset of
joint polymer-surfactant self-assembly is mainly de-
termined by simpler, more general considerations.

Self-assembly of polymer-surfactant complexes usu-
ally starts at a well-defined surfactant concentration,
the “critical aggregation concentration” (cac). One of the
most consistent experimental observations in polymer-
surfactant systems is that the cac is found to be lower
than the “critical micelle concentration” (cmc) of the
polymer-free surfactant solution

Consequently, polymer-surfactant systems are com-
monly divided into two categories: (i) systems whose
cac is much lower than the cmc, æcac , æcmc; (ii) systems
where the cac is lower than, but comparable to, the cmc,
æcac j æcmc. Experimentally, the former case corresponds

to systems containing a polyelectrolyte and an op-
positely charged ionic surfactant,5 e.g., poly(acrylic acid)
(PAA) and dodecyltrimethylammonium bromide (DTAB).
The strong electrostatic attraction between the two
species can cause the cac in such systems to be several
orders of magnitude lower than the cmc. The latter case
usually corresponds to systems containing a neutral
polymer and an ionic surfactant,6 e.g., poly(ethylene
oxide) (PEO) and sodium dodecyl sulfate (SDS). Some-
what less common are systems containing a polyelec-
trolyte and a nonionic surfactant,7-9 which can be
included in the second category as their cac is compa-
rable to the cmc. Systems where both species are neutral
exhibit a very weak effect.7,10,11

The cac is usually interpreted in terms of the strength
of interaction, or affinity, between the two species. In
analogy to regular micellization,12 log(æcac) is related to
the free energy of transfer (in units of kBT) of a molecule
from the aqueous solution to a joint aggregate. Evi-
dently, the affinity should be much stronger for op-
positely charged species (the first category above) than
for the other cases, resulting in a very low cac in those
systems. The difficulty, however, is to correctly identify
the various contributions to this free energy. Apart from
the bare interactions among the various molecules,
there may be additional contributions from conforma-
tional changes of the polymer induced by the joint self-
assembly. Therefore, construction of a detailed, reliable
molecular model for this complex system is a compli-
cated task.

Several theories have been presented for polymer-
surfactant aggregation.13 Most of the models14 attempt
to add the polymer as another ingredient to the already-
established thermodynamic theory of micellization.12

These models are usually applied to the case of neutral
polymers. The prediction of æcac < æcmc does not arise
naturally from the models but depends on the choice of
parameters. Other models,15,16 inspired by the Zimm-
Bragg theory of coil-helix transition,17 treat the bound
surfactant as an adsorbed one-dimensional lattice gas.
Using two fitting parameters, for the affinity between
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the two species and for “binding cooperativity”, they
account for binding isotherms in polyelectrolyte-op-
positely charged surfactant solutions. Additional models
for polyelectrolyte-ionic surfactant systems attempt to
calculate the interaction between the two species focus-
ing on electrostatics18,19 and counterion-condensation
effects.20,21

The models mentioned above do not explicitly consider
internal features of the polymer chain. This approach
may be justified for rigid polymers such as DNA or
strong polyelectrolytes at low ionic strength, where
electrostatic interactions are not screened. It is some-
what more questionable in view of the strong confor-
mational changes observed in flexible polymers upon
self-assembly.22-25 In fact, most models use various
interaction parameters to fit experimental data, which
may implicitly contain conformational effects (e.g., the
cooperativity parameter in one-dimensional models,
whose physical origin is not specified26).

Two recent works27 have treated the polymer chains
in more detail, but in a different context. Both assume
that spherical surfactant micelles have already bound
to the polymer and try to study the additional effect of
the adsorbed chain. In another work28 a detailed mo-
lecular thermodynamic theory of polymer-surfactant
complexes was presented. This model applies to neutral
polymers and contains several molecular parameters.

The present work takes a different approach toward
the joint self-assembly of polymers and small solute
molecules such as surfactants. Instead of starting from
a model of surfactant micellization and trying to add
the polymer as a further complication, we rather focus
on flexible polymers in solution and study the effect of
small associating molecules, treated as impurities, on
the chain statistics. Unlike surfactant micelles, a flexible
polymer can be treated as a thermodynamic, large
system. Hence, if the polymer undergoes a significant
change of conformation at the onset of self-assembly,
then a simple phenomenological approach might be
more successful than in pure surfactant solutions. We
thus conjecture that in a mixed system of flexible
polymers and small molecules the cac is associated with
a local instability (partial collapse) of the polymer chain.
The instability occurs when attractive correlations
induced by the interaction between the species overcome
the intrinsic intrachain repulsion. This description is
reminiscent of de Gennes’ and Brochard’s treatment of
a polymer in a binary mixture of good solvents close to
the demixing critical point.29 Similar to the latter
scenario, the polymer studied in the current work is
predicted to undergo partial collapse29 at the cac, which
marks the onset of association. The simple criterion of
partial collapse leads to several interesting predictions
which seem to be well supported by experiments.
Furthermore, it allows us to distinguish and explain
certain common, “universal” features in the vast ex-
perimental literature which has accumulated on poly-
mer-surfactant systems.

The theory presented here is phenomenological in
nature and does not consider molecular or structural
details. Hence, on one hand, its results are fairly
general, relying on a single requirementsthat the
polymer be flexible enough for its local conformation to
play a significant role in the self-assembly. (This as-
sumption is quantified in section III.) Unlike detailed
molecular models,28 the number of parameters is re-
duced to three: one accounting for the affinity between

the two species (w), another accounting for intrachain
repulsion (v), and the third is the cmc of the polymer-
free solution, (æcmc). On the other hand, the theory is
restricted to the onset of association (cac) and its
vicinity. Since we are not interested in the micellization
itself, we treat the surfactant solution, as it approaches
the cmc, as a dilute solution of small associating
molecules approaching phase separation. The theory
cannot provide, therefore, a reliable detailed description
of aggregation. More molecular approaches can be found
in references 14 and 28. Nevertheless, it is worth
mentioning that models of a simpler, more general
nature were successfully employed in the past for
describing the interaction of polymers with surfactant
monolayers.30

The free energy of the polymer solution is assumed
to be characterized by a single interaction parameter
(second virial coefficient). The theory is thus applicable
to a dilute as well as a semidilute polymer regime.
Issues of morphology, phase behavior, and rheology,
especially in semidilute and concentrated polymer-
surfactant systems, are very interesting and impor-
tant,10,31 but they lie outside the scope of the current
work.

The structure of the article is as follows. In section II
a simple thermodynamic model for the onset of self-
assembly in the mixed system is presented. The main
results of this model, as given in section IIB, can be
divided into two limiting cases, corresponding to strong
or weak effective interactions between the two species.
In section III we present a more refined model, using a
scaling approach to treat the partial collapse of the
polymer in more detail. We qualitatively discuss in
section IV the special case of amphiphilic polymers and
polysoaps, which provides experimental support for our
assumptions. Finally, in section V, we present some
conclusions and future directions. Throughout the pa-
per, we compare our results with available experiments
whenever possible and stress points where experimental
support is still required. To make the central results as
clear as possible, we have put most of the technical
calculations in two appendices. Appendix A contains a
detailed statistical-mechanical calculation, which is
used to verify the general results of section II while
allowing for their systematic improvement. Appendix
B presents the details of the scaling calculation, leading
to the results of section III.

II. Thermodynamic Approach
A. The Model. Consider a solution of polymer and

smaller solute molecules whose local concentrations are
denoted by c and æ, respectively. The free energy density
can be divided into three terms accounting for the
polymer contribution, the small solute one, and the
coupling between the two

(All energies are expressed hereafter in units of the
thermal energy kBT, i.e., f has the dimensions of inverse
volume.) We treat the repulsion between monomers of
the chains using a second-virial term

where f p
0 is the free energy of an ideal polymer solution

and v > 0 is the second virial coefficient (having
dimensions of volume). This treatment is valid for dilute,

f(c, æ) ) fp(c) + fs(æ) + fps(c,æ) (II.1)

fp ) f p
0 + 1

2
vc2 (II.2)
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as well as semidilute polymer solutions. Since the
concentrations of both species are low and we are
interested only in the onset of association, the leading
quadratic term in the expansion of fps(c, æ) suffices

where w ≡ -∂2 fps/∂c∂æ is a parameter characterizing
the interaction strength and having dimensions of
volume. In fact, as will be shown below, this general
model is sufficient for obtaining our main qualitative
results. However, for the sake of clarity, let us specify
an expression for the small solute contribution as well:

The first term in this expression accounts for the ideal
entropy of mixing of the small molecules, the second
describes short-range attraction, and the third is due
to a contact with a reservoir of small molecules having
a chemical potential µ.

In the absence of polymer, the small solute concentra-
tion has a bulk value, æ ) æb, corresponding to the
minimum of fs. Consider a small perturbation in local
concentration, æ ) æb + δæ. Assuming that the solution
is both below its cac and cmc, f can be expanded in small
δæ to yield

where f ′′s (æ) ≡ ∂2 fs/∂æ2. In this work, we identify the
cmc as the value of æ at which, for c ) 0, the solution
becomes unstable to small perturbations, i.e.

Equation II.6 is essentially a (spinodal) phase separa-
tion condition. In practice, due to the particular struc-
ture of surfactants and the resulting finite-size effects,
the cmc does not correspond to a true phase transition,
and f ′′s (æcmc) is not strictly zero. In the case of ag-
gregation into finite micelles of typical aggregation
number n, a rough estimate for æcmcf ′′ps (æcmc) is given
by æ1/æn, the volume-fraction ratio of single molecules
and molecules participating in aggregates. This gives
æcmcf ′′ps (æcmc) ∼ n-1e-ε, where ε is the energy per
molecule (in units of kBT) gained by aggregation.12 For
typical values of n ∼ 100 and ε of a few kBT, this is a
small, yet finite number. Since we are interested in the
onset of the joint self-assembly (which is subsequently
found to occur at a lower concentration than the
polymer-free surfactant micellization), we allow our-
selves to ignore these delicate considerations. Using eq
II.6, we thus assume that for æ e æcac specific features
of the surfactant can be incorporated in the phenom-
enological parameter æcmc.

In the presence of the polymer, minimization of eq
II.5 with respect to δæ gives

The last term in f implies an effective reduction in the
second virial coefficient of the polymer

Thus, letting the distribution of small molecules, æ,
reach equilibrium has led to an effective attraction
between chain monomers.32

The polymer will become unstable when veff ) 0. At
this point c is expected to increase significantly (due to
contraction of chain conformation), leading to a sharp
increase in δæ as well. We identify this point, therefore,
as the cac. Setting veff ) 0 in eq II.8 and using eq II.4
for fs, we find the following expression for the cac:

This simple calculation demonstrates the physics
governing the mixed system: the affinity between the
flexible polymer and the small solute induces attractive
correlations between monomers, which compete with the
bare monomer-monomer repulsion. The correlations
become stronger as the cmc is approached, and they are
bound to win before reaching the cmc, i.e., æcac < æcmc.
The fact that the cac is lower than the cmc has been
established by numerous experiments.1,2 According to
the description given here, this fact is a manifestation
of a general effect of equilibrated (annealed) impurities.

It is important to note that the qualitative features
of expression II.9, relating the cac and cmc, do not
depend on the specific model taken for the small
molecules, i.e., the expression for fs. In Appendix A we
present a more detailed statistical-mechanical calcula-
tion, yielding eq II.9 as a first order in an expansion.
Going beyond this first, mean-field approximation gives
the same qualitative relation between æcac and æcmc as
in eq II.9, with merely a modified function F. This
modified function can be written in a closed form using
the inverse function x ) F-1(y) of y ) F(x):

Both expressions for F(x), eqs II.9 and II.10, have the
same limiting behavior, i.e., F(x) = x for small x and
F(x) = 1 for large x. The two expressions differ, however,
in higher orders. The difference is particularly signifi-
cant in the asymptotic approach toward saturation
(x . 1). The mean-field calculation gives a x-1 depen-
dence, whereas the improved analysis yields a much
slower trend toward saturation, of x-1/3. The difference
is also evident in Figure 1, which shows the two results
for F(x). Indeed, large values of the argument x cor-
respond to solute concentrations approaching the cmc,
æcac ∼ æcmc, where solute-solute correlations become
strong and the mean-field approximation should give
poor results.

In fact, the leading asymptotic behavior of the func-
tion F, relating the cac and cmc, can be obtained on very
general grounds, without specifying an expression for
fs. To this end, we use the following mathematical
construction. (The uninterested reader can skip the

fps ) -wcæ (II.3)

fs(æ) ) æ(log æ-1) - 1
2
uæ2 - µæ (II.4)

f ) fp(c) + fs(æb) - wc(æb + δæ) + 1
2

f ′′s (æb)δæ2 (II.5)

f ′′s (æcmc) ) 0 (II.6)

f ) f p
0 + fs(æb) - wcæb + 1

2 (v - w2

f ′′s (æb)) c2 (II.7)

veff ) v - vps; vps ≡ w2

f ′′s (æb)
(II.8)

æcac ) æcmcF( v
w2æcmc

) < æcmc

F(x) ) 1
1 + 1/x

= {x - x2 x , 1
1 - 1/x x . 1

(II.9)

F-1(y) )
y(1 - y + y2)

(1 - y)3

F(x) = {x - 2x2 x , 1

1 - 1/x1/3 x . 1
(II.10)
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following derivation and just recall the general result,
eq II.11.) Let F be a dimensionless function, such that
æ ) æcmcF(x) solves the equation æcmc f ′′s (æ) ) 1/x. (x is
now merely an unspecified argument.) According to eq
II.6, for x f ∞ the solution to the equation is æ ) æcmc.
Hence we get the asymptotic behavior for large argu-
ments, F(x . 1) = 1. In the other limit one has x f 0
and f ′′s (æ) f ∞. Since fs(æ) is a well-behaved func-
tion for æ > 0, the solution for æ must tend to zero.
Hence F(x f 0) f 0. Moreover, in this limit the solution
æ f 0 must become independent of the fixed parameter
æcmc, which leads to the asymptotic behavior F(x , 1)
∼ x. The general expression for the cac is thus

B. Results. The argument x ) v/(w2æcmc) in eq II.11
determines the strength of effective interaction between
the polymer and the small molecules. Two limiting cases
arise: (i) strong effective interaction (x , 1), where
æcac , æcmc; (ii) weak interaction (x . 1), where æcac j
æcmc. The two limiting behaviors, together with a third
one corresponding to polysoaps (section IV), are pre-
sented in the diagram of Figure 2. Note that the
distinction between strong and weak interaction in-
volves not only the bare interaction between the species,
as compared to the interaction among small molecules,
but also intrachain features. In our opinion, this obser-
vation was not given proper attention by previous
studies.

1. Strong Interaction. In the case of strong effective
interaction between the two species, w2 . v/æcmc (upper
part of the diagram in Figure 2), the attraction among
small molecules has no effect on the cac, and according
to eq II.11, it becomes independent of the cmc

In practice, this case corresponds to systems containing
oppositely charged species, e.g., a polyacid and a cationic
surfactant.5 Because of the strong electrostatic interac-
tions, the cac in such systems is usually found to be 2-3
orders of magnitude lower than the cmc. In order for
the requirement of polymer flexibility to be fulfilled, the

system must contain additional salt which would screen
the electrostatic interactions on length scales compa-
rable to those of the induced attractive correlations.

Both v and w are expected to be dominated in such
systems by electrostatics and, therefore, mainly depend
on the polymer ionization degree, I, and salt concentra-
tion, csalt. A polyelectrolyte solution is a complicated
system by itself, exhibiting diverse behavior as a func-
tion of I and csalt.33 However, two observations can
generally be made: (i) the monomer-monomer param-
eter, v, should have a stronger dependence on I than
the monomer-small solute one, w (the simplest depen-
dence would be v ∼ I2 and w ∼ I); (ii) both v and w
should have a similar (increasing) dependence on the
Debye screening length, λD ∼ csalt

-1/2, i.e., a similar
decreasing dependence on csalt. Consequently, æcac ∼ v/w2

should increase with csalt and, somewhat more surpris-
ingly, be only weakly dependent on I. A model which is
focused on the bare interaction between the species
would necessarily yield a strongly decreasing depen-
dence of æcac on I. The weak dependence on I is a
characteristic result of our approach, which takes into
account intrachain features. It stems from a competition
between two effects that compensate each other: a
mutual affinity effect (increasing I strengthens the
attraction between the oppositely charged species), and
an intrachain effect (larger I implies stronger intrachain
repulsion).34

Apart from these rather general conclusions, we may
try to reach more quantitative predictions.35 The ex-
cluded-volume parameter for a flexible (weak) polyelec-
trolyte should roughly scale like v ∼ I2λD

2 ∼ I2csalt
-1.36

(This result can be simply interpreted as an electrostatic
energy I2/λD integrated over a volume λD

3.) Similarly,
we write for the monomer-small solute parameter
w ∼ Icsalt

-1. The resulting cac should scale, therefore,
as

A more detailed calculation, however, yields a different
scaling and is discussed in section III (eq III.6).

Figure 1. Scaling function F(x): solid line, mean-field cal-
culation (eq II.9); dashed line, beyond mean field (eq II.10).

Figure 2. Summary of self-assembly regimes: (i) a strong-
interaction regime (w2æcmc > v) where æcac , æcmc, correspond-
ing experimentally to systems containing oppositely charged
species; (ii) a weak-interaction regime (w2æcmc < v) where
æcac j æcmc, corresponding to systems where at least one of the
species is neutral; (iii) a polysoap regime (v ) 0) where
association is gradual (no cac), corresponding to polymers
which form intrachain aggregates by themselves.

æcac ∼ Is(csalt)
t s ) 0, t ) 1 (II.13)

æcac ) æcmcF( v
w2æcmc

) < æcmc

F(x) ∼ {x x , 1
1 x . 1 (II.11)

æcac ∼ v/w2 , æcmc (II.12)
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Table 1 summarizes various experimental results for
the dependence of æcac on I in the presence of salt. The
first six experimental systems presented in the table
exhibit vanishing dependence on I, the next four, an
increasing dependence, and the last one, a weak de-
crease. The fact that most experiments found a vanish-
ing or slightly increasing dependence of æcac on I clearly
indicates the important role of intrachain features in
the self-assembly. If intrachain features are disre-
garded, one would expect, upon increasing I, a stronger
attraction between the oppositely charged species and,
hence, a sharp decrease in the cac, i.e., an opposite trend
to the one observed in Table 1.

As mentioned above, the solution must contain enough
salt for our description to hold. Electrostatic interactions
should be screened on length scales comparable to the
correlation length in the surfactant solution, i.e., the
Debye screening length, λD, should be smaller than a
few nanometers. For monovalent salt, it means that the
salt concentration should exceed about 10 mM. This
might explain the inconsistent trends observed in
systems containing only about this amount of salt (Table
1).

Figure 3 shows experimental results for the depen-
dence of æcac on æsalt, taken from 11 different experi-
ments with different mixtures of polymers, surfactants
and monovalent salts. All systems exhibit an increasing
dependence on csalt, in qualitative agreement with our
finding. Previous works focused on small differences in
the slopes of log(æcac) vs log(csalt) for different systems,
attributing them to different ionization degrees of the
charged aggregates.21,46 While such effects are probably

present, we would rather like to draw the attention to
the striking uniformity of the slopessall of the graphs
in Figure 3, representing 11 different polymer-surfac-
tant systems, have fitted slopes in the narrow range of
0.68-0.77, namely æcac ∼ (csalt)t with t = 0.68-0.77.48

This uniformity was not pointed out before. It might
indicate that specific molecular details are not essential
to determining the onset of self-assembly, as suggested
here. Quantitatively, the observed power law disagrees
with the exponent t ) 1 in eq II.13. We return to this
point in section III.

It is important to note again that our results hold for
flexible polymers only. A different behavior as a function
of csalt is observed for stiff polymers such as DNA or
proteins.49 Similarly, the cac in salt-free solutions of
strongly charged polyelectrolytes, which cannot be
regarded as flexible chains, depends sensitively on I.50

2. Weak Interaction. In the other limiting case of
eq II.11, w2 , v/æcmc (lower part of the diagram in
Figure 2), the effective interaction between the polymer
and small molecules is weak and the cac and cmc
become comparable (yet still æcac < æcmc)

where A ) F[v/(w2æcmc)] j 1 can be considered es-
sentially as a prefactor which is not very sensitive to
changes in v, w, or æcmc [since F(x) is close to saturation;
cf. eq II.11]. Experimentally, this weak-interaction limit
applies to systems where at least one of the species is
uncharged, e.g., neutral polymers interacting with ionic
surfactants6 or polyelectrolytes interacting with non-
ionic surfactants.8,9 The cac is expected to depend in this
case on molecular details. However, most of this com-
plicated dependence is incorporated in æcmc itself. In
other words, changing various parameters (e.g., ionic
strength) may lead to considerable changes in both the
cmc and cac; yet, according to eq II.14, their ratio is
expected to remain roughly constant. We note again that
the model is not presumed to properly account for the
cmc itself. It is expected, however, to correctly capture

Table 1. Dependence of Cac on Polyelectrolyte Ionization
Degree in the Strong-Interaction Regime37

polymer surfactant salt csalt (mM) I (M) æcac (mM) ref

PMAMVE DTAB KBr 5 0.5 0.16 38
1 0.16

PMAEVE DTAB KBr 5 0.5 0.09 38
1 0.1

PMAMVE DTAC NaCl 20 0 6 39
1 5

chitosan SDS NaBr 20 0.76 0.028 40
0.84 0.028
0.99 0.028

PMASt C12PyCl NaCl 25 0.5 0.025 41
1 0.025

PMAIn C12PyCl NaCl 25 0.5 0.012 41
1 0.016

PMAEVE C12PyCl NaCl 25 0.5 0.15 41
1 0.22

PMAE C12PyCl NaCl 25 0.5 0.13 41
1 0.27

PAA TTAB NaBr 10 0.14 0.0068 42
0.26 0.0092
0.5 0.025
1 0.029

PAA DTAB NaCl 30 pH ) 5.3a 0.4 43
pH ) 6.4 0.7
pH ) 8.1 0.9
pH ) 10.8 0.95

PVS DTAB KCl 10 0.18 0.18 44
0.34 0.11
0.50 0.12
0.68 0.06
0.74 0.05
1 0.05

a pH values were reported; I depends monotonically on pH.

Figure 3. Dependence of cac on monovalent salt concentration
in various polyelectrolyte-oppositely charged surfactant sys-
tems.37 From top to bottom: (1) NaPA, DTAB, NaBr (ref 45);
(2) PMAMVE, DTAB, KBr (ref 38); (3) PVS, C10PyBr, NaBr
(ref 16); (4) NaDxS, C11PyBr, NaCl (ref 46); (5) PAS, SDeS,
NaCl (ref 15); (6) NaDxS, DTAB, NaCl (ref 47); (7) NaDxS,
C12PyCl, NaCl (ref 46); (8) PMABVE, DTAB, KBr (ref 38); (9)
NaDxS, C13PyBr, NaCl (ref 46); (10) PSS, DTAB, NaCl (ref
47); (11) NaDxS, C14PyBr, NaCl (ref 46). Fitted slopes lie in
the range 0.68-0.77.

æcac ) Aæcmc (II.14)
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the relation between the cac and cmc, due to the
particular behavior of the polymer at the cac.

The simple prediction given in eq II.14 is verified in
various experiments, as summarized in Table 2. In each
of the four experimental systems presented in Table 2,
the ratio æcac/æcmc remains roughly constant, sometimes
over a wide range of cmc values.55

III. Scaling Approach

A. The Model. The treatment given in section II for
the onset of self-assembly is not accurate enough and
should be regarded as a first step in a more rigorous
calculation. Its description of the cac resembles a
“shifted” Θ collapsesa sharp transition of polymer
conformation occurring when the second virial coef-
ficient changes sign. In practice, however, flexible
polymers do not exhibit a sharp coil-to-globule collapse
at the cac. Their association with small surfactant
molecules exhibits a steep, albeit continuous, increase
at the cac, the finite slope being associated with the
“binding cooperativity”.56

The difference between a Θ point and the cac lies in
the different ranges of competing interactions. In a
regular Θ point the competing interactions (between
monomers and between monomers and solvent mol-
ecules) have a similar short range. This leads to a sharp
conformational collapse which is stabilized by three-
body interactions (third virial coefficient term). By
contrast, in the system discussed here the strong, short-
range repulsion between monomers is overcome by
weaker, yet longer-range attractive correlations. These
attractive correlations are induced by the small as-
sociating molecules interacting with the polymer, as has
been found in section II. As a result of the competition
between interactions of different ranges, the polymer
undergoes a more moderate partial collapse into sub-
units (“blobs”), such that the interaction between mono-
mers within each blob is dominated by the short-range
repulsion, whereas the interaction between blobs is
dominated by the attractive correlations.

This behavior resembles the one previously discussed
by de Gennes and Brochard for a polymer in a binary
mixture close to the critical demixing point.29 An
important difference, however, is that the correlation
length in the system of ref 29 may become arbitrarily
large. The solution discussed here, by contrast, is not
close to a critical point but approaches a point of phase

separation or micellization. Thus, the correlations may
become strong but their range remains finite.

Partial collapse is essentially a “smoothed” Θ transi-
tionsthe rescaled “chain of blobs” is at a Θ point, while
on length scales smaller than the blob size the chain is
almost unperturbed. Throughout the regime of partial
collapse, as small solute molecules are added, the
subdivision of the chain into blobs is adapted so as to
keep the rescaled chain at a Θ point. Association, thus,
progresses continuously, as the blobs become smaller
and more numerous, and the local monomer concentra-
tion gradually increases. In the following analysis, the
added solute molecules (e.g., surfactants) do not appear
explicitly. They are accounted for via the effective
interaction which they induce in the polymer. This
interaction has a typical amplitude, e2, and a typical
range, ê, both of which implicitly depend on the solute
concentration æ. Since, for very long chains, ê is the only
length scale in the problem, it must also be the typical
size of a blob.29

Let us consider, therefore, a chain of blobs of size ê,
each containing g statistical (Kuhn) segments, as
sketched in Figure 4.57 If each blob contains a large
number of segments, its size ê is related to the number
g by a power law

where a is the length of a Kuhn segment. In the case of
excluded-volume repulsion in three dimensions, the
Flory argument yields ν ) 3/5 and z ) 2/5.58 Further
properties of the “chain of blobs” can be studied using
scaling arguments, as presented in detail in Appendix
B. This calculation leads to the following relations
between g, ê and the phenomenological parameters
introduced in section II:

where vps(æ) is the effective reduction in the second
virial coefficient due to the added solute (surfactant),
defined in eq II.8.

B. Results. Several interesting observations arise
from eq III.2. In order for the results to be consistent, g
and ê must increase with decreasing vps(æ) so that the
entire chain should reduce to a single blob for small
enough æ. Hence, the self-consistency condition is

Table 2. Relation between Cac and Cmc in the
Weak-Interaction Regime

polymer surfactant salt/counterion
æcac

(mM)
æcmc

(mM)
æcac/
æcmc ref

PEO DS- NaDS 4.2 8.2 0.51 51
LiDS 3.9 7.7 0.51
NaDS, 0.1 M NaCl 0.8 1.4 0.57

PEO SDS no salt NRa 8.2 0.65 22
0.075M NaCl 0.67
0.15M NaCl 0.69
0.2M NaCl 0.94 0.76
0.4M NaCl 0.59 0.78

PVP SDS 0.01M NaCl 2.2 5.5 0.40 54
0.1M NaCl 0.84 1.9 0.44

PAA C10E8 - 0.7 1 0.7 9
C12E8 0.063 0.08 0.79
C14E8 0.007 0.009 0.78

a Only the ratio æcac/æcmc was reported. cmc values were taken
from refs 52 and 53.

Figure 4. Schematic sketch of a partially collapsed chain.

ê ∼ gν az v(1-z)/3 (III.1)

g ∼ ( v
vps

)1/R (a3

v )z/R

ê ∼ ( v
vps

)ν/R (a3

v )νz/R

azv(1-z)/3

R ≡ 2 - 3ν (III.2)

R > 0 S ν < 2/3 (III.3)
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This self-consistency condition gives a precise definition
for the requirement of polymer flexibilityson the scale
of the correlation length in the solution the chain
statistics should satisfy ν < 2/3. (In particular, the chain
should not be stretched, having ν ) 1.) For example, in
polyelectrolyte solutions this condition sets a lower
bound for salt concentration, below which the chain
would be too stretched on the length scale of ê, and the
partial-collapse picture described here would become
invalid.

Repeating the calculation for chains embedded in d
dimensions, the same result as eq III.2 is obtained, with
R ) 2 - dν. This self-consistency condition, R > 0, is
similar to well-known results for the critical behavior
of disordered systems. For both equilibrated (annealed)
and frozen (quenched) disordersFisher renormaliza-
tion59 and the Harris criterion,60 respectivelysthe criti-
cal behavior is affected by impurities if ν < 2/d, i.e.,
R > 0. Thus, in a similar way, small solute molecules
affect the conformational transition of a polymer if
ν < 2/d.61

We stress again that the solution discussed here is
not close to a critical point and, hence, the correlations
induced in the polymer may be strong but their range
remains finite. As a result, the blobs cannot be arbi-
trarily large, i.e., g and ê are bounded by certain
maximum values, g* and ê*. Since ê* characterizes the
range of correlations in the solution of small molecules
(surfactants), it can be estimated by the typical size of
aggregates (micelles) formed at the cmc, i.e., typically
a few nanometers. The value of g*, in turn, is given by
the number of monomers in a blob whose size is equal
to ê*.

The onset of association in the mixed system (the cac)
is expected when blobs can form, i.e., when the value of
g required for partial collapse (eq III.2) becomes smaller
than the threshold g*. Setting the right-hand side of eq
III.2 for g equal to g*, and substituting eq II.8 for vps
and the function F(x) defined in section II, we find the
following expression for the cac:

Comparison to eq II.11 shows that the less refined
analysis of section II corresponds, in fact, to complete
collapse (g ) 1), rather than the actual partial collapse
(g ) g*).

The similarity to the Harris criterion persists. Sup-
pose that we could somehow control the correlations in
the solution, i.e., tune g*, while keeping the concentra-
tion of small molecules æ fixed (this might be achieved,
for example, by changing the temperature). In such a
scenario, instead of æcac, there would be a certain value
of g* corresponding to the onset of self-assembly. For
æ/æcmc , 1 we find from eq III.4 that this value of g*
satisfies g* ∼ æ-1/R. It implies that in the absence of
“impurities” (æ ) 0) only complete collapse of an infinite
chain can take place (g* f ∞), whereas for finite æ a
smoother, partial collapse into finite blobs is possible.
This is analogous to Harris’ result for the broadening
of a critical point by impurities,60 where, instead of a
sharp transition at a critical temperature T ) Tc, there
is a smooth crossover along a range of temperatures ∆T.

Harris’ result for this broadening is ∆T/Tc ∼ æ1/R, where
æ , 1 is, in this case, the concentration of impurities.
Recall that the number of monomers serves as a
conjugate variable to ∆T/Tc in the analogy between
polymers and critical phenomena,58 i.e., g* f ∞ corre-
sponds to ∆T/Tc f 0. The smoothing of the Θ collapse
of an infinite chain into partial collapse of finite blobs,
due to small solute molecules, is thus analogous to the
smoothing of critical points by impurities.62

Another result of the partial-collapse picture is that
at the cac, since the “chain of blobs” is at a Θ point, it
should obey Gaussian statistics. Hence, the radius of
gyration of the polymer should scale with the polymer-
ization degree, N, as N1/2. This prediction is still to be
confirmed experimentally. Contraction of the polymer
at the cac was observed in several systems.63-65 Ad-
ditional support is found in light-scattering and poten-
tiometric experiments reporting a surprisingly weak
interaction between charged aggregates of ionic surfac-
tant and neutral polymer.66,67

In the strong-interaction regime [small argument of
F(x) in eq III.4], the partial-collapse analysis leads to
an expression for the cac which is different from the one
given in section II (compare to eq II.12)

In polyelectrolyte systems relevant to this regime, the
Kuhn length a should be taken as the electrostatic
persistence length.33,35 For flexible, weak polyelectro-
lytes it depends on the polymer ionization degree, I, and
salt concentration, csalt, as a ∼ IλD ∼ Icsalt

-1/2.68 As in
section II, we take the simple, weak-polyelectrolyte
expressions for v and w:36 v ∼ I2csalt

-1 and w ∼ Icsalt
-1.

The last factor to account for in eq III.5 is the threshold
number of monomers, g*, whose dependence on I and
csalt is unknown. We consider two simplified cases: (i)
constant threshold for the number of monomers in a
blob, g*; (ii) constant threshold for the spatial size of a
blob, ê* ∼ (g*)νazv(1-z)/3. In reality, neither of these cases
is expected to be strictly correct. The resulting depen-
dence of the cac on I and csalt for the two simplified cases
is

where we have used again the Flory values ν ) 3/5 and
z ) 2/5.58

Comparison to eq II.13 shows that the partial-collapse
analysis has led to quantitatively different results.
Instead of a vanishing dependence on I, we find a
weakly increasing one. Both vanishing and weakly
increasing dependencies were observed experimentally
(Table 1). As discussed in section II, these findings
qualitatively support our approach, emphasizing the
significance of intrachain interactions. To quantitatively

æcac ) æcmcF [(g*)-R (a3

v )z v
w2æcmc

]
F(x) ∼ {x x , 1

1 x . 1 (III.4)

æcac ∼ (g*)-R (a3

v )z v
w2

(III.5)

æcac ∼ Is (csalt)
t

s ) {z ) 2/5, constant g*
z + (R/3ν)(2 + z) ) 2/3, constant ê*

t ) {1 - z/2 ) 4/5, constant g*
1 - z/2 - (R/6ν)(2 + z) ) 2/3, constant ê*

(III.6)
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determine the correct dependence on I, more experi-
ments are needed, in particular at higher ionic strength.

Equations II.13 and III.6 differ also in the quantita-
tive dependence on csalt. The dependence in eq III.6
agrees with the experimentally observed power laws
(Figure 3), having exponents of t = 0.68- 0.77.

IV. Comments on Amphiphilic Polymers and
Polysoaps

Our basic conjecture, regarding instability of polymer
conformation at the onset of self-assembly, can be
qualitatively supported by considering a special class
of polymerssassociating polymers that form intrachain
aggregates in the absence of any additional associating
solute. Good examples for this case are amphiphilic side-
chain polymers, which consist of a hydrophilic back-
bone (usually a polyacid) and many hydrophobic side
chains.38,39,69 Within a certain range of hydrophobicity,
those polymers exhibit intrachain aggregation while still
remaining water-soluble, in which case they are called
polysoaps. By synthesizing polymers with various side-
chain lengths and controlling their ionization degree, a
crossover between regular polyelectrolyte behavior and
intrachain association (polysoap) can be observed.69

According to our description, a polysoap is already
partially collapsed. No further instability is supposed
to occur upon addition of small solute molecules and,
hence, no sharp onset of self-assembly is expected.
Association of small molecules to such a chain should
progress gradually as a function of concentration, by
means of partitioning of molecules between the aqueous
solution and the already-collapsed polymeric aggregates.

The association of ionic surfactants with such hydro-
phobically modified polyelectrolytes, poly(maleic acid-
co-alkylvinyl ether), was thoroughly studied.38,39,69 When
the polymer is in the regular polyelectrolyte regime (e.g.,
having short side chains of 1-4 hydrocarbon groups), a
sharp, cooperative binding is observed. On the other
hand, when the polymer behaves as a polysoap (having
longer side chains and exhibiting intrachain aggrega-
tion), surfactant association is found to be gradual with
no apparent cac.38 We regard this experimental obser-
vation as a strong support for our conjecture, associating
the cac with partial collapse.

Furthermore, let us consider amphiphilic polymers
which still behave like polyelectrolytes but lie very close
to the polysoap regime. This can be achieved, for
example, by tuning their ionization degree. The effective
second virial coefficient of such polymers should be
small, leading, according to eq III.5 (or II.12), to low cac.
The physical reason is that close to the polysoap regime
the stability of the polymer is only marginal; i.e., v is
close to zero even in the absence of additional solute
(surfactant). Hence, a small amount of solute is suf-
ficient to cause self-assembly. In this region of v J 0,
therefore, intrachain features, rather than the affinity
between the two species, determine the onset of self-
assembly. As a result, the cac can be significantly
reduced without a significant change in the bare inter-
action. Moreover, it can be reduced even if the bare
affinity becomes weaker (e.g., by reducing I). There are
two available experimental works demonstrating this
surprising effect,38,70 as shown in Figure 5. Both experi-
ments involved amphiphilic polyelectrolytes whose charge
density was varied. Although reducing charge density
must weaken the interaction with the oppositely charged

surfactant, the cac was shown to decrease, the effect
becoming sharp close to the polysoap limit.

The polymers discussed above have many hydropho-
bic groups along their backbone. Also worth mentioning
are experiments involving polyelectrolytes with a very
small number of hydrophobic groups.71 In this case too,
the cac was found to significantly decrease upon in-
creasing the degree of hydrophobic modification, imply-
ing a sensitive dependence on intrachain features.

V. Conclusions

Focusing on the onset of self-assembly (the cac), we
have presented a unified description of the interaction
between a flexible polymer and small associating mol-
ecules in dilute solution. Utilizing a conjecture of partial
collapse of the polymer at the onset of self-assembly,
we have obtained simple predictions which seem to be
well supported by experiments on diverse polymer-
surfactant systems.

Apart from the bare interaction between the two
species, we argue that intrachain interactions have an
important role as well. In certain cases, such as systems
involving amphiphilic polymers, intrachain features
may even become the dominant factor determining the
cac. The interplay between various interactions in the
system (monomer-solute, monomer-monomer and sol-
ute-solute) leads to three self-assembly scenarios,
which are summarized in the diagram of Figure 2. By
modifying intrachain features of the polymer, one can
obtain a crossover between the various self-assembly
regimes without necessarily changing the bare interac-
tion between the two associating species. An interesting
experiment would be to take a weakly interacting
system (e.g., a polyacid like PAA and a nonionic sur-
factant like CnEm) and by modifying the polymer (e.g.,
changing hydrophobicity) gradually shift it to the strong-
interaction regime and finally to the polysoap regime;
the cac is predicted to decrease from a value close to
the cmc to much lower values and finally to disappear.

Despite the vast experimental literature available on
polymer-surfactant systems, additional experiments
are still required in order to verify the theory presented
in this work. In particular, measurement of polymer

Figure 5. Dependence of cac on polymer charge close to the
polysoap regime. Triangles: PMABVE, DTAB, 5 mM KBr (ref
38). For I < 0.5 this polymer becomes a polysoap. Circles:
(CH2)x(CH2)y-ionine bromide, SDS, no salt; squares - with
20 mM NaBr (ref 70). A distance of three hydrocarbon groups
between charged groups along the backbone has been defined
as I ) 1. The lines are merely guides to the eye.
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statistics at the cac (i.e., dependence of size on polym-
erization degree) may provide a clear verification of the
partial-collapse conjecture.

We have presented a scaling function relating the cac
and cmc and demonstrated its universal features. The
scaling function was explicitly calculated in a mean-field
approximation and at the next level beyond mean field.
It is worth noting, however, that we expect the scaling
law of eqs II.11 and III.4 to be of more general validity
than any specific model discussed here. It should be
interesting, therefore, to gain more information on the
scaling law, e.g., by computer simulations, and check
the analytic results. We have pointed at interesting
similarities between the effect of small associating
molecules on polymer conformation and general results
concerning the effect of impurities on critical phenom-
ena.

One future extension of this work would be to apply
the partial collapse approach to more concentrated
solutions, where the onset of self-assembly involves
many-chain effects and leads to interesting phase
behavior and gelation.10,31 Another direction may be to
consider more complicated polymers such as polypep-
tides, where surfactant binding was shown to promote
the formation of secondary structures.72 In addition, the
partial-collapse approach is valid only for flexible poly-
mers, as demonstrated in section III. The interaction
of stiff polymers with small associating molecules is
governed by different physics, requiring a separate
treatment.73
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Appendix A: The Scaling Function beyond
Mean Field Theory

We present in detail a statistical-mechanical model
leading to explicit expressions for the scaling function,
F(x), introduced in section II. A systematic expansion
is derived, which yields the simple mean-field result,
eq II.9, as a leading order, yet allowing us to proceed
beyond the mean-field approximation.

Consider P polymer chains of N monomers each,
which are immersed in a dilute solution containing S
small molecules (e.g., surfactants). We use the grand-
canonical ensemble, where S is not fixed but controlled
by a chemical potential, µ. The coordinates of the
monomers are denoted by {xn

p}p)1...P,n)1...N and those of
the small solute molecules are {ys}s)1...S. Let the poten-
tials of solute-solute, monomer-monomer, and mono-
mer-solute interactions be, respectively, U(r - r′),
V(r - r′), and W(r - r′). The partition function of the
system is where all energy and interaction parameters

are given in units of kBT, the thermal energy, and Hid{
xn

p} is the Hamiltonian of P ideal (Gaussian) chains.74

Our aim is to trace out the degrees of freedom of the
small molecules ({ys}) and find the resulting effective
interaction between monomers.

We introduce continuous densities for the two species

and their conjugate fields, γ(r) and ψ(r), respectively,
such that

The partition function is then rewritten as

In the last equation we have exploited the independence
of the integral term on s and the expansion of the
exponential function in power series, where æb ≡ eµ is
the average solute concentration in the bulk reservoir.
(We assume an ideal solution of small solute mole-
cules in the bulk reservoir, i.e., a vanishing ψ and µ )
log æb.)

It is convenient to transform to Fourier space, f̃k ≡
∫ dr e-ik‚r f(r), whereupon Hcont becomes

Z )
1

P!
∑
S)0

∞ 1

S!
eµS ∫∏

p)1

P

∏
n)1

N

dxn
p ∏

s)1

S

dys exp(-Hid - Hint)

Hint )
1

2
∑
p*p′

∑
n*n′

V(xn
p - xn′

p′) +
1

2
∑
s*s′

U(ys - ys′) +

∑
p
∑
n
∑

s

W(xn
p - ys) (A.1)

c(r) ≡ ∑
p,n

δ(r - xn
p), æ(r) ≡ ∑

s

δ(r - ys)

δ[c(r) - ∑
p,n

δ(r - xn
p)] )

∫ Dγ exp{-iγ[c(r) - ∑
p,n

δ(r - xn
p)]}

δ[æ(r) - ∑
s

δ(r - ys)] )

∫ Dψ exp{-iψ[æ(r) - ∑
s

δ(r - ys)]} (A.2)

Z ) ∫ DcDæDγDψ exp(-Hcont) × úp × ús

Hcont )

∫ dr dr′ [12c(r)V(r - r′)c(r′) + 1
2

æ(r)U(r - r′)æ(r′) +

c(r)W(r - r′)æ( r′)]
-i ∫ dr [γ(r)c(r) + ψ(r)æ(r)]

úp )
1

P!
∫ ∏

p,n

dxn
p exp[-Hid - i ∑

p,n
γ(xn

p)]

ús ) ∑
S)0

∞ 1

S!
eµS ∫ ∏

s)1

S

dys exp[-i∑
s)1

S

ψ(ys)] )

exp[æb ∫ dr e-iψ(r)] (A.3)

Hcont )

∫ dk [12Ṽk|c̃k|2 + 1
2
Ũk|æ̃k|2 + (W̃kc̃k + iψ̃k)æ̃k + iγ̃kc̃k]
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Tracing over the solute concentration profile, æ̃k, is
straightforward, giving (up to a constant factor)

In the usual case, where the potentials of interaction,
U(r, r′), V(r, r′), and W(r, r′), depend only on (r - r′),
they are diagonal in k-space and can be simply inverted,
e.g., Ũ-1

k ) 1/Ũk.
To trace out also the solute field, ψ, we proceed by an

expansion of ús in small ψ. Physically, ψ accounts for
interactions between the small solute molecules. The
small parameter of the expansion, therefore, is the
strength of solute-solute correlations in the solution.
The following calculation is expected to give good results
in the regime of strong polymer-solute interaction
[F(x , 1) ] and less accurate results in the limit of weak
polymer-solute interaction [ F(x . 1) ], where solute-
solute correlations become important.

Gaussian Approximation. In the Gaussian ap-
proximation ús is expanded to second order in ψ

where ψ̃0 ≡ ψ̃k)0 ) ∫ dr ψ(r). Substituting this expres-
sion in eq A.4 we get

For c ) 0, instability with respect to small perturbations
in ψ will occur if there exists k such that the coefficient
of |ψ̃k|2 vanishes, i.e., 1/Ũk + æb ) 0. The cmc is therefore
identified as

Tracing ψ̃k out of eq A.6 gives (again, up to a constant
factor)

Thus, as we found in section II, the small solute induces
an effective reduction in the potential between mono-
mers, which becomes more significant as the cmc is
approached

The second term in eq A.9 can be identified as the
Fourier transform of the induced potential between

monomers, as is phenomenologically introduced in Ap-
pendix B, Φ̃k ) -æbW̃k

2/(1 + æbŨk).
As in the previous sections, the cac is assumed to

correspond to the vanishing of the effective interaction

If we neglect the finite range of the various interactions
and substitute the corresponding simplified potentials
(taking the monomer-monomer interaction as repulsive
and the monomer-solute and solute-solute ones as
attractive, i.e., u, v, w > 0)

our mean-field result eq II.9 is recovered

Beyond Gaussian Approximation. We now calcu-
late the first correction to the Gaussian approximation
(i.e., mean field) considering terms of third order in ψ

To the same order of approximation we can write

where 〈‚‚‚〉 denotes a thermal average using the Gauss-
ian approximation (H2). By means of our results for Z2,
eqs A.6 and A.8, we find

The expression for g3 should now be integrated accord-
ing to eq A.13. However, focusing on the effective
pairwise potential between monomers, we look for terms
which are quadratic in c. There is only one such term,
coming from the integration of g1(k)g1(k - k′)g1(k′). This
gives

The effective potential, therefore, is

Z ) ∫ Dc̃kDγ̃kDψ̃k ×
exp{∫ dk[12Ũ-1

k (W̃kc̃k + iψ̃k)
2 - 1

2
Ṽk|c̃k|2 - iγ̃kc̃k]} ×

úp × ús (A.4)

ús = const × exp[-æb ∫ dr(iψ + 1
2

ψ2)] )

const × exp[-æb(12 ∫ dk|ψ̃k|2 + iψ̃0)] (A.5)

Z = Z2 ) ∫ Dc̃kDγ̃kDψ̃k exp(-H2) × úp

H2 ) ∫ dk[12(Ũ-1
k + æb)|ψ̃k|2 - iW̃kŨ

-1
kc̃kψ̃k +

1
2
(Ṽk - W̃k

2 Ũ-1
k)|c̃k|2 + iγ̃kc̃k] -iæbψ̃0 (A.6)

æcmc ) min
k

(-1/Ũk) (A.7)

Z2 ) ∫ Dc̃kDγ̃k exp{∫ dk[-1
2(Ṽk -

æbW̃k
2

1 + æbŨk
)|c̃k|2 -

æb(W̃kc̃k + æbŨk/2)
1 + æbŨk

δ(k) - iγ̃kc̃k]} × úp (A.8)

Ṽk,eff ) Ṽk -
æbW̃k

2

1 + æbŨk
(A.9)

æcac ) min
k

-1/Ũk

1 - W̃k
2/(ṼkŨk)

(A.10)

V(r - r′) ) vδ(r - r′), U(r - r′) ) -uδ(r - r′),
W(r - r′) ) -wδ(r - r′)

æcac ) æcmcF[v/(w2æcmc)]

F(x) ) 1/(1 + 1/x) (A.11)

Z = Z3 ) ∫ DcDγDψ exp(-H2 - H3) × úp

H3 ) - i
6

æb ∫ dr ψ3 (A.12)

∫ dr ψ3 = ∫ dr〈ψ3〉 ) ∫ dk dk′ 〈ψ̃kψ̃k-k′ψ̃k′〉 (A.13)

g1(k) ≡ 〈ψ̃k〉 ) i
W̃kc̃k + æbŨkδ(k)

1 + æbŨk

g2(k, k′) ≡ 〈ψ̃kψ̃k′〉 ) g1(k)g1(k′) +
Ũkδ(k - k′)

1 + æbŨk

g3(k, k′, k′′) ≡ 〈ψ̃kψ̃k′ψ̃k′′〉 ) 3g2(k, k′)g1(k′′) -
2g1(k)g1(k′)g1(k′′)

) g1(k)g1(k′)g1(k′′) +
3Ũkδ(k - k′)

1 + æbŨk
g1(k′′) (A.14)

H3 ) -
æb

2Ũ0

2(1 + æbŨ0)
∫ dk

W̃k
2

(1 + æbŨk)
2
|c̃k|2 +

nonquadratic terms (A.15)
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where the second term can be identified, again, as the
induced potential, Φ̃k. Substituting the simpler poten-
tials, Ṽk ) v, Ũk ) -u, W̃k ) -w, we find the corrected
scaling function (given in an implicit form)

Appendix B: Scaling Analysis of Partial
Collapse

On the basis of a scaling analysis we obtain a more
detailed description of the polymer at partial collapse,
leading to more accurate predictions regarding the cac.
(The reasoning presented in this Appendix is similar
to that of ref 29.) As shown in section II, the interaction
with the small molecules induces attractive correlations
between monomers in the chain. In the following
analysis, therefore, the small molecules (e.g., surfac-
tants) do not appear explicitly, but are represented by
an effective attractive potential exerted between mono-
mers

Following the notation of ref 29, e2 is a coupling
constant, ê a correlation length, and ø(r/ê) a dimension-
less function which decays fast to zero for r > ê. The
two microscopic parameters, e2 and ê, are to be related
to our phenomenological interaction parameter, w.
Assuming weak correlations, Φ < 1 (in units of kBT),
we readily obtain for the effective excluded-volume
parameter of the chain

where k1 is a dimensionless constant. Comparing to eq
II.8, we can identify

In accordance with the model presented in section III,
we consider a chain of blobs of size ê, each containing g
statistical segments (see Figure 4). The potential of
interaction between two blobs consists of a hard-core
part for r < ê, and an attractive part for r > ê coming
from the integrated interaction of g2 pairs of monomers

The resulting excluded-volume parameter for the
blobs is

where k2, k3, and k4 are dimensionless constants. (Note

that although Φ < 1, Φblob ∼ g2Φ may be large.) The
condition for partial collapse is vblob ) 0, i.e.

Two relations for e2, g, and ê have been obtained (eqs
B.1 and B.3). A third relation comes from the statistics
of the polymer, i.e., the power law relating the blob size
and number of segments in the blob

where a is the length of a Kuhn segment. From the
three relationssB.1, B.3, and B.4swe get
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1998, 14, 5342.
(10) Lindman, B.; Thalberg, K. In ref 1, Chapter 5.
(11) Feitosa, E.; Brown, W.; Hansson, P. Macromolecules 1996,

29, 2169. Feitosa, E.; Brown, W.; Vasilescu, M.; Swanson-
Vethamuthu, M. Macromolecules 1996, 29, 6837. Feitosa, E.;
Brown, W.; Swanson-Vethamuthu, M. Langmuir 1996, 12,
5985.

(12) Israelachvili, J. Intermolecular and Surface Forces, 2nd ed.;
Academic Press: London, 1991; Chapter 17.

(13) Linse, P.; Piculell, L.; Hansson, P. In ref 2, Chapter 5.
(14) Smith, M. L.; Muller, N. J. Colloid Interface Sci. 1975, 52,

507. Nagarajan, R. Colloid Surf. 1985, 13, 1; J. Chem. Phys.
1989, 90, 1980. Hall, D. G. J. Chem. Soc., Faraday Trans. 1
1985, 81, 885. Ruckenstein, E.; Huber, G.; Hoffmann, H.
Langmuir 1987, 3, 382.

(15) Shirahama, K.; Yuasa, H.; Sugimoto, S. Bull. Chem. Soc. Jpn.
1981, 54, 375.

(16) Shirahama, K.; Tashiro, M. Bull. Chem. Soc. Jpn. 1984, 57,
377.

(17) Zimm, B. H.; Bragg, J. K. J. Chem. Phys. 1959, 31, 526.
(18) Satake, I.; Yang, J. T. Biopolym. 1976, 15, 2263.
(19) Delville, A. Chem. Phys. Lett. 1985, 118, 617. S̃kerjanc, J.;

Kogej, K.; Vesnaver, G. J. Phys. Chem. 1988, 92, 6382.
(20) Kuhn, P. S.; Levin, Y.; Barbosa, M. C. Chem. Phys. Lett. 1998,

298, 51.
(21) Konop, A. J.; Colby, R. H. Langmuir 1999, 15, 58.
(22) Cabane, B.; Duplessix, R. J. Phys. (Paris) 1982, 43, 1529.
(23) Abuin, E. B.; Scaiano, J. C. J. Am. Chem. Soc. 1984, 106,

6274.
(24) Winnik, F. M.; Winnik, M. A.; Tazuke, S. J. Phys. Chem.

1987, 91, 594. Winnik, F. M.; Ringsdorf, H.; Venzmer, J.
Langmuir 1991, 7, 912.

(25) Gao, Z.; Wasylishen, R. E.; Kwak, J. C. T J. Phys. Chem. 1991,
95, 462.

(26) We have recently demonstrated how the introduction of
polymeric degrees of freedom into such a one-dimensional
lattice model leads to an effective “cooperativity” among
bound surfactants. See Diamant, H.; Andelman, D. Unpub-
lished work; cond-mat/9804086.
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