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Binding of molecules to DNA and other semiflexible polymers

Haim Diamant* and David Andelman
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Ramat-Aviv, 69978 Tel Aviv, Israel
~Received 21 October 1999!

A theory is presented for the binding of small molecules such as surfactants to semiflexible polymers. The
persistence length is assumed to be large compared to the monomer size but much smaller than the total chain
length. Such polymers~e.g., DNA! represent an intermediate case between flexible polymers and stiff, rodlike
ones, whose association with small molecules was previously studied. The chains are not flexible enough to
actively participate in the self-assembly, yet their fluctuations induce long-range attractive interactions between
bound molecules. In cases where the binding significantly affects the local chain stiffness, those interactions
lead to a very sharp, cooperative association. This scenario is of relevance to the association of DNA with
surfactants and compact proteins such as RecA. External tension exerted on the chain is found to significantly
modify the binding by suppressing the fluctuation-induced interaction.

PACS number~s!: 61.25.Hq, 87.15.Nn, 87.14.Gg
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I. INTRODUCTION

Aqueous solutions containing polymers and small ass
ating molecules such as folded proteins and amphiph
~surfactants! are commonly found in biological systems an
industrial applications. As a result, extensive efforts ha
been devoted in the past few decades to the study
polymer-surfactant interactions@1,2#. In addition, there has
been growing interest in the interactions between DNA m
romolecules and surfactants, lipids, and short polyami
@3–10#. These interactions are relevant to various bioche
cal applications such as DNA extraction and purificati
@8–10# and genetic delivery systems@11#. Association of
folded proteins~e.g., RecA! with DNA plays a key role in
genetic regulatory mechanisms. Structural details of this
sociation have been studied in recent experiments@12,13#.

Recently, we have presented a general theory for the s
assembly in aqueous solutions of polymers and smaller
sociating molecules@14,15#. Two different scenarios emerge
depending on the flexibility of the polymer. If the polymer
flexible enough, it actively participates in the self-assemb
resulting in mixed aggregates jointly formed by the two sp
cies. The polymer conformation changes considerably u
self-assembly but remains extended on a global scale, a
chain undergoes onlypartial collapse@14–16#. On the other
hand, if the polymer is stiff, partial collapse is inhibited.

The criterion determining the ‘‘flexible’’ vs ‘‘stiff’’ sce-
narios concerns the polymer statistics on a mesosc
length scale characterizing correlations in the solution~usu-
ally a few nanometers!. It was found@14,15# that the flexible
~stiff! scenario holds if the exponentn, relating the number
of monomersN to the spatial sizeR they occupy,R;Nn, is
smaller ~larger! than 2/d on that length scale (d being the
dimensionality!. This distinction is analogous to the on
made in the critical behavior of certain disordered syste
@17,18#—if the critical exponentn of a system satisfies

*Present address: The James Franck Institute, The Universi
Chicago, 5640 South Ellis Avenue, Chicago, IL 60637.
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n,2/d, the critical behavior is smeared by impurities~in
analogy to the partial collapse!, whereas ifn.2/d, the criti-
cal point remains intact. Indeed, neutral flexible polymers
three dimensions, havingn.3/5,2/3, are found by scatter
ing experiments to associate with surfactants in the form o
‘‘chain of wrapped aggregates’’@19,20#. On the other hand
stiff DNA molecules, havingn51 on the relevant length
scale, are found either to remain unperturbed by surfac
binding @6,9#, or to undergo a discontinuous coil-to-globu
transition @5#, provided the chain is much longer than th
persistence length.

In previous publications@14,15# we concentrated on the
flexible case and the corresponding partial collapse, wh
the polymer degrees of freedom play an important role.
the opposite extreme limit of stiff, rodlike molecules, th
conformational degrees of freedom of the polymer can
neglected and the chain may be regarded as a linear ‘‘bind
substrate.’’ Models for stiff polymers, inspired by the Zimm
Bragg theory @21#, treat the bound molecules as a on
dimensional lattice-gas~or Ising! system with nearest
neighbor interactions@22#. They have been widely used to fi
experimental binding isotherms for polyelectrolytes and o
positely charged surfactants@23#. Recently, more detailed
electrostatic models have been proposed for the interac
between rodlike polyelectrolytes and oppositely charged s
factants@24,25#. In addition, a theoretical work focusing o
the specificbinding of proteins to DNA has been present
recently@26#, treating a pair of bound proteins as geomet
cally constraining inclusions on the DNA chain.

In the current work we address the intermediate case
semiflexiblepolymers. The polymer we consider is stiff i
the sense defined above, i.e., its persistence length,l p , ex-
ceeds several nanometers and, hence, the polymer is ch
terized byn51.2/3 on that length scale. The total cha
length, however, is considered to be much larger thanl p , and
therefore the entire polymer cannot be regarded as a si
rigid rod. This case corresponds, in particular, to experime
on long DNA molecules@3–10#, whose persistence length
typically very large~of order 50 nm!, but much smaller than
the total chain length~which is usually larger than a micron!
of
6740 ©2000 The American Physical Society
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@27#. We argue that such an intermediate system may
certain cases, be governed by different physics. Although
polymer is too stiff to change conformation and actively p
ticipate in the self-assembly, its degrees of freedom ind
attractive correlations between bound molecules. Th
fluctuation-induced correlations are weak but have a lo
spatial range~of orderl p! and, hence, may strongly affect th
binding thermodynamics.

The model is presented in Sec. II. Bound molecules
assumed to modify the local features of polymer conform
tion, e.g., change its local stiffness. In the limit of we
coupling, our model reduces to the Kac-Baker model@28–
30#, which is solvable exactly. This limit is discussed in Se
III. Although turning out to be of limited interest in practice
the weak-coupling limit provides insight into the mechanis
of association, and helps us justify further approximatio
Section IV presents a mean-field calculation for an arbitr
strength of coupling. This analysis leads to our main conc
sions, and in Sec. V it is extended to polymers under exte
tension. The results are summarized in Sec. VI, where
also discuss several relevant experiments involving D
and point at future directions.

II. THE MODEL

Small molecules bound to stiff polymers are common
modeled as a one-dimensional lattice gas~or Ising system!
@22#. Each monomer serves as a binding site, which can
ther accommodate a small molecule or be empty, and
surrounding dilute solution is considered merely as a b
reservoir of small molecules. In the current work we stay
the level of a one-dimensional model, assuming that
polymer is still quite stiff~yet not infinitely stiff!, i.e., the
persistence length is much larger than the monomer size
addition, a dilute polymer limit is assumed, where interch
effects can be neglected. We focus on the effect of introd
ing the polymer degrees of freedom and, hence, see
simple meaningful coupling between the polymer and
bound lattice gas.

A polymer configuration is defined by a set of vecto
$un%n51, . . . ,N , specifying the lengths and orientations of t
N monomers. In addition, each monomer serves as a bin
site which can be either empty (wn50) or occupied by a
small molecule (wn51). A configuration of the entire sys
tem is defined, therefore, by specifying$un ,wn%n51, . . . ,N .

Since the polymer is assumed to be locally stiff, a natu
choice would be to couplewn with the square of the loca
chain curvature,wn(un112un)2, thus modifying the local
chain stiffness. However, in the usual Kratky-Por
wormlike-chain model of semiflexible polymers@31#, chain
segments are taken as rigid rods of fixed len
(uunu5const), and each squared-curvature term contains
one degree of freedom~e.g., the angleun betweenun and
un11). Consequently, this coupling,wn cosun , would leave
$wn% uncorrelated, leading merely to a trivial shift in th
chemical potential of bound molecules@32#. One option to
proceed is to consider higher-order extensions of
wormlike-chain Hamiltonian, involving three consecutiv
monomers. This will introduce correlations between bou
molecules at different sites.

We take a simpler route, however, and modify t
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wormlike-chain model by allowing the monomer length
fluctuate. This modification was originally presented by H
ris and Hearst@33#, using a single global constraint for th
average chain length. The modified model was shown to s
cessfully reproduce the results of the Kratky-Porod mode
far as thermodynamic averages~e.g., correlation functions
radius of gyration! were concerned. It was less successf
however, in recovering more detailed statistics of the wor
like chain ~e.g., distribution function, form factor!, particu-
larly in the limit of large stiffness. The Harris-Hearst mod
was later refined by Lagowskiet al. @34# and Ha and Thiru-
malai @35,36#, replacing the single global constraint by a s
of local constraints for the average segment lengths. T
further modification was shown to be equivalent to
stationary-phase approximation for the chain partition fu
tion, yielding reliable results for average quantities, as w
as more detailed statistics@35#. We note that a similar ap
proach was used in a recent model of semiflexible polym
collapse@37#. It should be borne in mind that, despite i
success in the past, the constraint relaxation remains es
tially an uncontrolled approximation. In the current work w
restrict ourselves to thermodynamic averages, such
monomer-monomer correlations and free energies, for wh
the modified model with a single global contraint can
trusted.

Thus, the rigid constraints of the original Kratky-Poro
model,un

251, are relaxed into thermodynamic-average on
^un

2&51, where the root-mean-square monomer size is ta
hereafter as the unit length. Using the modified model for
chain, eachwn(un112un)2 term involves two consecutive
monomers~and not merely the angle between them!, leading
to a meaningful coupling between binding and polymer co
formation.

The partition function of the combined system of polym
and bound molecules is written, therefore, as

Z5Tr$wn50,1%E )
n51

N

dun exp~2H!,

H5
3

4
l p(

n51

N21

~11ewn!~un112un!21 (
n51

N

lnun
22m (

n51

N

wn .

~1!

In Eq. ~1! l p is the persistence length of the bare chain, ch
acterizing its intrinsic stiffness. It is assumed to be mu
larger than the monomer size,l p@1. The coupling is intro-
duced through the stiffness term, assuming that a bound m
ecule modifies the local stiffness by a fractione.21, which
may be either negative or positive but cannot change
positive sign of the overall stiffness term@38#. The second
term contains a set of multipliersln to be chosen so that th
constraintŝ un

2&51 are satisfied. However, replacement
the entire set$ln% by a single multiplierl can be shown to
yield a nonextensive correction@35#, which becomes negli-
gible in the limit N→`. Hence, we use hereafter a sing
multiplier l. Finally, the system is assumed to be in cont
with a reservoir of solute molecules. The last term in Eq.~1!
accounts for this contact along with any other factors t
couple linearly to the degree of binding. Typically,m con-
tains the chemical potential of the solute reservoir and
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6742 PRE 61HAIM DIAMANT AND DAVID ANDELMAN
direct energy of solute molecule-monomer binding.~All en-
ergies in this work are expressed in units of the therm
energykBT.! Note that we have not included in Eq.~1! any
direct short-range~e.g., nearest-neighbor! interactions be-
tween bound molecules. Thus, all interactions in the mo
arise from the coupling to the polymer degrees of freedo
Short-range interactions between bound molecules do e
in physical systems. Yet, in the limit ofl p@1 and ueu*1,
which is of interest to the current work, such direct intera
tions have a minor effect on binding, as is demonstrated
the following sections. Hence, we omit them for the sake
brevity.

As a reference, let us start with the previously stud
partition function of the bare polymer@35#,

Zp5E )
n

dunexpS 2
3

4
l p(

n
~un112un!22l(

n
un

2D .

~2!

It is a Gaussian integral which can be calculated either
transforming it to Fourier space and integrating, or by an
ogy to the path integral of a three-dimensional quantum
cillator @39#. The result in the limitN→` and for l p@1 is

Zp
1/N5S 4

3p l p
D 3/2

exp~32A3l/ l p!. ~3!

The multiplierl can now be determined according to

2
1

N

] ln Zp

]l
5^un

2&p51 ⇒ l5
3

4l p
, ~4!

where^•••&p denotes a thermal average over the bare ch
statistics~i.e., usingZp). The corresponding free energy p
monomer~in the ensemble ofconstrainedun) is

f p52
1

N
ln Zp2l5

3

2
ln l p1

3

4l p
1const. ~5!

Various correlations in the bare chain can be calcula
The pair correlation between segment vectors along
chain sequence is

^um•un&p5e2um2nu/ l p, ~6!

which explains why the parameterl p has been defined as th
persistence length. Two higher-order pair correlations
calculated as well,

g1[^~un112un!2&p5
2

l p
1O~ l p

22!,

g2~m,n![^~um112um!2~un112un!2&p2g1
2

5
8

3l p
3

e22um2nu/ l p1O~ l p
24!, ~7!

and will be of use in the next section, where we reexam
the coupled system.
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III. WEAK COUPLING

Let us return to the full partition function~1!, which can
be equivalently written as

Z5Zp Tr$wn% expS m(
n

wnD
3K expS 2

3l pe

4 (
n

wn~un112un!2D L
p

. ~8!

First we consider the weak-coupling limit,ueu!1, where the
partition function~8! can be treated by a cumulant expa
sion. In this limit the model becomes analogous to the
actly solvable Kac-Baker model@28–30#, and we show that
identical results are derived from a simple mean-field cal
lation. We then use this observation to justify a mean-fi
calculation for an arbitrary value ofe.

A cumulant expansion of Eq.~8! to second order ine
leads to

Z.Zp Tr$wn% expF S m2
3l pe

4
g1D(

n
wn

1
1

2 S 3l pe

4 D 2

(
m,n

g2~m,n!wmwnG , ~9!

where the correlationsg1 and g2 were defined in Eq.~7!.
Substituting expressions~7!, the partition function is decou
pled into a polymer contribution and an effective contrib
tion from the bound solute molecules,

Z.ZpZs5Zp Tr$wn% exp~2H s!,

Hs5
1

2 (
mÞn

Vmnwmwn2m̂(
n

wn , ~10!

where

Vmn[2
3e2

2l p
e22um2nu/ l p,

m̂[m2
3e

2
1

3e2

4l p
. ~11!

The introduction of the polymer degrees of freedom a
their coupling to the binding ones have led to two effects,
compared to previous lattice-gas theories. First, there
shift in the chemical potential,m→m̂. This is equivalent to
an effective change in the affinity between the small m
ecules and the chain. As expected, if binding strengthens
local stiffness of the chain (e.0), the affinity is reduced
~i.e., the isotherm is shifted to higher chemical potentia!,
whereas if it weakens the stiffness (e,0), the shift is to
lower m. @Recall that for smalle, the linear term in Eq.~11!
is the dominant one.# The second, more interesting effect
that bound molecules experience an attractive potentialVmn
along the chain. The amplitude of this effective interaction
small (;e2/ l p), but its range is large—of orderl p . Whenl p
is increased there are two opposing consequences: the i
action amplitude diminishes, while the interaction range
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extended. The overall effect on the thermodynamics of bi
ing, therefore, has to be checked in detail.

A. Analogy with the Kac-Baker model

The effective Hamiltonian of the bound solute,Hs, is a
lattice-gas version of the Kac-Baker model@28–30#, which is
exactly solvable. Moreover, the procedure relevant to
semiflexible polymer, i.e., increasingl p while keeping
1! l p!N, is precisely the one studied in detail by Kac a
Baker. Their results, as applied to our binding problem, c
be summarized as follows. For any finitel p , the bound mol-
ecules are always in a disordered state along the poly
chain, as in any one-dimensional system with finite-ran
interactions. Consequently, the binding isotherm, i.e.,
binding degreew[^wn& as a function ofm @see, e.g., Fig.
2~a! below#, is a continuous curve. However, in the lim
l p→`, takenafter the infinite-chain limitN→`, there is a
critical value of coupling above which the binding exhibits
discontinuous~first-order! transition. According to Baker’s
rigorous calculation@30#, the critical value of the potentia
amplitude multiplied byl p ~equal, in our case, to 3ec

2/2) is 4,
i.e.,

ec
656A8/3.61.63. ~12!

Note that the symmetry with respect to the sign ofe is
merely an artificial consequence of our second-order exp
sion, Eq.~9!. In general, the results should not be the sam
the stiffness is weakened (e,0) or strengthened (e.0), as
is demonstrated in Sec. IV.

The negative critical value in Eq.~12!, ec
2.21.63, lies

outside the range of validity of the original polymer bindin
model, e.21 @cf. Eq. ~1!#. The positive value,ec

1.1.63,
does not satisfy the assumption of weak coupling,ueu!1,
which led to the analogy with the Kac-Baker model in t
first place. Thus, the sharp binding isotherms obtained fr
the Kac-Baker model forueu.ec do not apply, strictly speak
ing, for our polymer binding problem. The weak-couplin
calculation does demonstrate, however, how fluctuation
polymer conformation induce long-range attraction betwe
bound molecules. This basic feature is expected to rem
when one considers stronger coupling,ueu.1, and the result-
ing many-body terms omitted in Eq.~9!. This is further dis-
cussed in the following sections.

Finally, the polymers we consider have a large but fin
l p . For example, the persistence length of a DNA macrom
ecule is typically of order 50–100 nm, whereas the length
a single base pair is 0.34 nm. Hence,l p is of order 102 ~in
units of monomer length!. It is worth checking to what exten
the sharpness of binding in the Kac-Baker model
ueu.ec is affected by finitel p . For this purpose, let us defin
a cooperativity parameterfor the binding, measuring the
maximum slope of the binding isotherm,

C[
]w

]m U
max

2
1

4
. ~13!

This parameter is equivalent to the zero magnetic field s
ceptibility in the analogous spin system, and is commo
measured from the slope of binding isotherms obtained
-
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potentiometric experiments@1,2#. It has been defined in Eq
~13! so as to yield zero for vanishing interaction (e50) and
diverge at a critical point.~In the current weak-coupling
limit, the maximum]w/]m is obtained for̂ w&51/2.! Given
l p and e, the cooperativity is numerically calculated usin
Kac’s exact solution@28,29#, as is explained in the Appen
dix. Figure 1 presents the results forl p510 and 50. For
l p550 the binding becomes highly cooperative forueu.ec .
For even larger values ofl p;102 ~relevant, e.g., to DNA! the
binding will be hardly distinguishable from that of an infinit
l p .

B. Mean-field calculation

In fact, the results of the Kac-Baker model in the lim
N→`,l p→`, while keeping l p,N, can also be obtained
from a simple mean-field calculation@28,40#. The heuristic
argument for this agreement is the following: asl p is in-
creased, the range of interaction is extended and each b
molecule interacts with an increasing number of neighbo
As a result, the averaging assumption underlying the me
field approximation is justified, and becomesexactwhen the
range of interaction is taken to infinity. The corresponden
between infinite-range models and mean field was rigorou
proved by Lebowitz and Penrose for a more general clas
potentials@41#.

Indeed, employing a mean-field approximation for the p
tential ~11! in the limit of very largel p ,

(
mn

Vmnwmwn→2
3e2

2l p
S (

mn
e22um2nu/ l pDw2.2

3e2

2
Nw2,

wherew is an average, uniform binding degree, we are led
the following mean-field free energy per monomer:

FIG. 1. Binding cooperativity as function ofe according to the
Kac-Baker model, plotted on a semilogarithmic scale. The das
and dash-dotted curves are results of numerical calculations
l p510 and 50, respectively. The solid curves show analytic res
for l p→` as obtained by a mean-field calculation@Eq. ~15!#. The
critical points are atec

656A8/3 ~dotted lines!.
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f 5 f p1 f s. f p1w ln w1~12w!ln~12w!2
3e2

4
w22m̂w

for l p→`. ~14!

It is easily verified that the critical point of this free energy
ec

258/3, in agreement with the rigorous result, Eq.~12!. The
cooperativity parameter can be calculated as well from
~14!, yielding

C5
e2

4~ec
22e2!

for l p→`. ~15!

This expression shows the usual critical behavior obtai
from mean-field theories,C;ue2ecu2g with g51. The de-
pendence ofC on e according to Eq.~15! is shown by the
solid line in Fig. 1. The curves obtained from Kac’s soluti
approach it, as expected, whenl p is increased. Recall tha
expressions~14! and~15! correspond to the original problem
of bound molecules only in the limit of smalle.

IV. STRONG COUPLING

The interesting part of our theory requiresueu*1 and thus
limits the interest in the analogy to the Kac-Baker mod
Nevertheless, based on the heuristic argument given abo
is reasonable to assume that, in the limitl p@1, the mean-
field approximation is good for larger values ofueu as well
@42#. The preceding section, discussing the Kac-Baker mo
in the weak-coupling limit, may be regarded, therefore, a
justification for using the mean-field approximation for on
dimensional models with largel p and ueu*1. Applying a
mean-field approximation to the binding degrees of freed
wn in our starting point, Eq.~1!, the tracing overun can be
done exactly. The resulting free energy is composed of
polymer free energyf p evaluated with an effective persis
tence lengthl p→ l p(11ew) and the entropy of mixing forw,

f 5 f pu l p→ l p(11ew)1w ln w1~12w!ln~12w!2mw.
~16!

Using Eq.~5!, we obtain

f 5w ln w1~12w!ln~12w!1 3
2 ln@ l p~11ew!#

1
3

4l p~11ew!
2mw. ~17!

For e!1 andl p@1 this expression reduces, as expected
our previous result for the weak-coupling limit, Eq.~14!.

In the limit of only l p@1 the critical points of the free
energy~17! are

ec
25 2

3 ~22A10!.20.775, ec
15 2

3 ~21A10!.3.44,
~18!

both of which lie within our general range of validity
e.21. ~Note the loss of symmetry with respect to the si
of e, which was a consequence of the weak-coupling
proximation in Sec. III.! The corresponding critical chemica
potentials are
q.

d

l.
, it

el
a
-

e

o

-

mc
65

3ec
6~ec

612!

4~ec
611!

2 ln~ec
611!.61.67. ~19!

The binding isotherm,w5w(m), as derived from Eq.~17!,
satisfies

m5 ln
w

12w
1

3e

2~11ew!
, l p@1. ~20!

Figure 2~a! shows three binding isotherms for three differe
values ofe below and above the critical point. The corr
sponding binding cooperativity is

C5
8~11e!2

3~21e!2~e2ec
2!~ec

12e!
2

1

4
, l p@1. ~21!

FIG. 2. ~a! Binding isotherms obtained from the mean-fie
theory @Eq. ~20!# for three different values ofe: e51 ~solid line!,
e53 ~dashed!, ande54 ~dotted!, the last being beyond the critica
point ec

1.3.44. The chemical potentialm is given in units ofkBT.
~b! Binding cooperativity as function ofe according to the mean
field calculation@Eq. ~21!#. The cooperativity diverges at the tw
critical pointsec

652(26A10)/3 ~dotted lines!, beyond which bind-
ing isotherms exhibit a first-order transition@see dotted curve in
~a!#.



ld

f
te
i-

ro
th
tia

it
o

3
t in
ol-
ing

u-

on.
b-
on
rt-
ro-

tion

nt

ns
ant

cted
ha-

ur

b-
er

ed

g

n

rg
ng
ing
da

PRE 61 6745BINDING OF MOLECULES TO DNA AND OTHER . . .
As in Eq. ~15!, this expression exhibits the usual mean-fie
critical behavior,C;ue2ecu2g with g51. The dependence
of C on e is plotted in Fig. 2~b!.

Finally, the binding phase diagram arising from Eq.~17!
in the limit l p@1 is depicted in Fig. 3. At the lower limit o
model validity, e→21, the spinodal approaches a fini
value, msp5 ln(2/3)25/2.22.91, whereas the binodal d
verges. Indeed, fore→21 the free energy~17! tends to
2` for w51, regardless of the value ofm, and the binodal
is thus obtained atm→2`. In this respect, the limit
e521 for the bound molecules is similar to the limit of ze
temperature—the induced interaction is so strong that
molecules condense for any value of the chemical poten
Note that in this special limit,e→21, w→1, the effective
stiffness l p(11ew) becomes vanishingly small. This lim
cannot be accurately treated within the continuum form
the semiflexible polymer Hamiltonian@38#.

FIG. 3. Binding phase diagrams calculated from the free ene
Eq. ~17!. ~a! Phase diagram for stiffness-weakening bindi
(21,e,0); ~b! phase diagram for stiffness-strengthening bind
(e.0). Solid and dashed lines indicate the binodal and spino
respectively. The lines meet at the critical points (ec

6 ,mc
6) given by

Eqs. ~18! and ~19!. The chemical potentialm is given in units of
kBT.
e
l.

f

Equations~18!–~21! and the phase diagrams in Fig.
summarize the results obtained so far. They indicate tha
cases of semiflexible polymers, where binding of small m
ecules significantly affects local chain features, the bind
should be a very sharp process. For finitel p the slope of the
binding isotherm is finite, i.e., the binding is always contin
ous, yet forl p;102 as in DNA, the behavior will be practi-
cally indistinguishable from a discontinuous phase transiti

It should be borne in mind that the sharp binding, o
tained despite the one-dimensionality of the model, relies
the long range of the induced interaction. A direct sho
range interaction between bound molecules could not p
duce a similar effect. Hence, such a short-range interac
~e.g., a nearest-neighbor interaction!, which was omitted in
Eq. ~1! for the sake of brevity, does not have an importa
effect on the binding in the domain of interest, i.e.,l p@1 and
ueu*1.

V. CHAINS UNDER TENSION

In addition, we consider binding to semiflexible chai
that are subject to external tension. This scenario is relev
to recent single-molecule manipulation experiments@12,13#.
Since the tension suppresses chain fluctuations, it is expe
to have a significant effect on the fluctuation-induced mec
nism presented in the preceding sections.

In order to incorporate the external tension into o
model, a term is to be added to the chain Hamiltonian@cf.
Eq. ~1!# @36#,

Z5Tr$wn50,1%E )
n51

N

dun exp~2H2Ht!,

Ht52t•(
n51

N

un , ~22!

whereH has been defined in Eq.~1!, and t is the exerted
tension~in units of kBT divided by monomer length!.

As in Sec. II, we begin with the previously studied pro
lem of a bare semiflexible chain, yet it is now a chain und
tension@36,43#. The additional tension term has not chang
the Gaussian form of the polymer part ofZ. It can be calcu-
lated, therefore, in a similar way to that of Sec. II, yieldin

Zpt
1/N5Zp

1/N exp~ t2/4l!, ~23!

whereZp is the tensionless polymer partition function give
in Eq. ~3!. The equation for the multiplierl is, in this case,

1

2 S 3

l pl
D 1/2

1
t2

4l
51, ~24!

which reduces to Eq.~4! for t50. The resulting polymer free
energy is

f pt5
3

2
ln l p1S 3l

l p
D 1/2

2
t2

4l
2l, ~25!

wherel5l( l p ,t) is the solution to Eq.~24!.
For l pt!1, the solution forl is

y

l,
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l.
3

4l p
@11 8

9 ~ l pt !
21O~ l pt !

4#,

and the free energy becomes

f pt. f p2
l p

3
t21O~ l p

3t4!, t!1/l p , ~26!

wheref p is the tensionless free energy given in Eq.~5!. This
is the elastic regime, where the energy is quadratic~i.e., the
relative chain extension is linear! in tension@36,44#. Since
we assume a large persistence length, this regime co
sponds to very weak tension,t!1/l p!1. In the opposite
limit, l pt@1, the solution to Eq.~24! becomes

l.
t

2 F11
1

2 S 3

2l pt
D 1/2

1O~ l pt !
21G ,

and the corresponding free energy is

f pt.
3
2 ln l p2t1S 3t

2l p
D 1/2

1O~ l p
21t0!, t@1/l p . ~27!

In this regime the chain extension changes like the inve
square root of tension@36,45#.

Let us turn now to the effect of tension on the system
polymer and bound molecules, Eq.~22!. As in Sec. IV, we
employ the mean-field approximation, valid forl p→`. The
resulting free energy is the same as Eq.~17!, but with f pt
instead off p ,

f 5 f ptu l p→ l p(11ew)1w ln w1~12w!ln~12w!2mw.
~28!

Due to the additional degree of freedom, namely, tension,
binding phase diagrams of Fig. 3 become three-dimensio
In particular, the critical pointsec

6 become critical lines,
ec

6(t). ~Note thatt is an external field coupled to$un% rather
than $wn%, and hence it does not destroy the critical beh
ior.! The ‘‘condensation’’ of bound molecules in our mod
results from attraction induced by polymer fluctuations.
suppressing fluctuations, the tension should weaken the
traction and shift the critical coupling to higher values, i.
increase the positive critical pointec

1 and decrease the neg
tive one, ec

2 . Using Eqs.~24!, ~25!, and ~28!, the critical
lines ec

6(t) can be calculated. The results are shown in F
4.

Before examining the detailed effect of tension, we a
dress the question whether the critical behavior can sur
any strength of tension. In this respect there is an essen
difference between stiffness-strengthening binding (e.0)
and stiffness-weakening binding (e,0). In the former case
since the value ofe is unbound, there existsec

1(t) for any
value of t, such that the binding is a sharp transition f
e.ec

1(t). In other words, the critical lineec
1(t) exists for

any 0<t,`. Indeed, substitutinge→` in Eq. ~28! while
using Eq.~27!, we find that the free energy always describ
a sharp transition, regardless of the value oft. On the other
hand, in the case of stiffness-weakening binding, there
lower bound fore, e.21, where the validity of the entire
re-

e
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approach breaks~see the previous section!. Substituting
e521 in Eqs. ~28! and ~27!, we find that a critical point
exists only fort,t* , where

t*

l p
5 4

9 ~3327A21!.0.410. ~29!

Thus, the critical lineec
2(t) terminates at the point (t* ,

ec* 521), beyond which a sharp binding transition cann
be attained. This situation is similar to a case where
critical temperatureTc coincides withT50 ~e.g., in a one-
dimensional Ising model!, and the system is disordered at a
temperaturesT.0.

Several regimes are found as function of tension. For v
weak tension,t,1/l p , the leading-order term which couple
binding and tension is found from Eqs.~26! and~28! to scale
like l pt

2ew, i.e., it is linear inw. Hence, to leading order in

FIG. 4. Effect of tension on the critical behavior of binding.~a!
Critical couplingec

2(t),0 as function of tension. Two regimes ar
found: fort&1/l p , uec

2(t)u increases liket4; for t*1/l p , it increases
like t1/2. The critical line terminates at the point (t* .0.410l p ,
ec* 521), beyond which a sharp binding transition becomes un
tainable. ~b! Critical coupling ec

1(t).0 as function of tension.
Apart from the two regimes of~a! there is a third one fort* l p ,
whereec

1(t) increases linearly witht. The value taken forl p in the
numerical calculation is 100. The tensiont is given in units ofkBT
divided by monomer length.
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l pt there is no effect on the critical point. Although the te
sion influences chain fluctuations~e.g., causing the chain t
extend linearly with t), it is too weak to affect the
fluctuation-induced interactions between bound molecu
The next-order term scales likel p

3t4(11ew)3, leading to a
very small shift of; l p

3t4 in the critical point~see also Fig.
4!.

For t.1/l p , the leading-order term in the free energ
according to Eqs.~27! and ~28!, is ;(t/ l p)

1/2(11ew)21/2.
Here two regimes should be distinguished. For intermed
tension, 1/l p,t, l p , the critical line scales like (t/ l p)

1/2, re-
flecting a more significant, yet still weak, effect of tensio
Although the chain conformation is significantly stretched
tension in this regime, the induced interaction betwe
bound molecules is not strongly affected. However,
t. l p , the tension term in the free energ
;(t/ l p)

1/2(11ew)21/2 becomes dominant, leading to a line
dependence of the critical point on tension,ec

1;t/ l p .
The above analysis for the dependence of the critical c

pling on tension is summarized in the following expressio

uec
6~ t !2ec

6~0!u ; H l p
3t4, t,1/l p

~ l p /t !1/2, 1/l p,t, l p

l p /t, t. l p , relevant only toec
1 .

~30!

The various regimes are also clearly seen in Fig. 4. Note
for the large values ofl p considered in this theory the inte
mediate tension region, 1/l p,t, l p , is very wide.

VI. DISCUSSION AND CONCLUSIONS

We have considered the binding of small molecules
isolated semiflexible polymer chains, where the persiste
length l p is much larger than the monomer size but s
smaller than the total chain lengthN. We have demonstrate
that in such systems polymer fluctuations induce attrac
between bound molecules. The long range of this interac
~of the same order as the persistence length! can lead to
strong effects on the binding process. In particular, if bou
molecules significantly affect local features of the chain, e
weaken or strengthen the stiffness by a factor of abou
(e,ec

2 or e.ec
1), then the binding is predicted to be e

tremely cooperative, occurring as a transition for a shar
defined solute concentration. This is an unusual yet prac
example for a one-dimensional system exhibiting a sh
transition due to long-range interactions. The results of
model should apply, in particular, to the association of DN
with smaller molecules such as surfactants and compact
teins.

Subjecting the polymer to external tension has been s
ied as well. By suppressing the fluctuation-induced inter
tion, the applied tension may strongly affect the binding. T
effect is significant for sufficiently strong tension of ord
t; l p . @For DNA this impliest;102kBT/(10 Å);102 pN.#
In cases where binding weakens the chain stiffness, su
high tension should make the sharp binding transition dis
pear altogether~i.e., regardless of the strength of coupling
temperature!. In cases where binding strengthens the ch
stiffness, a tension oft* l p significantly shiftsec

1 to higher
s.
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values. It is worth mentioning that tension-induced pairw
interaction betweenspecificallybound proteins on a DNA
chain was studied in a previous work@26#.

The interaction of DNA with oppositely charged cation
surfactants has been thoroughly studied by potentiome
techniques@3,4# and fluorescence microscopy@5,6#. Iso-
therms measured by potentiometry reveal a very coopera
albeit continuous binding. Fluorescence microscopy c
vincingly demonstrated, however, that the binding to asingle
DNA molecule has a discrete nature resembling a first-or
phase transition. It is usually accompanied by a coil-
globule collapse of the DNA chain~which lies outside the
scope of the current theory!. The smoothness of potentiome
ric isotherms was shown to arise from averaging over
ensembleof DNA molecules, coexisting in bound and un
bound states@5#. Similar results were obtained for the ass
ciation of DNA with spermidine@7#. The microscopic origin
of the observed cooperativity~or even discontinuous trans
tion! has not been clarified. It is usually fitted to a pheno
enological parameter describing strong interaction betw
nearest-neighboring bound molecules@22#. On the other
hand, it is reasonable to expect that oppositely charged
factants bound to DNA chains significantly modify the cha
stiffness~probably weakening it!. Thus, our model demon
strates that the strong cooperativity observed in experim
can be well accounted for by weak, yet long-range, inter
tions induced by polymer fluctuations.

Recently, the kinetics of nonspecific binding of RecA pr
teins to DNA has been studied by single-molecule mani
lation @12,13#. RecA is a bacterial protein involved in DNA
recombination and known to cause significant changes in
local structure of the double strand upon binding@46#. It was
found to increase the DNA stiffness by a large factor, e
mated to be around 10 in one study@12# and above 4 in
another@13#. This corresponds to a large, positivee in our
model. A very cooperative nucleation-and-growth kinet
was observed, as expected from the current model. M
over, in certain situations it was possible to achieve a sma
increase of stiffness by binding of RecA. This led, corr
spondingly, to a less cooperative process@13#. Yet probably
the most compelling evidence is that the binding coopera
ity was shown to be sensitive to external tension of or
10–100 pN. It was consequently deduced that DNA conf
mational fluctuations play a key role in RecA binding@12#,
in accord with the scenario suggested here.

The current work is restricted to one-dimensional inter
tions along the chain sequence, assuming that the polym
locally stiff and obeys the wormlike-chain description. Apa
from changing local properties of the polymer, an importa
feature not treated by the model is that bound molecules m
also modifyvolumeinteractions between the monomers, th
affecting the three-dimensional conformation of the polym
For example, binding of oppositely charged surfactants t
DNA molecule locally neutralizes the DNA charge. Th
should lead, indeed, to a modified stiffness, but also t
reduced second virial coefficient, which may drive a coil-t
globule collapse@5#. The collapse can be also driven by flu
tuations in the concentration of ions adjacent to the chain
has been demonstrated by recent theoretical studies@37,47#.

In order to check the theory presented in this work mo
experiments are required, focusing, in particular, on the
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6748 PRE 61HAIM DIAMANT AND DAVID ANDELMAN
fect of persistence length and tension on binding. The fl
rescence microscopy techniques, which have been suc
fully used for DNA-surfactant association, may be applied
chains under tension or flow, thus examining the role of fl
tuations. It would be interesting to study a system consis
of a semiflexible polymer and bound molecules in compu
simulations, and thereby check the applicability of our me
field approximation. An important extension of the model,
mentioned above, would be to introduce volume interacti
and obtain binding-induced collapse as observed in exp
ments.
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APPENDIX: NUMERICAL DETAILS

The aim of the numerical scheme is to calculate the
sults of the Kac-Baker model for finitel p , which are pre-
sented in Fig. 1. Using Kac’s solution@28,29#, the partition
function of bound solute molecules, Eqs.~10! and ~11!, is
expressed in the limitN→` as

Zs5const3e0
N , ~A1!

wheree0 is the largest eigenvalue of the following ‘‘transfe
kernel:’’

K~x,y!5@~11em23e/21AJx!~11em23e/21AJy!#1/2

3expS y22x2

4
2

~y2e22/l px!2

2~12e24/l p!
D , ~A2!
ys

m

.

,

nd

s.
-
ss-
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s
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d
-
d
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-

whereJ[3e2/2l p andx,yP(2`,`) are real variables.
We define a vector$xi%5$(2i 2M )d% i 50, . . . ,M , whereM

is an even integer andd a real number, and use it to dis
cretize the kernelK(x,y) into a transfer matrix,

Ki j [K~xi ,xj !. ~A3!

In addition, we define the diagonal matrix

Ai j [xid i j . ~A4!

Given l p , e, andm, the transfer matrixKi j is diagonalized
and its largest eigenvaluee0 is found.

The binding degreew can be calculated in two ways. Th
first is by calculating the variation of lne0 with respect tom,

w5] ln e0 /]m. ~A5!

The second way is by using the equation

w5Ã00/~BAJ!, ~A6!

whereB[coth(1/l p), and Ã is the matrixA transformed to
the basis whereK is diagonal@48#.

The cooperativity parameterC as defined in Eq.~13! is
found by calculating the variation ofw with respect tom
around the pointw51/2. The valuem5m1/2 which gives
w51/2 is analytically found by transforming the lattice-g
partition function, Eqs.~10! and ~11!, into an Ising one
(wn→sn52wn21), and requiring that the ‘‘magnetic field’
coefficient should vanish. The result is

m1/253e/22JB/2. ~A7!

For each calculation~i.e., for each set ofl p , e, andm) the
discretization parametersM andd were tuned until the resul
became insensitive to further refinement to six signific
figures. In addition, the two methods for calculatingw were
used and verified to yield identical results to six figure
All algebraic manipulations were performed usin
MATHEMATICA .
.

.
d

.

cta

A.

F.

A.
@1# Interactions of Surfactants with Polymers and Proteins, edited
by E. D. Goddard and K. P. Ananthapadmanabhan~CRC
Press, Boca Raton, FL, 1993!.

@2# Polymer-Surfactant Systems, edited by J. C. T. Kwak~Marcel
Dekker, New York, 1998!.

@3# K. Hayakawa, J. P. Santerre, and J. C. T. Kwak, Bioph
Chem.17, 175 ~1983!.

@4# K. Shirahama, K. Takashima, and N. Takisawa, Bull. Che
Soc. Jpn.60, 43 ~1987!.

@5# S. M. Mel’nikov, V. G. Sergeyev, and K. Yoshikawa, J. Am
Chem. Soc.117, 2401 ~1995!; 117, 9951 ~1995!; S. M.
Mel’nikov, V. G. Sergeyev, Y. S. Mel’nikova, K. Yoshikawa
J. Chem. Soc., Faraday Trans.93, 283 ~1997!; S. M.
Mel’nikov, V. G. Sergeyev, K. Yoshikawa, H. Takahashi, a
I. Hatta, J. Chem. Phys.107, 6917~1997!.

@6# S. M. Mel’nikov and K. Yoshikawa, Biochem. Biophys. Re
Commun.230, 514 ~1997!.
.

.

@7# K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R
Khokhlov, Phys. Rev. Lett.76, 3029~1996!.

@8# V. G. Seregeyev, O. A. Pyshkina, M. O. Gallyamov, I. V
Yaminsky, A. B. Zezin, and V. A. Kabanov, Prog. Colloi
Polym. Sci.106, 108 ~1997!.

@9# D. L. Reimer, Y.-P. Zhang, S. Kong, J. J. Wheeler, R. W
Graham, and M. B. Bally, Biochemistry34, 12 877~1995!.

@10# S. Bhattacharya and S. S. Mandal, Biochim. Biophys. A
1323, 29 ~1997!.

@11# See, e.g., H. Gershon, R. Ghirlando, S. B. Guttman, and
Minsky, Biochemistry32, 7143~1993!.

@12# J. F. Leger, J. Robert, L. Bourdieu, D. Chatenay, and J.
Marko, Proc. Natl. Acad. Sci. USA95, 12 295~1998!.

@13# G. V. Shivashankar, M. Feingold, O. Krichevsky, and
Libchaber, Proc. Natl. Acad. Sci. USA96, 7916~1999!.

@14# H. Diamant and D. Andelman, Europhys. Lett.48, 170~1999!.
@15# H. Diamant and D. Andelman, e-print cond-mat/9906271.



les
,

Jp

tt

dr
n

s

n

k,

e
to

.
n-

g
ffi-
en

of
ing

sly
t
y

se

v.

. J.

PRE 61 6749BINDING OF MOLECULES TO DNA AND OTHER . . .
@16# P.-G. de Gennes, J. Phys.~France! 37, L59 ~1976!; F. Bro-
chard and P.-G. de Gennes, Ferroelectrics30, 33 ~1980!.

@17# M. E. Fisher, Phys. Rev.176, 257 ~1968!.
@18# A. B. Harris, J. Phys. C7, 1671~1974!.
@19# B. Cabane and R. Duplessix, J. Phys.~France! 43, 1529

~1982!.
@20# D. P. Norwood, E. Minatti, and W. F. Reed, Macromolecu

31, 2957~1998!; E. Minatti, D. P. Norwood, and W. F. Reed
ibid. 31, 2966~1998!.

@21# B. H. Zimm and J. K. Bragg, J. Chem. Phys.31, 526 ~1959!.
@22# I. Satake and J. T. Yang, Biopolymers15, 2263 ~1976!; K.

Shirahama, H. Yuasa, and S. Sugimoto, Bull. Chem. Soc.
54, 375 ~1981!; K. Shirahama and M. Tashiro,ibid. 57, 377
~1984!.

@23# See, e.g., E. D. Goddard, inInteractions of Surfactants with
Polymers and Proteins~Ref. @1#!, Chap. 4.

@24# P. S. Kuhn, Y. Levin, and M. C. Barbosa, Chem. Phys. Le
298, 51 ~1998!.

@25# A. J. Konop and R. H. Colby, Langmuir15, 58 ~1999!.
@26# J. Rudnick and R. Bruinsma, Biophys. J.76, 1725~1999!.
@27# Some experiments involveshort DNA fragments, which re-

quires a different approach. See A. V. Gorelov, E. D. Ku
yashov, J.-C. Jacquier, D. M. McLoughlin, and K. A. Dawso
Physica A249, 216 ~1998!.

@28# E. H. Lieb and D. C. Mattis,Mathematical Physics in One
Dimension~Academic Press, New York, 1966!, Chap. 1.

@29# M. Kac, Phys. Fluids2, 8 ~1959!.
@30# G. A. Baker, Phys. Rev.122, 1477~1961!.
@31# O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas.68, 1106

~1949!; H. Yamakawa,Modern Theory of Polymer Solution
~Harper & Row, New York, 1971!, Chap. II.

@32# That is also the reason why stiffness-modifying binding, co
sidered by a previous work~Ref. @26#!, did not produce any
cooperativity effect without external tension.

@33# R. A. Harris and J. E. Hearst, J. Chem. Phys.44, 2595~1966!;
46, 398 ~1967!.

@34# J. B. Lagowski, J. Noolandi, and B. Nickel, J. Chem. Phys.95,
1266 ~1991!.

@35# B.-Y. Ha and D. Thirumalai, J. Chem. Phys.103, 9408~1995!;
n.

.

-
,

-

Macromolecules28, 577 ~1995!; e-print cond-mat/9709345.
@36# B.-Y. Ha and D. Thirumalai, J. Chem. Phys.106, 4243~1997!.
@37# P. L. Hansen, D. Svensˇek, V. A. Parsegian, and R. Podgorni

Phys. Rev. E60, 1956~1999!.
@38# In principle, the case of negative ‘‘stiffness’’ coefficient can b

considered as well. In such a model the monomers tend
antialign ~aggregate! instead of align. See H. Diamant and D
Andelman, e-print cond-mat/9804086. However, the co
tinuum limit employed by wormlike-chain models, includin
the current model, implicitly assumes a large stiffness coe
cient (l p@1). Consequently, the coefficient cannot be tak
continuously from positive to negative values, and the case
zero stiffness becomes a singularity. Indeed, in the bind
model presented here the limite→21 is found to be similar to
the limit of zero temperature, as shown in Sec. IV.

@39# R. P. Feynman and A. R. Hibbs,Quantum Mechanics and
Path Integrals~McGraw-Hill, New York, 1965!, Chap. 3.

@40# We are indebted to M. Schwartz for raising this point.
@41# J. L. Lebowitz and O. Penrose, J. Math. Phys.7, 98 ~1966!.
@42# Note that this statement, though plausible, is not rigorou

proved. For values ofe which are not very small, the cumulan
expansion of Eq.~8! would produce higher-order, many-bod
terms, whereas the proof by Lebowitz and Penrose, Ref.@41#,
applies to pair potentials only. On the other hand, all tho
higher-order terms have ranges proportional tol p ~it is the only
length scale in the problem whenN is infinite! and, hence,
should satisfy the mean-field assumption forl p→`.

@43# J. F. Marko and E. D. Siggia, Macromolecules28, 8759
~1995!.

@44# P.-G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, 1979!, Chap. I.

@45# T. Odijk, Macromolecules28, 7016~1995!.
@46# A. Stasiak, E. Di Capua, and Th. Koller, J. Mol. Biol.151, 557

~1981!.
@47# R. Golestanian, M. Kardar, and T. B. Liverpool, Phys. Re

Lett. 82, 4456~1999!.
@48# See, e.g., J. J. Binney, N. J. Dorwick, A. J. Fisher, and M. E

Newman,The Theory of Critical Phenomena~Oxford Univer-
sity Press, Oxford, 1993!, Chap. 3.2.


