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Binding of molecules to DNA and other semiflexible polymers
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A theory is presented for the binding of small molecules such as surfactants to semiflexible polymers. The
persistence length is assumed to be large compared to the monomer size but much smaller than the total chain
length. Such polymerge.g., DNA represent an intermediate case between flexible polymers and stiff, rodlike
ones, whose association with small molecules was previously studied. The chains are not flexible enough to
actively participate in the self-assembly, yet their fluctuations induce long-range attractive interactions between
bound molecules. In cases where the binding significantly affects the local chain stiffness, those interactions
lead to a very sharp, cooperative association. This scenario is of relevance to the association of DNA with
surfactants and compact proteins such as RecA. External tension exerted on the chain is found to significantly
modify the binding by suppressing the fluctuation-induced interaction.

PACS numbegps): 61.25.Hq, 87.15.Nn, 87.14.Gg

I. INTRODUCTION v<2/d, the critical behavior is smeared by impuritiés
analogy to the partial collapsenhereas ifv>2/d, the criti-
Aqueous solutions containing polymers and small associeal point remains intact. Indeed, neutral flexible polymers in
ating molecules such as folded proteins and amphiphilethree dimensions, having=3/5<2/3, are found by scatter-
(surfactantsare commonly found in biological systems and ing experiments to associate with surfactants in the form of a
industrial applications. As a result, extensive efforts have‘chain of wrapped aggregateg19,20. On the other hand,
been devoted in the past few decades to the study doftiff DNA molecules, havingv=1 on the relevant length
polymer-surfactant interactiorf4,2]. In addition, there has scale, are found either to remain unperturbed by surfactant
been growing interest in the interactions between DNA machinding [6,9], or to undergo a discontinuous coil-to-globule
romolecules and surfactants, lipids, and short polyaminegansition[5], provided the chain is much longer than the
[3—10Q. These interactions are relevant to various biochemipersistence length.
cal applications such as DNA extraction and purification In previous publication$14,15 we concentrated on the
[8-10 and genetic delivery systenjd1]. Association of flexible case and the corresponding partial collapse, where
folded proteins(e.g., RecA with DNA plays a key role in  the polymer degrees of freedom play an important role. In
genetic regulatory mechanisms. Structural details of this ashe opposite extreme limit of stiff, rodlike molecules, the
sociation have been studied in recent experimgh2sl3). conformational degrees of freedom of the polymer can be
Recently, we have presented a general theory for the selfieglected and the chain may be regarded as a linear “binding
assembly in aqueous solutions of polymers and smaller asubstrate.” Models for stiff polymers, inspired by the Zimm-
sociating moleculegl4,15. Two different scenarios emerge, Bragg theory[21], treat the bound molecules as a one-
depending on the flexibility of the polymer. If the polymer is dimensional lattice-gasior Ising system with nearest-
flexible enough, it actively participates in the self-assemblyneighbor interactiong22]. They have been widely used to fit
resulting in mixed aggregates jointly formed by the two spe-experimental binding isotherms for polyelectrolytes and op-
cies. The polymer conformation changes considerably upopositely charged surfactanf23]. Recently, more detailed
self-assembly but remains extended on a global scale, as tledectrostatic models have been proposed for the interaction
chain undergoes onlgartial collapse[14—-164. On the other between rodlike polyelectrolytes and oppositely charged sur-
hand, if the polymer is stiff, partial collapse is inhibited.  factants[24,25. In addition, a theoretical work focusing on
The criterion determining the “flexible” vs “stiff” sce-  the specifichinding of proteins to DNA has been presented
narios concerns the polymer statistics on a mesoscopiecently[26], treating a pair of bound proteins as geometri-
length scale characterizing correlations in the solutiosu-  cally constraining inclusions on the DNA chain.
ally a few nanometejslt was found 14,15 that the flexible In the current work we address the intermediate case of
(stiff) scenario holds if the exponemt relating the number semiflexiblepolymers. The polymer we consider is stiff in
of monomersN to the spatial siz& they occupyR~N”, is  the sense defined above, i.e., its persistence lehgthex-
smaller (largep than 24 on that length scaled( being the ceeds several nanometers and, hence, the polymer is charac-
dimensionality. This distinction is analogous to the one terized by v=1>2/3 on that length scale. The total chain
made in the critical behavior of certain disordered system$ength, however, is considered to be much larger thamnd
[17,18—if the critical exponentr of a system satisfies therefore the entire polymer cannot be regarded as a single
rigid rod. This case corresponds, in particular, to experiments
on long DNA molecule$3—10], whose persistence length is
*Present address: The James Franck Institute, The University dpically very large(of order 50 nm, but much smaller than
Chicago, 5640 South Ellis Avenue, Chicago, IL 60637. the total chain lengtltwhich is usually larger than a micrpn
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[27]. We argue that such an intermediate system may, imvormlike-chain model by allowing the monomer length to
certain cases, be governed by different physics. Although th8iuctuate. This modification was originally presented by Har-
polymer is too stiff to change conformation and actively par-ris and Hears{33], using a single global constraint for the
ticipate in the self-assembly, its degrees of freedom inducaverage chain length. The modified model was shown to suc-
attractive correlations between bound molecules. Thoseessfully reproduce the results of the Kratky-Porod model as
fluctuation-induced correlations are weak but have a londar as thermodynamic averagés.g., correlation functions,
spatial rangéof orderl ;) and, hence, may strongly affect the radius of gyration were concerned. It was less successful,
binding thermodynamics. however, in recovering more detailed statistics of the worm-

The model is presented in Sec. Il. Bound molecules ardike chain (e.g., distribution function, form factprparticu-
assumed to modify the local features of polymer conformalarly in the limit of large stiffness. The Harris-Hearst model
tion, e.g., change its local stiffness. In the limit of weak was later refined by Lagowski al.[34] and Ha and Thiru-
coupling, our model reduces to the Kac-Baker md@3d—  malai[35,36, replacing the single global constraint by a set
30], which is solvable exactly. This limit is discussed in Sec.of local constraints for the average segment lengths. This
[ll. Although turning out to be of limited interest in practice, further modification was shown to be equivalent to a
the weak-coupling limit provides insight into the mechanismstationary-phase approximation for the chain partition func-
of association, and helps us justify further approximationstion, yielding reliable results for average quantities, as well
Section IV presents a mean-field calculation for an arbitraryas more detailed statisti¢85]. We note that a similar ap-
strength of coupling. This analysis leads to our main concluproach was used in a recent model of semiflexible polymer
sions, and in Sec. V it is extended to polymers under externatollapse[37]. It should be borne in mind that, despite its
tension. The results are summarized in Sec. VI, where wsuccess in the past, the constraint relaxation remains essen-
also discuss several relevant experiments involving DNAtially an uncontrolled approximation. In the current work we
and point at future directions. restrict ourselves to thermodynamic averages, such as
monomer-monomer correlations and free energies, for which
the modified model with a single global contraint can be
trusted.

Small molecules bound to stiff polymers are commonly Thus, the rigid constraints of the original Kratky-Porod
modeled as a one-dimensional lattice gas Ising systesn ~ model,uy 2—1, are relaxed into thermodynamic-average ones,
[22]. Each monomer serves as a binding site, which can eifur) =1, where the root-mean-square monomer size is taken
ther accommodate a small molecule or be empty, and thbereafter as the unit Iength Using the modified model for the
surrounding dilute solution is considered merely as a bulichain, eache,(u,,1—Uu,)? term involves two consecutive
reservoir of small molecules. In the current work we stay atmonomergand not merely the angle between thetaading
the level of a one-dimensional model, assuming that théo a meaningful coupling between binding and polymer con-
polymer is still quite stiff(yet not infinitely stiff, i.e., the  formation.
persistence length is much larger than the monomer size. In The partition function of the combined system of polymer
addition, a dilute polymer limit is assumed, where interchainand bound molecules is written, therefore, as
effects can be neglected. We focus on the effect of introduc-
ing the polymer degrees of freedom and, hence, seek a
simple meaningful coupling between the polymer and the Z:Tr{cpnzo,l}f nﬂl dun exp(—H),
bound lattice gas. -

A polymer configuration is defined by a set of vectors, N—1

{Untn=1, .. N, specifying the lengths and orientations of the 3 1+ u 24 NouZ—
N monomers. In addition, each monomer serves asablndlng T4 pE (1 €@n)(Un+1 = Un) nZl nen anl n-

Il. THE MODEL

site which can be either emptyp(=0) or occupied by a (N)
small molecule ¢,=1). A configuration of the entire sys- _ .
tem is defined, therefore by specifyifig,, , ¢n} - 1N In Eq. (1) Ip is the persistence Iength of the bare chain, char-

choice would be to couple, with the square of the local larger than the monomer SIZEy>1 The coupling is intro-
chain curvaturee,(U,+1—U,)?, thus modifying the local duced through the stiffness term, assuming that a bound mol-
chain stiffness. However, in the usual Kratky-Porodecule modifies the local stiffness by a fractien — 1, which
wormlike-chain model of semiflexible polymef81], chain may be either negative or positive but cannot change the
segments are taken as rigid rods of fixed lengthpositive sign of the overall stiffness ter[88]. The second
(lun|=const), and each squared-curvature term contains onligrm contains a set of multipliebs, to be chosen so that the
one degree of freedorte.g., the angled,, betweenu,, and constramts(un) 1 are satisfied. However, replacement of
U,.1). Consequently, this couplingg, cosé,, would leave the entire se{\,} by a single multiplierh can be shown to
{@n} uncorrelated, leading merely to a trivial shift in the yield a nonextensive correctid®5], which becomes negli-
chemical potential of bound moleculg32]. One option to  gible in the limit N—o. Hence, we use hereafter a single
proceed is to consider higher-order extensions of thenultiplier A. Finally, the system is assumed to be in contact
wormlike-chain Hamiltonian, involving three consecutive with a reservoir of solute molecules. The last term in &g.
monomers. This will introduce correlations between boundaccounts for this contact along with any other factors that
molecules at different sites. couple linearly to the degree of binding. Typically, con-

We take a simpler route, however, and modify thetains the chemical potential of the solute reservoir and the
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direct energy of solute molecule-monomer bindit@ll en- . WEAK COUPLING
ergies in this work are expressed in units of the thermal
energykgT.) Note that we have not included in E() any
direct short-rangele.g., nearest-neighbointeractions be-
tween bound molecules. Thus, all interactions in the model
arise from the coupling to the polymer degrees of freedom. Z=Z,Tr exp(,uE qpn>
Short-range interactions between bound molecules do exist .
in physical systems. Yet, in the limit df>1 and|e[=1, | €

X < exp( ) > . (8

p

Let us return to the full partition functiofil), which can
be equivalently written as

3
which is of interest to the current work, such direct interac- - Tp 2 on(Ups1—Upy)?
tions have a minor effect on binding, as is demonstrated in n
the following sections. Hence, we omit them for the sake of

brevity. First we consider the weak-coupling limj&|<1, where the
As a reference, let us start with the previously studiedP@rtition function(8) can be treated by a cumulant expan-
partition function of the bare polymégs] sion. In this limit the model becomes analogous to the ex-

actly solvable Kac-Baker mod¢28-30, and we show that
3 identical results are derived from a simple mean-field calcu-
szf IT dunexp( - ZIPZ (Uns1—Up)2—N2, U2]. lation. We then use this observation to justify a mean-field
n n n calculation for an arbitrary value &f.
2 A cumulant expansion of Eq8) to second order ire

. L . . leads to
It is a Gaussian integral which can be calculated either by

transforming it to Fourier space and integrating, or by anal- 3l e
ogy to the path integral of a three-dimensional quantum os- Z=Z,Trp ex;{(u—Tgl)E @n
cillator [39]. The result in the limitN—< and forl>1 is "

1(3l,€\2
32 += —p) m,n : 9
L %) xp(3— VAT . 5172 ] 2 92(mnengy ©
P
where the correlationg, and g, were defined in Eq(7).
The multiplier\ can now be determined according to Substituting expression@), the partition function is decou-
pled into a polymer contribution and an effective contribu-
1dnz, . 3 tion from the bound solute molecules,
SN (e @

/= ZpZS: Zp Tr{%} eXF( —H S),
where(- - -), denotes a thermal average over the bare chain

statistics(i.e., usingZ,). The corresponding free energy per :E -
monomer(in the ensemble ofonstrainedu,) is Hs n;n Vimn®mn ’u; n- (10

. 1 I 3I | 3 where
=—= —A==Inl+—+ )
p N nZy,—\ 5 nl, ar const (5) a2
vV =__6e72|m7n\llp
. . . . mn— 9| ’
Various correlations in the bare chain can be calculated. p
The pair correlation between segment vectors along the 3e 32
H H ~ € €
chain sequence is p=p— ot (12)

p
(U upyp=e~ Im=nlflp, (6) _ .
The introduction of the polymer degrees of freedom and
which explains why the parameteyhas been defined as the their coupling to the binding ones have If—}d to two effects,. as
persistence length. Two higher-order pair correlations aré0mpared to previous lattice-gas theories. First, there is a
calculated as well, shift in the chemical potentiajy— w. This is equivalent to
an effective change in the affinity between the small mol-
2 ecules and the chain. As expected, if binding strengthens the
915((Un+1—un)2>p:|—+O(|§2), local stiffness of the chainet>0), the affinity is reduced
P (i.e., the isotherm is shifted to higher chemical potentjals
whereas if it weakens the stiffnesg<(0), the shift is to

= —1)2 2y 2
92(M,M)={ (U1~ Umn) “(Un+1 7 Un) p~ 93 lower w. [Recall that for smalk, the linear term in Eq(11)
8 is the dominant oné.The second, more interesting effect is
= _Se*Z\m*nI/Ier o(|54), (7)  that bound mplecules exp'erience an attractjve .potev%l _
3l along the chain. The amplitude of this effective interaction is

small (~ ezllp), but its range is large—of ordég. Whenl ,
and will be of use in the next section, where we reexamings increased there are two opposing consequences: the inter-
the coupled system. action amplitude diminishes, while the interaction range is
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extended. The overall effect on the thermodynamics of bind- 100
ing, therefore, has to be checked in detalil.

I:L'I TTTTT

A. Analogy with the Kac-Baker model 10

-
~

The effective Hamiltonian of the bound solutdy, is a
lattice-gas version of the Kac-Baker mo¢i28—30, which is
exactly solvable. Moreover, the procedure relevant to our O
semiflexible polymer, i.e., increasing, while keeping 0.1
1<I,<N, is precisely the one studied in detail by Kac and
Baker. Their results, as applied to our binding problem, can
be summarized as follows. For any finltg the bound mol-
ecules are always in a disordered state along the polymer
chain, as in any one-dimensional system with finite-range 0.001
interactions. Consequently, the binding isotherm, i.e., the
binding degreep={¢,) as a function ofu [see, e.g., Fig.

2(a) below], is a continuous curve. However, in the limit €
| ,— o, takenafter the infinite-chain limitN— oo, there is a
critical value of coupling above which the binding exhibits a

0.01

-1 0 1 2

|
[av]

FIG. 1. Binding cooperativity as function @f according to the

discontinuous(first-orde) transition. According to Bakers <ac-Baker model, plotted on a semilogarithmic scale. The dashed
and dash-dotted curves are results of numerical calculations for

ngorgus calcul'atllor{30], the le?al value of the pOt_entlal I,=10 and 50, respectively. The solid curves show analytic results
amplitude multiplied by, (equal, in our case, toe3/2) is 4, for |,—o as obtained by a mean-field calculatitq. (15)]. The
le., critical points are ak; = * \/8/3 (dotted lines.

er=+/8/3=+1.63. (12)
potentiometric experimen{d,2]. It has been defined in Eq.

Note that the symmetry with respect to the signeofs  (13) so as to yield zero for vanishing interactioe<0) and
merely an artificial consequence of our second-order expardiverge at a critical point(In the current weak-coupling
sion, Eq.(9). In general, the results should not be the same ilimit, the maximumade/du is obtained for ¢)=1/2) Given
the stiffness is weakened€0) or strengthenede(>0), as I, and €, the cooperativity is numerically calculated using
is demonstrated in Sec. IV. Kac’s exact solutiorf28,29, as is explained in the Appen-

The negative critical value in Eq12), e;~—1.63, lies  dix. Figure 1 presents the results foy=10 and 50. For
outside the range of validity of the original polymer binding |,=50 the binding becomes highly cooperative fel> e..
model, e>—1 [cf. Eq. (1)]. The positive valueg, =1.63,  For even larger values 0f~ 107 (relevant, e.g., to DNAthe
does not satisfy the assumption of weak couplifg=<1,  binding will be hardly distinguishable from that of an infinite
which led to the analogy with the Kac-Baker model in the|p_
first place. Thus, the sharp binding isotherms obtained from
the Kac-Baker model fore| > €. do not apply, strictly speak-
ing, for our polymer binding problem. The weak-coupling B. Mean-field calculation
calculation does demonstrate, however, how fluctuations in . -
polymer conformation induce long-range attraction between In fact, the re;ults of Fhe Kac-Baker model in the. limit
bound molecules. This basic feature is expected to remaif —>!p—>, while keepingl ,<N, can also be obtained
when one considers stronger couplifg> 1, and the result- from a simple m_ean-ﬂeld CalCl_Jlatlc[r?8,4q. _The he_ur|_s;t|c
ing many-body terms omitted in E¢). This is further dis- argument for this agreement is the following: lsis in-
cussed in the following sections. creased, the range of interaction is extended and each bound

Finally, the polymers we consider have a large but finitemolecule interacts with an increasing number of neighbors.
l,. For example, the persistence length of a DNA macromolAs a result, the averaging assumption underlying the mean-
ecule is typically of order 50—-100 nm, whereas the length ofield approximation is justified, and becon@sactwhen the
a single base pair is 0.34 nm. Hentgjs of order 18 (in range of interaction is taken to infinity. The correspondence
units of monomer lengthlt is worth checking to what extent between infinite-range models and mean field was rigorously
the sharpness of binding in the Kac-Baker model forproved by Lebowitz and Penrose for a more general class of
|e|> €. is affected by finitd,,. For this purpose, let us define potentials[41].

a co_operativity paramett_arfo.r th'e binding, measuring the Indeed, employing a mean-field approximation for the po-
maximum slope of the binding isotherm, tential (11) in the limit of very largel ,,
de 1 3e2 , 3¢2
=_T _ = _ —2|m—n|/I 2 _ - 2
C mlo 4 (13 % Vin®m@n— 2|p<;1 € Plo 2 No<,

This parameter is equivalent to the zero magnetic field sus-
ceptibility in the analogous spin system, and is commonlywheree is an average, uniform binding degree, we are led to
measured from the slope of binding isotherms obtained irthe following mean-field free energy per monomer:
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3€? o 1F
f=fp+f=f,+¢ln (p+(1—(p)|n(1—cp)—Tcp2—,u(p i
for 1,—e. (14) “er
It is easily verified that the critical point of this free energy is 06
e§=8/3, in agreement with the rigorous result, EtR). The i
cooperativity parameter can be calculated as well from Eq. S- -
(14), yielding 0.4 -
) i
€ 02—
=———— for [, —co, (15 i
4( eg— 62) P -
o ;
This expression shows the usual critical behavior obtained TR R T S N RV
from mean-field theoriesC ~|e— € ~” with y=1. The de- -2 0 2 4
pendence ofC on € according to Eq(15) is shown by the v

solid line in Fig. 1. The curves obtained from Kac’s solution
approach it, as expected, whépis increased. Recall that

expression$14) and(15) correspond to the original problem 10 -
of bound molecules only in the limit of smaél L b
8 |
IV. STRONG COUPLING i
The interesting part of our theory requie$=1 and thus 6 |-
limits the interest in the analogy to the Kac-Baker model. &) L
Nevertheless, based on the heuristic argument given above, it AL
is reasonable to assume that, in the lil#1, the mean- -
field approximation is good for larger values |ef as well i
[42]. The preceding section, discussing the Kac-Baker model 2
in the weak-coupling limit, may be regarded, therefore, as a - o+
justification for using the mean-field approximation for one- oL ¢ e
dimensional models with largk, and |e|=1. Applying a ' '1 - '(')' - "1' - 'é' - 'g' -

mean-field approximation to the binding degrees of freedom
¢, In our starting point, Eq(1), the tracing oveu, can be c
done exactly. The resulting free energy is composed of the
polymer free energy, evaluated with an effective persis-  FIG. 2. (@ Binding isotherms obtained from the mean-field
tence length,—1(1+ ) and the entropy of mixing fop, theory[Eq. (20)] for three different values of: e=1 (solid line),
€= 3 (dashegl ande=4 (dotted, the last being beyond the critical
= — —o)— oint e} =3.44. The chemical potential is given in units ofkgT.
f fphp_dp(l“‘pﬁ eine+(1-e)in(l-¢)=pe. ?b) Bincding cooperativity as fu?nctionac:é acgcording to the mBean-

(16 field calculation[Eq. (21)]. The cooperativity diverges at the two
Using Eq.(5), we obtain critical pointse; =2(2+ \/10)/3(dotted lineg, beyond which bind-
. ing isotherms exhibit a first-order transitijeee dotted curve in
f=gIng+(1-)In(1— @)+ N[l (1+ee)] @]
3 3e. (e +2)
T A (Treq) M (17) pE= Y n(ef+1)=+1.67. (19

4(e; +1)

For e<1 andl>1 this expression reduces, as expected, t
our previous result for the weak-coupling limit, Eq.4).

In the limit of only |,>1 the critical points of the free
energy(17) are ® 3e

=1 +
L AT

Crhe binding isothermp=¢(u«), as derived from Eq(17),
satisfies

[p>1. (20
€. =2(2—10=—0.775, e/ =2(2+ 10 =3.44,
(18) Figure Za) shows three binding isotherms for three different

values ofe below and above the critical point. The corre-

both of which lie within our general range of validity, sponding binding cooperativity is

e>—1. (Note the loss of symmetry with respect to the sign

of € wh@ch was a consequence of the we_a_k—couplin_g ap- 8(1+¢)? 1

proximation in Sec. ll). The corresponding critical chemical C= 5 —— 1 I>1. (21
potentials are 3(2+e)(e—€; )(ec —€)
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-1 Equations(18)—(21) and the phase diagrams in Fig. 3
summarize the results obtained so far. They indicate that in
. cases of semiflexible polymers, where binding of small mol-
ecules significantly affects local chain features, the binding
should be a very sharp process. For finjj¢he slope of the
binding isotherm is finite, i.e., the binding is always continu-
ous, yet forl ~ 10 as in DNA, the behavior will be practi-
cally indistinguishable from a discontinuous phase transition.

It should be borne in mind that the sharp binding, ob-
tained despite the one-dimensionality of the model, relies on
the long range of the induced interaction. A direct short-
range interaction between bound molecules could not pro-
duce a similar effect. Hence, such a short-range interaction
c (e.g., a nearest-neighbor interactiowhich was omitted in
B e e e S Eq. (1) for the sake of brevity, does not have an important

-1 —09 —0.8 —0.7 effect on the binding in the domain of interest, ilg% 1 and

c le|=1.

|
[AV]
LA L N B B B B B

UNBOUND

|
'S
T T T T I T T T T I

V. CHAINS UNDER TENSION

b ’ In addition, we consider binding to semiflexible chains
y that are subject to external tension. This scenario is relevant
I to recent single-molecule manipulation experimdi,13.
Since the tension suppresses chain fluctuations, it is expected
to have a significant effect on the fluctuation-induced mecha-
/ nism presented in the preceding sections.

/s In order to incorporate the external tension into our
J model, a term is to be added to the chain Hamiltorjiefin

s Eq. (1] [36],

; UNBOUND N
er Z:Tr{¢n=o,1}f nﬂl du, exp—H—"H,),

O||\|||E|‘|||‘||||\\\|
2 4 6 8 10

€ He=—t- >, Uy, (22)

FIG. 3. Binding phase diagrams calculated from the free energy

Eg. (17. (@ Phase diagram for stiffness-weakening bindingwhere H has been defined in Eql), andt is the exerted
(—1<e<0); (b) phase diagram for stiffness-strengthening bindingtension(in units of kg T divided by monomer lengih

(e>0). Solid and dashed lines indicate the binodal and spinodal, As in Sec. Il, we begin with the previously studied prob-
respectively. The lines meet at the critical poinég (u¢ ) givenby  |em of a bare semiflexible chain, yet it is now a chain under
Egs.(18) and (19). The chemical potentigk is given in units of  tension[36,43. The additional tension term has not changed
KgT. the Gaussian form of the polymer partaflt can be calcu-

lated, therefore, in a similar way to that of Sec. Il, yielding

As in Eqg. (15), this expression exhibits the usual mean-field N oI )
critical behavior,C~|e— e~ with y=1. The dependence Zypi =Zp expt/an), (23
of C on € is plotted in Fig. Zb).

Finally, the binding phase diagram arising from E#j7)
in the limit 1 ;>1 is depicted in Fig. 3. At the lower limit of
model validity, e——1, the spinodal approaches a finite
value, ugy=1In(2/3)—5/2=—-2.91, whereas the binodal di- -
verges. Indeed, foe— —1 the free energy17) tends to 2
—o for ¢ =1, regardless of the value @f, and the binodal ) )
is thus obtained atu— —o. In this respect, the limit which rgduces to Eq4) for t=0. The resulting polymer free
e=—1 for the bound molecules is similar to the limit of zero €NErgy 1S
temperature—the induced interaction is so strong that the
molecules condense for any value of the chemical potential.
Note that in this special limite——1, ¢—1, the effective
stiffness|,(1+ ep) becomes vanishingly small. This limit
cannot be accurately treated within the continuum form ofwhere =\ (l,,t) is the solution to Eq(24).
the semiflexible polymer Hamiltonigr38]. For | t<1, the solution for is

7k
LI I I L L

o

whereZ, is the tensionless polymer partition function given
in Eq. (3). The equation for the multipliex is, in this case,

1(3)1/2 t2

m +K= 1, (24)

3\ 1/2 t2

1, 4

3
fu=zintpt| -
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3 8 2 4 L
)\z4—|p[1+§(lpt) +O(I )],
~ ol
and the free energy becomes = E
N’ C
| 'w"’ 0.01 &
P g
fo=Tpm 3 2+ O(I5tY), <1/, (26) | :
~~ 0001 F
- F
wheref , is the tensionless free energy given in E5). This et :
. P . . - © 0.0001 b
is the elastic regime, where the energy is quadr@tc, the v
relative chain extension is lineain tension[36,44]. Since _53
we assume a large persistence length, this regime corre- 10 3
sponds to very weak tension<1/,<1. In the opposite _”'6“01' "”3'1 ' ‘1 ‘ '”"1'0 : ""'1"(')0'
limit, 1,t>1, the solution to Eq(24) becomes ‘ '
t 1 1/2 t
A== 1+—<— +O(IH) 7,
2 2121t 100 [ b
and the corresponding free energy is — F
- 10 &
12 =
fo=3nl—t+|——| +0(I-%%), t=11,. (27) T -
p p 21, p -l p w 1E
| g
In this regime the chain extension changes like the inverse = o1l
square root of tensiof36,45. ~
Let us turn now to the effect of tension on the system of 'tu" -
polymer and bound molecules, E@2). As in Sec. IV, we — om 3
employ the mean-field approximation, valid figf—c. The C
resulting free energy is the same as ), but with f 0001 Bl vl v vl v vl
instead offp, 0.01 0.1 1 10 100 1000
t
f=foli 1 e T @IN@+(1-@)IN(1-¢)~ne.
(28 FIG. 4. Effect of tension on the critical behavior of bindirig)

Critical couplinge, (t)<0 as function of tension. Two regimes are
Due to the additional degree of freedom, namely, tension, thébund: fort<1/,, | €. (t)| increases like*; for t=1/,, it increases
binding phase diagrams of Fig. 3 become three-dimensionalike t2 The critical line terminates at the point*(=0.410,,
In particular, the critical pointSECi become critical lines, e =—1), beyond which a sharp binding transition becomes unat-
Eci(t). (Note thatt is an external field coupled ta,} rather  tainable. (b) Critical cogpling e (H)>0 as funption of tension.
than{¢,}, and hence it does not destroy the critical behav/\Part from the two regimes ofa) there is a third one fot=1,,
ior.) The “condensation” of bound molecules in our model Whereec (1) increases linearly with The value taken fok, in the
results from attraction induced by polymer fluctuations. Bynymerlcal calculation is 100. The tensibis given in units ofkgT
suppressing fluctuations, the tension should weaken the ativided by monomer length.
traction and shift the critical coupling to higher values, i.e.,
increase the positive critical poief and decrease the nega- _ X " X
tive one, e; . Using Egs.(24), (25, and (28), the critical E:._l In Eqs.(282 and (27), we find that a critical point
. + .. exists only fort<t*, where
lines e (t) can be calculated. The results are shown in Fig.
4. .

Before examining the detailed effect of tension, we ad- t_:i(33_7\/2_1)20_410_ (29)

dress the question whether the critical behavior can survive lp °
any strength of tension. In this respect there is an essential
difference between stiffness-strengthening bindirg>0Q) Thus, the critical linee; (t) terminates at the pointt{,
and stiffness-weakening binding€0). In the former case, €!=—1), beyond which a sharp binding transition cannot
since the value ot is unbound, there exists. (t) for any  be attained. This situation is similar to a case where the
value oft, such that the binding is a sharp transition for critical temperaturel . coincides withT=0 (e.g., in a one-
> eg(t). In other words, the critical Iines:(t) exists for  dimensional Ising modgland the system is disordered at all
any 0<t<o, Indeed, substituting—co in Eq. (28) while  temperature3 >0.
using Eq.(27), we find that the free energy always describes Several regimes are found as function of tension. For very
a sharp transition, regardless of the value.ddn the other ~weak tensiont<1/,, the leading-order term which couples
hand, in the case of stiffness-weakening binding, there is &ainding and tension is found from Eq&6) and(28) to scale
lower bound fore, e>—1, where the validity of the entire like |pt26g0, i.e., it is linear ing. Hence, to leading order in

approach breakgsee the previous sectipnSubstituting
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It there is no effect on the critical point. Although the ten- values. It is worth mentioning that tension-induced pairwise
sion influences chain fluctuatiorie.g., causing the chain to interaction betweerspecificallybound proteins on a DNA
extend linearly witht), it is too weak to affect the chain was studied in a previous waiR6].
fluctuation-induced interactions between bound molecules. The interaction of DNA with oppositely charged cationic
The next-order term scales IiH§t4(1+ ep)®, leading to a surfactants has been thoroughly studied by potentiometric
very small shift of~|§t4 in the critical point(see also Fig. techniques[3,4] and fluorescence microscofp,6]. Iso-
4). therms measured by potentiometry reveal a very cooperative,
For t>1/,, the leading-order term in the free energy, albeit continuous binding. Fluorescence microscopy con-
according to Eqs(27) and (28), is ~(t/I)"((1+e¢) Y2  vincingly demonstrated, however, that the binding tirgle
Here two regimes should be distinguished. For intermediat®NA molecule has a discrete nature resembling a first-order
tension, W,<t<lI, the critical line scales Iiket(lp)lfz, re- phase transition. It is usually accompanied by a coil-to-
flecting a more significant, yet still weak, effect of tension. globule collapse of the DNA chaifwhich lies outside the
Although the chain conformation is significantly stretched byscope of the current theoryThe smoothness of potentiomet-
tension in this regime, the induced interaction betweerric isotherms was shown to arise from averaging over an
bound molecules is not strongly affected. However, forensembleof DNA molecules, coexisting in bound and un-

t>l,, the tension term in the free energy bound state$5]. Similar results were obtained for the asso-
~(t/1p) Y21+ ep) 2 becomes dominant, leading to a linear ciation of DNA with spermiding 7]. The microscopic origin
dependence of the critical point on tensi@ﬁ,~t/lp. of the observed cooperativitypr even discontinuous transi-

The above analysis for the dependence of the critical coution) has not been clarified. It is usually fitted to a phenom-

pling on tension is summarized in the following expression:enological parameter describing strong interaction between
nearest-neighboring bound moleculg22]. On the other

|§t4, t<1/, hand, it is reasonable to expect that oppositely charged sur-
. . 12 factants bound to DNA chains significantly modify the chain
lec (D= (0)] ~ § (/075 MUp<t<l, stiffness(probably weakening )it Thus, our model demon-
Ip/1, t>1,, relevant only toe, . strates that the strong cooperativity observed in experiments

(30 can be well accounted for by weak, yet long-range, interac-
tions induced by polymer fluctuations.
The various regimes are also clearly seen in Fig. 4. Note that Recently, the kinetics of nonspecific binding of RecA pro-
for the large values dff, considered in this theory the inter- teins to DNA has been studied by single-molecule manipu-

mediate tension region, I}<t<I,, is very wide. lation [12,13. RecA is a bacterial protein involved in DNA
recombination and known to cause significant changes in the
VI. DISCUSSION AND CONCLUSIONS local structure of the double strand upon bindjag]. It was

found to increase the DNA stiffness by a large factor, esti-

We have considered the binding of small molecules tomated to be around 10 in one stufi§2] and above 4 in
isolated semiflexible polymer chains, where the persistencgnother[13]. This corresponds to a large, positieein our
length |, is much larger than the monomer size but still model. A very cooperative nucleation-and-growth kinetics
smaller than the total chain length We have demonstrated was observed, as expected from the current model. More-
that in such systems polymer fluctuations induce attractiover, in certain situations it was possible to achieve a smaller
between bound molecules. The long range of this interactioihcrease of stiffness by binding of RecA. This led, corre-
(of the same order as the persistence lengtm lead to  spondingly, to a less cooperative procgs3]. Yet probably
strong effects on the binding process. In particular, if boundhe most compelling evidence is that the binding cooperativ-
molecules significantly affect local features of the chain, e.g.ity was shown to be sensitive to external tension of order
weaken or strengthen the stiffness by a factor of about §0-100 pN. It was consequently deduced that DNA confor-
(e<e; or e>¢), then the binding is predicted to be ex- mational fluctuations play a key role in RecA bindiftg],
tremely cooperative, occurring as a transition for a sharplyin accord with the scenario suggested here.
defined solute concentration. This is an unusual yet practical The current work is restricted to one-dimensional interac-
example for a one-dimensional system exhibiting a sharpions along the chain sequence, assuming that the polymer is
transition due to long-range interactions. The results of théocally stiff and obeys the wormlike-chain description. Apart
model should apply, in particular, to the association of DNAfrom changing local properties of the polymer, an important
with smaller molecules such as surfactants and compact prdeature not treated by the model is that bound molecules may
teins. also modifyvolumeinteractions between the monomers, thus

Subjecting the polymer to external tension has been studaffecting the three-dimensional conformation of the polymer.
ied as well. By suppressing the fluctuation-induced interacFor example, binding of oppositely charged surfactants to a
tion, the applied tension may strongly affect the binding. TheDNA molecule locally neutralizes the DNA charge. This
effect is significant for sufficiently strong tension of order should lead, indeed, to a modified stiffness, but also to a
t~I,. [For DNA this impliest~10°kgT/(10 A)~10? pN.]  reduced second virial coefficient, which may drive a coil-to-
In cases where binding weakens the chain stiffness, suchglobule collapsé5]. The collapse can be also driven by fluc-
high tension should make the sharp binding transition disaptuations in the concentration of ions adjacent to the chain, as
pear altogethefi.e., regardless of the strength of coupling or has been demonstrated by recent theoretical stiidiegd7.
temperaturg In cases where binding strengthens the chain In order to check the theory presented in this work more
stiffness, a tension af= | significantly shiftse; to higher  experiments are required, focusing, in particular, on the ef-
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fect of persistence length and tension on binding. The quowhereJE362/2Ip andx,y e (—,») are real variables.
rescence microscopy techniques, which have been success-We define a vectofx;} ={(2i—M)d}i_o .. m, WhereM
fully used for DNA-surfactant association, may be applied tois an even integer and a real number, and use it to dis-
chains under tension or flow, thus examining the role of fluccretize the kerneK(x,y) into a transfer matrix,

tuations. It would be interesting to study a system consisting

of a semiflexible polymer and bound molecules in computer Kij=K(Xi,X;)- (A3)
simulations, and thereby check the applicability of our mean-

field approximation. An important extension of the model, asln addition, we define the diagonal matrix

mentioned above, would be to introduce volume interactions

and obtain binding-induced collapse as observed in experi- Aij=Xi bij - (A4)

ments. . . - .
Givenl,, €, and u, the transfer matriX;; is diagonalized

and its largest eigenvalug is found.
The binding degree can be calculated in two ways. The
We greatly benefited from discussions and corresponfirst is by calculating the variation of kg with respect tou,
dence with R. Bar-Ziv, M. Feingold, A. Libchaber, R. Netz,
A. Parsegian, R. Podgornik, M. Schwartz, V. Sergeyev, and p=dlnegldp. (A5)
K. Yoshikawa. Partial support from the Israel Science Foun- ) ) )
dation founded by the Israel Academy of Sciences and he second way is by using the equation
Humanities—Centers of Excellence Program, and the Israel-
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APPENDIX: NUMERICAL DETAILS The cooperativity parameteZ as defined in Eq(13) is

found by calculating the variation ap with respect tou
The aim of the numerical scheme is to calculate the reground the pointp=1/2. The valuew = w1, Which gives
sults of the Kac-Baker model for finitk,, which are pre- ,=1/2 is analytically found by transforming the lattice-gas
sented in Fig. 1. Using Kac's solutid28,29, the partition  partition function, Egs.(10) and (11), into an Ising one
function of bound solute molecules, Eq40) and (11), is (o, —s,=2¢,— 1), and requiring that the “magnetic field”
expressed in the limiN— as coefficient should vanish. The result is

_ N
Z~=constx ey, (A1) 1= 3€el2—IB/2. (A7)

wheree, is the largest eigenvalue of the following “transfer

- For each calculatiofi.e., for each set df,, €, andu) the
kernel:

discretization parametel andd were tuned until the result
became insensitive to further refinement to six significant

_ w—3el2+\Ix w—3el2+\Iy\11/2
K(x,y)=[(1+e “(1te )] figures. In addition, the two methods for calculatiagvere

y2—x2  (y—e 2Mx)2 used and verified to yield identical results to six figures.
Xexp( — , (A2) All algebraic manipulations were performed using
4 2(1—e ) MATHEMATICA .

[1] Interactions of Surfactants with Polymers and Proteiedited [7] K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R.

by E. D. Goddard and K. P. Ananthapadmanabl@RC Khokhlov, Phys. Rev. Lett76, 3029(1996.
Press, Boca Raton, FL, 1903 [8] V. G. Seregeyev, O. A. Pyshkina, M. O. Gallyamov, I. V.

[2] Polymer-Surfactant Systepedited by J. C. T. KwakMarcel Yaminsky, A. B. Zezin, and V. A. Kabanov, Prog. Colloid
Dekker, New York, 1998 Polym. Sci.106, 108 (1997.

[3] K. Hayakawa, J. P. Santerre, and J. C. T. Kwak, Biophys. [9] D. L. Reimer, Y.-P. Zhang, S. Kong, J. J. Wheeler, R. W.
Chem.17, 175(1983. Graham, and M. B. Bally, Biochemisti34, 12 877(1995.

[4] K. Shirahama, K. Takashima, and N. Takisawa, Bull. Chem.[10] S. Bhattacharya and S. S. Mandal, Biochim. Biophys. Acta
Soc. Jpn60, 43 (1987). 1323 29 (1999.

[5] S. M. Mel'nikov, V. G. Sergeyev, and K. Yoshikawa, J. Am. [11] See, e.g., H. Gershon, R. Ghirlando, S. B. Guttman, and A.
Chem. Soc.117, 2401 (1995; 117, 9951 (1995; S. M. Minsky, Biochemistry32, 7143(1993.
Mel'nikov, V. G. Sergeyev, Y. S. Mel'nikova, K. Yoshikawa, [12] J. F. Leger, J. Robert, L. Bourdieu, D. Chatenay, and J. F.
J. Chem. Soc., Faraday Tran83, 283 (1997); S. M. Marko, Proc. Natl. Acad. Sci. USA5, 12 295(1998.
Mel'nikov, V. G. Sergeyev, K. Yoshikawa, H. Takahashi, and [13] G. V. Shivashankar, M. Feingold, O. Krichevsky, and A.
I. Hatta, J. Chem. Phy4.07, 6917(1997). Libchaber, Proc. Natl. Acad. Sci. US26, 7916(1999.

[6] S. M. Mel'nikov and K. Yoshikawa, Biochem. Biophys. Res. [14] H. Diamant and D. Andelman, Europhys. Let8 170(1999.
Commun.230, 514 (1997. [15] H. Diamant and D. Andelman, e-print cond-mat/9906271.



PRE 61

[16] P.-G. de Gennes, J. Phy@rance 37, L59 (1976; F. Bro-
chard and P.-G. de Gennes, Ferroelectgi@s33 (1980.

[17] M. E. Fisher, Phys. Re\l76, 257 (1968.

[18] A. B. Harris, J. Phys. @, 1671(1974.

[19] B. Cabane and R. Duplessix, J. Phy§rance 43, 1529
(1982.

[20] D. P. Norwood, E. Minatti, and W. F. Reed, Macromolecules
31, 2957(1998; E. Minatti, D. P. Norwood, and W. F. Reed,

ibid. 31, 2966(1998.
[21] B. H. Zimm and J. K. Bragg, J. Chem. Phyd, 526 (1959.
[22] I. Satake and J. T. Yang, Biopolymet$, 2263 (1976; K.

Shirahama, H. Yuasa, and S. Sugimoto, Bull. Chem. Soc. Jpn.

54, 375(198)); K. Shirahama and M. Tashirdbid. 57, 377
(1984.

[23] See, e.g., E. D. Goddard, interactions of Surfactants with
Polymers and ProteingRef. [1]), Chap. 4.

[24] P. S. Kuhn, Y. Levin, and M. C. Barbosa, Chem. Phys. Lett.

298 51 (1998.
[25] A. J. Konop and R. H. Colby, Langmuir5, 58 (1999.
[26] J. Rudnick and R. Bruinsma, Biophys.78, 1725(1999.
[27] Some experiments involvehort DNA fragments, which re-

quires a different approach. See A. V. Gorelov, E. D. Kudr-
yashov, J.-C. Jacquier, D. M. McLoughlin, and K. A. Dawson,

Physica A249 216(1998.

[28] E. H. Lieb and D. C. MattisMathematical Physics in One
Dimension(Academic Press, New York, 1966Chap. 1.

[29] M. Kac, Phys. Fluid, 8 (1959.

[30] G. A. Baker, Phys. Rev122, 1477(1961).

[31] O. Kratky and G. Porod, Recl. Trav. Chim. Pays-B&&.1106

BINDING OF MOLECULES TO DNA AND OTHER . .. 6749

Macromolecule®8, 577 (1995; e-print cond-mat/9709345.

[36] B.-Y. Ha and D. Thirumalai, J. Chem. Phyi€6, 4243(1997).
[37] P. L. Hansen, D. Sveeg, V. A. Parsegian, and R. Podgornik,

Phys. Rev. E60, 1956(1999.

[38] In principle, the case of negative “stiffness” coefficient can be

considered as well. In such a model the monomers tend to
antialign (aggregatginstead of align. See H. Diamant and D.
Andelman, e-print cond-mat/9804086. However, the con-
tinuum limit employed by wormlike-chain models, including
the current model, implicitly assumes a large stiffness coeffi-
cient (,>1). Consequently, the coefficient cannot be taken
continuously from positive to negative values, and the case of
zero stiffness becomes a singularity. Indeed, in the binding
model presented here the lingit> — 1 is found to be similar to
the limit of zero temperature, as shown in Sec. IV.

[39] R. P. Feynman and A. R. HibbQuantum Mechanics and

Path Integrals(McGraw-Hill, New York, 1965, Chap. 3.

[40] We are indebted to M. Schwartz for raising this point.
[41] J. L. Lebowitz and O. Penrose, J. Math. Phys98 (1966.
[42] Note that this statement, though plausible, is not rigorously

proved. For values of which are not very small, the cumulant
expansion of Eq(8) would produce higher-order, many-body
terms, whereas the proof by Lebowitz and Penrose, [Réf,
applies to pair potentials only. On the other hand, all those
higher-order terms have ranges proportiondlt@t is the only
length scale in the problem wheN is infinite) and, hence,
should satisfy the mean-field assumption K c.

[43] J. F. Marko and E. D. Siggia, Macromolecul@8, 8759

(1995.

(1949; H. YamakawaModern Theory of Polymer Solutions [44] P.-G. de GennesScaling Concepts in Polymer Physi@Sor-

(Harper & Row, New York, 19711 Chap. Il.

nell University Press, Ithaca, 197%hap. I.

[32] That is also the reason why stiffness-modifying binding, con-[45] T. Odijk, Macromolecule28, 7016(1995.

sidered by a previous worlkRef. [26]), did not produce any
cooperativity effect without external tension.

[33] R. A. Harris and J. E. Hearst, J. Chem. Ph44.2595(1966);
46, 398(1967).

[34] J. B. Lagowski, J. Noolandi, and B. Nickel, J. Chem. PI19j.
1266(1991)).

[35] B.-Y. Ha and D. Thirumalai, J. Chem. Phyi9)3 9408(1995;

[46] A. Stasiak, E. Di Capua, and Th. Koller, J. Mol. Bi&b1, 557

(1981).

[47] R. Golestanian, M. Kardar, and T. B. Liverpool, Phys. Rev.

Lett. 82, 4456(1999.

[48] See, e.g., J. J. Binney, N. J. Dorwick, A. J. Fisher, and M. E. J.

Newman,The Theory of Critical Phenomen®xford Univer-
sity Press, Oxford, 1993Chap. 3.2.



