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Defects in lamellar diblock copolymers: Chevron- and{2-shaped tilt boundaries
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The lamellar phase in diblock copolymer systems appears as a result of a competition between molecular
and entropic forces, which selects a preferred periodicity of the lamellae. Grain boundaries are formed when
two grains of different orientations meet. We investigate the case where the lamellae meet symmetrically with
respect to the interface. The form of the interface strongly depends on the @rggéween the normals of the
grains. When this angle is small, the lamellae transform smoothly from one orientation to the other, creating
the chevron morphology. A8 increases, a gradual transition is observed to an omega morphology character-
ized by a protrusion of the lamellae along the interface between the two phases. We present a theoretical
approach to find these tilt boundaries in two-dimensional systems, based on a Ginzburg-Landau expansion of
the free energy, which describes the appearance of lamellae. Close to the tips at which lamellae from different
grains meet, these lamellae are distorted. To find this distortion for small angles, we use a phase variation
ansatz in which one assumes that the wave vector of the bulk lamellar phase depends on the distance from the
interface. Minimization of the free energy gives an expression for the order paragietsr). The results
describe the chevron morphology very well. For larger angles, a different approach is used. We liggearize
around its bulk valuep, and expand the free energy to second order in their difference. Minimization of the
free energy results in a linear fourth-order differential equation for the distortion field, with proper constraints,
similar to the Mathieu equation. The calculated monomer profile and line tension agree qualitatively with
transmission electron microscope experiments, and with full numerical solution of the same problem.

PACS numbds): 61.25.Hq, 83.70.Hq, 61.4te, 02.30.Jr

I. INTRODUCTION phases, however, are rarely observed in experiments because
it is extremely difficult to completely anneal defects. In most
The lamellar phase is one of the possible phases witlcases, due to very slow dynamics and energy barriers, the
spatial modulations that can be found in a wide variety ofmicrostructural ordering is limited to finite-size domaiios
physical and chemical systems. These include diblock cograing separated by grain boundaries. These defects are very
polymer melts, mixtures of diblock and homopolymers,common to block copolymer systems and are readily ob-
aqueous solutions of lipids or surfactants, Langmuir monoserved in experimen{s3,4].
layers, and magnetic garnet filfik]. Modulated phases are Because these domain boundaries and defects are so
the result of a competition between forces, one of whichabundant in polymer melts, it is of interest to study their
prefers ordering characterized by a nonzero wavenumbegnergetics and other characteristics. In this paper, we concen-
while the other prefers a homogeneo(gisordered state. trate on the relatively simple situation of domain boundaries
Below we shall employ the language appropriate to blockin lamellar phases in which there is no twist between the two
copolymers, but our work applies equally to other systems.grains, only a tilt, as is shown schematically in Fige)1 The
We consider diblock copolymer melts in which the two system is translationally invariant along thelirection and
polymer blocks are incompatible. This incompatibility is can be described by itsy cross section only, reducing it to
characterized by a positive Flory parameteBecause of the an effective two-dimensional system. As can be seen in Fig.
covalent chemical bond between tieand B blocks, the 1(a), the distance between lamellae along the grain boundary
system cannot undergo a true macrophase separation. Instedyis larger than the lamellae spacing in bdlkby a factor of
it undergoes amicrophase separatiocharacterized byA- 1/cos@2). This causes an increase in the local free energy
and B-rich domains of a finite size. Various modulated density related to the grain boundary.
phases such as lamellar, hexagonal, and cubic are observedThe experiments of Gido and Thomi& and Hashimoto
[2—7] depending upon thes parameter as well as on the and coworkerg4] show that the response of the system to
relative lengths ofA and B blocks. In most cases, thg  this increase in free energy depends strongly on the tilt angle
parameter depends inversely on the temperature. Hence, tifdoetween the grains. The so-calleldevronmorphology[ 3]
lamellar and other modulated phases will not be stable abccurs when the angle is small. In such a situation, lamellae
high temperatures and the polymer melt will be in a disor-transform smoothly from one orientation to the other, creat-
dered state. ing V-shaped tips. The rounding of these tips reduces the
The equilibrium behavior of diblock copolymers in the interfacial area between lamellae at the expense of introduc-
bulk is by now well understoofs—7]. Single domain bulk ing a curvature energy. For block copolymers the profile
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ter case, the respongand shapeof lamellae composed of
one of the blocks differs from that of the other. Such
symmetry-broken boundaries were indeed observed by Gido
and Thomag3].

In Sec. Il, we adopt the Ginzburg-Landau free energy
functional employed earlid2]. The advantages to using this
functional are its simplicity and generality, while retaining
the essential ingredients that capture the behavior of the sys-
tem. In contrast to the complete minimization of the free
energy functional, which requires a numerical calculation,
we shall employ here a simple ansatz for the form of the
grain boundary in order to obtain analytic results. Recently,
similar methods were employed to obtain analytically the
interface between the lamellar and disordered phases of
diblock copolymerg9]. Our motivation is to demonstrate
that the essence of these interesting morphologies does not
depend on strong segregation conditions or a large number of
Fourier components, and so should be observable in all sys-
tems with modulated phases.

The chevron structure is obtained by using the bulk lamel-
lar phase solution with a constant amplitude, but with vary-
ing wave vector. Minimizing the free energy subject to the
proper geometrical constraints, we find an equation for the
wave vector. This is done in Sec. Ill. Beyond the chevron
regime(i.e., for large interdomain anglgghis approach will
not be adequate, because the amplitude of modulations will
have to vary as well. To this end, we expa#x,y) around
the two bulk lamellar phases, giving rise to an equation for a
small distortion field. Close to the interface, the sharp tips of
the lamellar phasgsee Fig. 1a)] are smoothed out and the
protrusion characteristic of the omega morphology appears.
Far away from the interface, the disturbance vanishes and the
bulk lamellar phase is recovered, as is shown in Sec. IV. In

FIG. 1. A schematic drawing of the geometry of the system. Insec' VA, we d'scus_s some features of__ogr method, the
(a) the tilt angled between the normal of the two lamellar phases is@n@logy to, and the differences from the Schinger equa-

shown. The bulk periodicitg is smaller than the local periodicity tion for electrons in a o_ne-dimensional periodic potential
d,=d/cos(@?2) at the interfacey=0. In (b) a schematic drawing of (Known also as the Mathieu equatjoin Sec. V, we report

(b)

a chevron morphology with roundéd-shaped tips is shown. our results, and discuss them in Sec. VI.

shape at the tip is determined by the local relaxation of the Il. MODEL

stretched chains. The chevron morphology is shdsahe- _ _
matically) in Fig. 1(b) and again in Fig. @). A gradual An order parametet)(R) =[#a(R)— #s(R)] is defined

transition to anomega-shapetip is observed whem is in-  as the difference is loc#l andB monomer volume fractions.
creased, as seen in Figb2 This morphology is character- We employ the following Ginzburg-Landau free energy
ized by protrusions of the lamellae along the interface befunctional of this order parameter

tween the two phases. The protrusions can be understood as

a different attempt of the system to reduce the cost of the Kt cy
boundary, while still complying with the geometrical con- =f —
straints. Essentially, the system tries to create a lamella simi- KeT 2 1
lar to those in the bulk but that is aligned along the interface @)

itself.

The basic phenomenology of these grain boundaries washerekg is the Boltzmann constant, aridis the tempera-
presented by Gido and Thom&3]. Netz, Andelman, and ture. With c; and c, positive, the first two terms favor a
Schick [2] then considered the phenomenon employing auniform, disordered state. The coefficient of the third term,
Ginzburg-Landau free energy, which was minimized numerics, is negative and therefore induces the system to a modu-
cally, and obtained both the chevron and omega morpholdated, ordered phase. The Laplacian squared term ensures
gies. Matseri8] considered the block-copolymer system ex-that these modulations are not too large. This type of free
plicitly and employed self-consistent field theory. Not only energy functionaland some variants of)ihas been success-
did this produce the chevron and omega morphologies fofully used to describe the bulk phase of diblock copolymers
small and intermediate angles, respectively, but also §5,6], amphiphilic system$10], Langmuir films[11], and
symmetry-broken omega for large enough angles. In the latmagnetic(garnej films [12].

(o) Ca Cy
P SYH 5 (V)2 5 (V2?2 d°R,
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Y AXIS

FIG. 2. Black and white contour plot of the
order parameter profilé, as obtained from the
profile solutions of Sec. IV. The grayness denotes
the value of the order parametep/B relative
volume fraction. Black domains areA rich,
white domains ar®-rich. The value of the inter-
action parameter ig=1 and the average differ-
ence of monomer volume fractions dg=0. For
the small angle §=20°, top ploj chevron mor-
phology appears, while fa#= 130° (bottom plo}
omega takes over.
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Assuming an infinite system that is nonuniform only C1C4 1 1 1
along one direction, one can minimize this free energy F[¢]=f W¢2+ 1—2¢4—§(V¢)2+ §(V2¢)2 dr.
to obtain a solution describing the lamellar phase 3 )
Y <cos@Q-R). One readily finds that the transition to the
lamellar phase first occurs at a wave numb&=  The coefficientc,; changes sign as the interaction strength
(—caf2c,)2 It is convenient, therefore, to introduce the increases or temperature decreases. In a polymer sysem,
dimensionless position vectorvia can be shown to be proportional to-J;/x¥ , wherey; is
s the Flory parametdrl3], and x; the value of this parameter
E(‘_Cs) R @ at which the coefficient, passes through zetd4).
Cy To make contact with Ref2], we set the ratio of coeffi-
cientsc,c,/c3 to be equal to % x. For this particular choice
and further to rescale the order parameter of coefficients, the free energy functional becomes
C,C,\ 12 (1r s gy et 2. L iv22| g3
¢,(r)z(%) WR) 3 F[¢]—f 5 (1= X) 7+ 50— 5 (V)>+ 5 (V2e)? | o
’ (®)
and the free energy The bulk lamellar phase, with wave vector in thdirec-
tion, is described by
—ciea| 2 F Y]
F[¢]E(—5) — (4) b= dot+ dqcogqx) (7)
C3 kgT

with ¢, the average volume fraction difference,
so that the dimensionless and rescaled free energy functiong= Q(—ca/c,) Y?=1n2 the optimal wave vector, and
takes the form ¢q=2\/X—¢>02—3/4 the amplitude of the variatior[®]. It
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can be showr5-7] that this lamellar phase is the thermo- appear to be rather constant, while it is the phase which
dynamical stable phase in a range of the system parameteichanges smoothly from one grain to the other. The local
¢o and y. For block copolymersg, is proportional to the direction and magnitude of the wave vector depends on the
difference in the average volume fractionsfodndB mono-  distancey from thex axis. Far away from the interface, the

mers. lamellae must return to their bulk orientation, implying
Upon substitution ofp, into Eq.(6), one obtains the free ] B .
energy per unit volume of the bulk lamellar phase yl”f u(y)==(qy/a)y=+tan6/2)y (1D
Flg] 1 0 3 L - - - isfi
v "3 (1—X)¢>c2)+ o 3lx" 7" ¢g ) and at the interface, the continuous functigfy) satisfies
lim u(y)=0. (12
whereV= [d® is the rescaled, dimensionless, volume of the y—0
system.

Some remarks are now in order. First, as was mentioned SYMMelry with respect to inversion across theaxis
in the introduction, the free enerd) can have other non- Means that

lamellar modulated solutiong2,15. We will not consider I

o - S L c , .
them in this paper since our aim |_s_to study c_iefects |r_1$|de > = — ¢q0xu’ (0)sin(g,x) =0, (13
lamellar phases. Second, the validity of a single-optimal Yly—o

mode can be justified in the weak segregation lifinét., near L

a critical point or a weak first-order transitiprFar from the ~ Which implies

critical point, higher harmonics are needed to describe the u'(0)=0 (14)

optimal lamellar phas§2,8]. In addition, very close to the '

critical point corrections due to fluctuations are important e insert the form(10) into the free energy functional

[16,17. _ (6). The integration ovex and z can be carried out. The
We now turn to the tilt-boundary problem, where two remaining integration ovey shows thatF[ ¢.] is propor-

lamellar domains, both lying parallel to they plane, meet  tignal to the dimensionless, rescaled, volumef the sys-

with an angle¢ between their normalsee Fig. 1a)]. Thex  tem. This reflects the fact that the order parameter profile

axis is along the line interface between the two lamellar dOapproacheS its bulk value far from the grain boundary_ Sub-

mains. They axis is perpendicular to it. In these variables thetraction of the bulk free energy produces a functional for the

lamellae in the two grains are described by free energy per unit area of the grain boundary. After simple
_ manipulation, one finds the expression
dL=ot ¢q COg QX+ qu) , 9
F -F
whereq,=q cos(/2) andq,=q sin(¢/2) are the components y= M
of the optimal wave vectoq=(qy,qd,). Their inverses pro-
vide characteristic length scales in tkeandy directions, 2
respectively. They<<0 half plane is a reflection through the = quinz( 0/2)
x axis of they>0 half plane, so it is sufficient to consider
only the upper half plang;>0. The system is periodic along ® ds\2 sird(6/2)
the x axis, with wavelengthd,=27/q,=2/[ q cos@/2)]. X jo dy (@) + T(l—g@)2 , (19
Ill. DESCRIPTION OF THE CHEVRON MORPHOLOGY where

For small tilt angles, the lamellae transform smoothly 1 du

from one orientation to the other, showing the chevron mor- s(y)=— ——— —. (16)
tan(0/2) dy

phology. We will assume that for small enough tilt angles,

the only change of the functional form of the order parametehom the boundary condition, Eq11), one sees that far

is through the wave vect§lL8,19|. The aim of this section is from the grain boundarg attains the valuet1 and that its

to show that, in the. chevron.reg|me, the beha}wor. OT thederivative vanishes. It is clear, therefore, thad @pproaches
system close to the interface is, in essence, quite similar t

. ) : P s limiting value sufficiently quickly, the grain boundary
that far from the interface. The diagonal lines in Figa)l free energy is finite. This is indeed the case.

show each bulk lamellar phase in its respective half plane, i . . S .
and the sharp tips which result from their intersection. Thes%oJ:gafyuiféef%r;ggﬁsequat'on’ which minimizes the grain

sharp tips will be smoothed out in the chevron morphology,

Fig. 1(b). d%s
We use the following ansatz for the order parameter a2 +s(1—s?)sir?(6/2)=0, (17
¢c(r)=¢0+ ¢q COE{LQxX‘FqXU(Y)], (10) which has the solution

where the amplitudeb,, is identical to that in the bulk solu- 1
tion ¢ . This choice is motivated by the fact that, in the s=ttam‘{—sin( 012)y
7

: = *tanhq,y (18
chevron morphology, the amplitude of the order parameter
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and 1 )
S+ 5 (1= x+ ) 647

1 1,

1 Woal= [ 1| 1-x00+ 57

u(y)= Iq—tar( 0/2)In coskiq,y). (19 1
y +V2¢, V26¢+ E(V25<;5)2—V</)LV5¢

We have thus found the order parameter profile following the

initial ansatz(10) _ %(V&ﬁ)z]d?’r. (24)

be(X.Y) = o+ pqcodayx—In[2 coskiqyy) ]} (20)
Since ¢, minimizes F_, we need to find the function

The grain boundary free energy can now be obtained by¢(x,y) that minimizesy. This, in principle, is done via the
inserting the profile solution, Eq20), into Eg.(15) Euler-Lagrange equation.

The boundary conditions foe(x,y) follows from the

2 53 : symmetry of the grain boundaries, and from the requirement
Y73 Pady ~ Sir(6/2). 21 that ¢ approach its bulk value away from the interface:
The order parameter we have calculated describes the an_d’ -0 25)
chevrons very well. The tips of th¥-shape structure are ay" :o_
rounded off, and far away from the interface the bulk phase Y
is restored. The values of the grain-boundary energy are lim¢p— o . (26)
close to those obtained from full numerical minimization of y—

the free energy functiondb), see Ref[2]. The expression
(21) for the grain boundary energy showssa scaling for
small angleg18|.

The width of the grain boundary is the characteristic dis-
tance over which the phase of the order parameter profil
deviates from its bulk value. From the profile of Eg0), we

In the aboven is odd. These conditions impose boundary
conditions ond¢, becausap, is known, andgp= ¢ + 5¢.
The distortion fieldé¢(x,y) will be found based on an
nsatz. Let us evaluate thederivative of the bulk tilted
amellar phase

see that this distance isdl/, which, for small grain bound- b,
ary angles, varies as @,/ in accord with well-established v = —Qy g SIN(0X). (27
results[18]. Yily=o

_ The deficiency of the above approach is that it does noggcase the distortion of the omegas is well localized near
give the cross over from the chevron to the omega morpholg, grain boundary ag=0, it is therefore reasonable to as-
ogy. For this end, another approach will be used in the next \me that has the following form:

section.
Pa(X,y) = ¢L(X,y) + F(y)sin(gx). (28

IV. DESCRIBING THE Q MORPHOLOGY The procedure we adopt is as follows. This ansatzifts

As the tilt angled is increased, the chevron structure is inserted into the free energy density and the integration over
deformed more and more. For large angles the lamellae procandzis carried out. The grain-boundary energy functional
trude along the interface between the grains, creating the then depends on the unknown amplitutigy). This is
Q-shaped structure. In this regime, the polymer profile isminimized by an Euler-Lagrange equation, which results in a
qualitatively altered, and calls for a different approach. ~ fourth order ordinary differential equation fdi(y). The

In this section, we use the bulk-phase solution as a zerotHpoundary conditions, Eqs(25-(26), will translate into
order approximation and determine a correction to it; that igooundary conditions orf(y). The solution of the Euler-
we write Lagrange equation gives, in principle, everything we want to

know about the system: spatial distribution of the order pa-

d(X,¥)= b (X,Y)+ SP(X,Y). (22 rameter, line tension, etc.
We begin by putting our ansat28) into the expression

Of course our ansatz for the chevrons, which was motivate@4) for v. Integration ovex andz and a little simplification
by the smooth variation of phase, which they display, caryields
also be written in this form with a particular choice 6.
Below, we shall choose a differeat based on the observa- _ f”’
. ) : i : y[fl=2
tion that the distortion of the omegas is well localized near
the grain boundary.

After substitution of this form into Eq6) the free energy
can be written as a sum of two parts

1 2 H 1 2 1 2
qugbqfsmqnyrZ 1—x+ ¢>0+Z¢q

. 1
X (1+2sirfq,y)+a;—as|f2+ 5 $qtyf’

= 1 1 1

F[d)] FL+'yA! (23) Xcosqyy_Zf!2+§q2¢qfusinqyy_Eq)Z(ff/r
whereF| =F[ ¢, ] is the bulk free energy, proportional to the

volume andyA is the grain boundary energy proportional to " }(f,,)z] dy (29)
the area of the boundary. To second ordeédn the latter is 4 '
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FIG. 3. Same as Fig. 2, but with= 0.76. Top
plot is for #=20° and the bottom plot is for
6=130°. The system is closer to the ODT than
that of Fig. 2, and the modulations of the lamellar
thickness are more prominent.
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The Euler-Lagrange equation for the functibfy) is ob-  “potential” term depend on the anglé, leading to a more
tained by minimizing Eq(29) complex band structure as function @f Lastly, the differ-
R ential equation is of fourth, not second order. Another useful
[A+Ccog2q,y])f+Bf"+f""=0, (300 observation is that Eq:30) is invariant with respect to the

spatial variable transformation— —y. Therefore, the solu-
tions can be classified as symmetric and asymmetric. As we
will see, the symmetric and asymmetric solutions do not sat-
1 isfy separately the boundary conditions, so a combination of
A(O)=1—y+ ¢g+ §¢§+q§—q§ them will b(_e needeq. o . o N
Since this equation is linear with periodic coefficients, a
5 solution to it will have the Bloch form. This is also known as
B(6)=2qy the Floquet theorerf20]

whereA, B, andC depend on the parameters of the problem
as follows:

c=-342 f(y)=eYg(y), (31

Note that the profile Eq(30) is linear inf because the Whereg(y) is a periodic function with periodl,==/q,,
free energy, Eq(24) is second order idg. Equation(30) is ~ Which is the same periodicity as appears in Bf). Hence,
similar to the Mathieu equation, which is the Safirmger it is appropriate to write it as a Fourier series
equation for an electron in a periodiginusoidal one-
dimensional potential as appears in many solid-state physics *
problems. The parametérplays the role of the electron total gly)= >, a,e?"mwy, (32
energy, andC is the amplitude of the periodic potential. Un- n=-=
like the solid-state case, here the “energy” paramétethe
“kinetic term” parameterB as well as the periodicity of the Substituting the Bloch form Eq31) into Eq.(30), we get a
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a

FIG. 4. Black, white and gray contour plot,
showing A-rich, B-rich, and interfacial regions,
S respectively. Black regions aré rich (¢g>
0.2), white regions areB rich (¢q<—0.2),
while gray regions marks the interfacial region
(—=0.2=¢(=<0.2). Top plot is ford=20° and in
the bottom plot?=130°. The interaction is set to

x=1.

a
x
<
>.

5 10 15 20 25 30 35 40 45

X AXIS
sum of exponential terms. Demanding that the coefficients in g —C/2
front of every exponent vanish, we obtain the following re- = : 2 : Z
. ) a A+B(k+2in +(k+2in +Ca,_1/2a

cursion relation: n+i ( ay)"+( dy) fn-1 (%5)

[A+B(k+2inqy)2+(k+2inqy)4]an for n<0. For very large values o, a,,,/a, should be

much smaller than one, so one can start from sdigel,

1 assuming thaay.{/a 0, and get
+5C(@n-1+8ns1) =0, (33 9 s fan 5 At g

ay —-C/2
ay-1  A+B(k+2iNg,)?+(k+2iNg,)*

(36)
The appearance af, ; anda, is due to the cos@y)
term in Eq.(30). At first glance, it seems that for eveky  then iterating backward gives the ratios{a,/a,_;} for

choosing “initial values” for the coefficientga,} gives a 0<n=<N. Carrying out the same procedure for negatite
valid solution. However, a closer inspection shows that forone arrives at thetopping condition

an arbitraryk vector the series, will diverge. Only a very

specific value ok (eigenvalugwill give a convergent series. 5 14 1
The method by which we find this value is as follows A+BK +K'=— §C

(e.g., see Ref20]). Rewrite the recursion relatior{83) as

a_; a
JR— + —
Q Qo

: (37

from which k is deduced, because the ratiag/a, and
_ a_,/ay are already known from Eq$34)—(35). The itera-
a, C/2 i ) S e
tion scheme is to choose an initial guess Koput it in Eq.
(36), and use Eqs(34) and (35) successively for alh#0.
Whenn=0 is reachedk is calculated from Eq37), and put
back in Eq.(36). The process repeats until convergence is
for n>0, and similarly achieved. From the required boundary conditions at infinity,

a, 1 A+B(K+2inqy)%+ (k+2inqy)*+ Cay,,/2a,’
(34
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FIG. 5. As in Fig. 4, but withy=0.76. Top
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only K's such that Ré()<<0 are acceptable, recalling that the
Bloch form (31) contains areXY term.

It can be seen from Eq$34) and (35) that if a certain
value ofk gives a physical converging solution fgr— o,
thenk*, the complex conjugate &, will also be a conver-
gent solution, but with amplitudes® ,. Solutions with—k

and —k* are possible, too, but are discarded because for

them f(y) diverges asy—«. The functions with definite
symmetry include botlk and —k and hence diverge at infin-
ity. Consequently, by dropping thek solution we choose a

\b

2 plot is for #/=20° and the bottom plot is for

6=130°. Comparison with Fig. 4 shows that for
fixed tilt angle 4, the omega structure and the
modulations of the lamellar thickness are more
evident closer to the ODT.

ity to impose all boundary conditions, and forces us to use
only the first and third derivatives df which by the use of
Egs.(7), (25), and(28) are

of B ag
@O_qyﬁbq ( )
i b (40)
3| =—Oyédq-
ay 0 y+q

specific combination of the symmetric and asymmetric func-

tions with respect tg. The functionf is a combination of the
two independent solutions, and since it is real, it must b
equal to

[’

f(y)=e¥ >, a,e®W +cec., vy

n=—ow

=

=

0. (38

A choice ofk such that Ré()<0 ensures that the distur-
bance will decay away far enough from the interface,

In summary, the serie§a,} can be determined from the

Gecursion relationg35) and (34), while the only remaining

unknown is the complex parametag. The functionf(y)
itself depends on this series as well as on the two boundary
conditions. Substitution of Eq38) in the above boundary
conditions fully determines both the phase and magnitude of
a, and therefore sets the complete solution to the problem.

Band gaps and degeneracy

In the usual Schidinger equation for periodic potentials,

y—oo. The use of a linearization scheme leaves us with @ne encounter energetic gaps in the energy spectrum. They
linear ordinary differential equation, so that we lose the abil-occur whenever thk vector crosses the edges of a Brillouin
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FIG. 6. Plot of the equi contour lines corresponding to
$=0.5, with the same conditions as in Figb$t Although the pro-
file shown in Fig. 4 is symmetric with respect to the interchange of
A andB, clearly the leading and trailing edges of the lamellae are 10° -
not identical. 10 Iog10(6) 10

zone. It should be expected that similar phenomenon hap- FIG. 8. In(a) the grain-boundary energy of Fig. 7, is plotted
pens here, too. Indeed, in our case it will happen whenevegs y** against the tilt angle. The curve marked with rectangles is
straight for small angles, depicting perfeet- ° dependence. The
Im(k)=maq,, (41)  curve marked with circles shows a power exponent 2.91bjithe
two line tension are plotted on a log-log plot. The results of Sec. i

. - i show #® scaling, while the omegas show a smaller power exponent.
for some integem. Fork fulfilling (41) there is adegeneracy  possible small numerical errors in our scheme to find the wavevec-

in the two previously found solutions. It can be seen byior k are important for small angleghe leftmost point being at

noticing that if Eq.(41) holds, k andk* differ by 2imq,.  ¢=2°), and this may easily change the line tension exponent from
Therefore, the amplitudefa,} corresponding to the eigen- the expected 3 to 2.91.

valuek* are the same as thoga,_,} corresponding td,

and the two solutions are dependentnifis even, the two o %
solutions are real. One can see this by ugirgd, +2inqy (n glleraina)y N g e2inay—gky N g . e2inay,
being an integgrand noticing that n=—o n=—o
(42)
0.01

Using the right term of Eq42) in the iteration process, we
see thatla,=(a_,)*, andf(y) is real.

In these band gaps there isplitting of the real part ok;
anotherindependent kector appears whose imaginary part
is the same, but which has a different real part. This is clearly
seen in Fig. &), where the band gaps appear to be centered
around 18°, 26°, and 42°. The last gap occurséorl27°.

The two solutions constructed by the Bloch fo(&1) are
obviously independent. It should be noted that the appear-
ance of energy gaps is a mathematical consequence which
does not introduce any singularity into the physical grain-
boundary energy. It is due to our approximative linearization
scheme, and is not expected to occur if nonlinearity would
have been included.

0.008r

0.006

0.004[

0.002f

% 150 180

30 éO Qb 120
0 [deg] V. CHEVRONS AND OMEGA-LIKE PROFILES

FIG. 7. Plot of the grain-boundary energyas function of the e discuss the results obtained by using the analytical
tilt angle 6, for y=0.76.4 ranges from 0 to 180°. The curve marked €igenvalue scheme detailed above. For small anglesll
with rectangles shows the results obtained in Sec. IIl for the cheviilt) the response of the system is weak. Namely, the lamellae
ron morphology, withy= §¢§Q§- The curve with circles shows the gra_dually change the|_r orientation and the profile is well de-
results of Sec. IV. Notice that the two expressions are very similarscribed by the analytical chevron form, EQO). At higher
but at some intermediate values & =50°) there is a crossover tilt angles the polymer chains at the interface are stretched
from the chevron to the omega morphology. Evidently, for large titmuch more than their preferred length. Here, our analytical
angles the omegas cost less energy than the chevron. scheme(Sec. V) gives rise to profile shape quite different
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Eq. (20). For large angles{=130°), the omega structure
takes over as is shown in Fig(l8, with large protrusions of

the lamellae at the interface. As is explained below, for large
angles the excessive packing frustration of the chevrons cost
more energy than th@. Chevron and) morphologies are
also shown in Fig. 3 but withy=0.76 much closer to its
critical value of2. As one goes away from thg=0 inter-
face, undulations ot are encountered. There are more of
them as the order-to-disorder transitidi©DT) is ap-
proached, and the omega structure is more evident.

02 s Figures 4 and 5 show the same plots, but with the lines of

o4 Re k s interface enhanced. The regions in white, gray, and black
) ] correspond tap,<—0.2,—0.2< ¢,=<0.2, andp,,>0.2, re-

o spectively. The gray marks the interface betweenXlaedB

6 I | | | | [ l | i ; Lo
rich regions. The equé, lines clearly show the form of the
020 4 0 8 100 120 % 160 180 interface in the chevron and omega morphologies. Notice
0 [deg] that as the ODT is approacheg < 0.76 in Fig. 5, there are
more undulations apparent on top of the bulk lamellar phase.
1.5 I | ' | | | In the chevron regime, thé/B interfacial width remains
b almost uniform, while in the omega regime it varies close to
the kink [8]. Figure 4 shows quite clearly that the leading
and trailing edges of the lamellae are quite different when the
angle of the grain boundary is large. This is emphasized in
. Fig. 6, for #=130° andy=1.0, the same conditions of the
e 3q,, .- lower plot of Fig. 4. The lines indicate whegg=0.5. That
S the protrusion at the leading edge is much more pronounced
than at the trailing edge is quite reminiscent of the profiles
seen in experiment3] with one exception; in experiment,
only half of the lamellae look this way, the other half hardly
display protrusions at all; that is, the symmetry between
positive and negative order parameter domains is broken.

Results for the grain-boundary energyg are shown in

o | L 1 L L L Fig. 7. They parameter is arbitrarily fixed to hge=0.76. We
0 5 K| 3% 40 45 ) show the grain-boundary energy calculated analytically by
means of the methods of Sec. Ill and which is valid for small
0 [deg] 6, as well as that calculated in Sec. IV. The grain-boundary

energyytg is an increasing function of the angte In the

FIG. 9. The imaginary and real parts of the wave vedton small angle regime the grain-boundary energy obtained in
expressior(31) are shown in(a), for y=1. The line with rectangles  Sec. IIl scales ag~ ¢°. This scaling is also satisfiedo a
corresponds to the imaginary part. Only the positive imaginary partjood approximationby the solutions obtained in Sec. IV. To
is shown. The line with circles corresponds to the real park.of see this, the same data is plotted in a different fashion in Fig.
Dotted line showsy, , being the characteristic length scale inthe g |n Fig. §a) 71/3 is plotted as function o#, while in Fig.
direction. Notice the splitting of the real part kin the band gaps. 8(b) the data is plotted on a log-log plot. From both parts of
An enlargement of the same curve of the imaginary patk,dbr  rig 8 we conclude that the solution obtained in Sec. IV
17°§0s50° |s.shown in(b). The blacl.< lines indicates integer gives a power law with exponent of 2.91. Accuracy of the
multiples ofq, in order to show theoregloons of degtoeneracy. Three|ottmost point of the solid curve in Fig.(8) is doubtful, due
:’n??lgj%ps firres(?;c:’miea;o,:nd 18°, 26° and 42°. In these 9akg poor convergence of the numerical iteration scheme for

% gem small anglesg<<5°. As the tilt angle grows, deviations from
the 6> behavior become larger, and the omega morphology,
than those obtained in Sec. Il for the chevron. with its lower energy, appears gradually.

Figure 2 shows contour plots of the order parameter pro- For intermediate and large angles, our results are sup-
file ¢o(X,y). We have taken the average of the order paramported by a full numerical solution of this problei®]. Pre-
eter, ¢y, to be zero. The gray levels indicate the magnitudesumably, for small angles there is agreement too. This needs
of the order parameter: black regions corresponding to théo be further checked since in Rg2] the smallest angle was
maximum values ofp, (rich in A polymep, while white to  #=28°. Note that in contrast to the full numerical solution in
its minimum valug(rich in B polymep. The interaction is set which the order parameter profile was obtained via a func-
to xy=1. In Fig. 2a), the chevron morphology is representedtional minimization, here we employed numerical means
using the results of Sec. IV, with tilt angle=20°. The plot  only to obtain the value of the eigenvalkewhile the profile
is identical when using the expressions of Sec. lll. A smoothequation was solved analytically.
changeover between the two lamellar phases is observed. In Fig. 9 we show the vectors found by the use of the
The chevron solution follows nicely the analytical form of iteration scheme, as a function of tilt anghe with y=1

Im k
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fixed. Outside of the band-gagsandk* are valid solutions, tion from the bulk lamellae was found, and gave rise to the
so for clarity only thek with Im(k)>0 is shown. Notice that protrusion characterizing the omega morphology. The sym-
Re() is always negative. The band gaps are clearly seen ometry breaking of this phase was not obtained.
this graph as regions where Refpave two distinct values We were able to calculate grain-boundary energies and to
(hollow circles. A check on the imaginary part ¢fin these  determine that they scale as the cube of the af@Eg] for
regions reveals that it is an integer multipleaf. small angles. As the tilt angle grows into the intermediate
Our results agree well with experiment with the exceptionregime, the profiles deviate continuously from the chevron
that we do not obtain the symmetry-breaking transition of theshape. As the angle approaches 180°, the energy must go to
omega morpholog}8]. To do so, one must add to an ansatzzero because the grain boundary vanishes at that angle. This
for the order parameter at least a term which variesggg,2 does not occur in our analytic derivation, since, for such

in addition to the fundamental term varying . large angles, the linearization assumption is no longer valid.
Interesting extensions of the present paper would describe
VI. CONCLUDING REMARKS interfaces of two perpendicular lamellar phasss-calledT

junctions, interfaces between modulated phases of other

We have used a simple Ginzburg-Landau free energgymmetries, and the inclusion of a twist instead of a tilt
functional to investigate the profiles between lamellar phasegp1, 22
of diblock copolymer. Our analytic results give good quali-
tative agreement with experiment in the weak segregation ACKNOWLEDGMENTS
regime, and with full numerical solution of the same free
energy model. The observed chevron morphology develops We benefited from discussions with Y. Cohen, S. Gido, R.
gradually into an omega morphology for intermediate tilt Netz, P. Rosenau, M. Schwartz, and E. Thomas. Partial sup-
angles. For small angles, the use of a periodic order paranport from the U.S.-Israel Binational Foundati@®.S.F) un-
eter with constant amplitude but varying wavevector sufficesler Grant No. 98-00429, the National Science Foundation
to describe the order parameter profile. This is well describednder Grant No. DMR 9876864, and the Israel Science
by the chevron morphology. For intermediate angles thd-oundation founded by the Israel Academy of Sciences and
change of the profile at the interface deviates significantlyjHumanities-Centers of Excellence Program is gratefully ac-
from the bulk, and requires a different treatment. The deviaknowledged.
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