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Defects in lamellar diblock copolymers: Chevron- andV-shaped tilt boundaries
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The lamellar phase in diblock copolymer systems appears as a result of a competition between molecular
and entropic forces, which selects a preferred periodicity of the lamellae. Grain boundaries are formed when
two grains of different orientations meet. We investigate the case where the lamellae meet symmetrically with
respect to the interface. The form of the interface strongly depends on the angle,u, between the normals of the
grains. When this angle is small, the lamellae transform smoothly from one orientation to the other, creating
the chevron morphology. Asu increases, a gradual transition is observed to an omega morphology character-
ized by a protrusion of the lamellae along the interface between the two phases. We present a theoretical
approach to find these tilt boundaries in two-dimensional systems, based on a Ginzburg-Landau expansion of
the free energy, which describes the appearance of lamellae. Close to the tips at which lamellae from different
grains meet, these lamellae are distorted. To find this distortion for small angles, we use a phase variation
ansatz in which one assumes that the wave vector of the bulk lamellar phase depends on the distance from the
interface. Minimization of the free energy gives an expression for the order parameterf(x,y). The results
describe the chevron morphology very well. For larger angles, a different approach is used. We linearizef
around its bulk valuefL and expand the free energy to second order in their difference. Minimization of the
free energy results in a linear fourth-order differential equation for the distortion field, with proper constraints,
similar to the Mathieu equation. The calculated monomer profile and line tension agree qualitatively with
transmission electron microscope experiments, and with full numerical solution of the same problem.

PACS number~s!: 61.25.Hq, 83.70.Hq, 61.41.1e, 02.30.Jr
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I. INTRODUCTION

The lamellar phase is one of the possible phases w
spatial modulations that can be found in a wide variety
physical and chemical systems. These include diblock
polymer melts, mixtures of diblock and homopolyme
aqueous solutions of lipids or surfactants, Langmuir mo
layers, and magnetic garnet films@1#. Modulated phases ar
the result of a competition between forces, one of wh
prefers ordering characterized by a nonzero wavenum
while the other prefers a homogeneous~disordered! state.
Below we shall employ the language appropriate to blo
copolymers, but our work applies equally to other system

We consider diblock copolymer melts in which the tw
polymer blocks are incompatible. This incompatibility
characterized by a positive Flory parameterx. Because of the
covalent chemical bond between theA and B blocks, the
system cannot undergo a true macrophase separation. In
it undergoes amicrophase separationcharacterized byA-
and B-rich domains of a finite size. Various modulate
phases such as lamellar, hexagonal, and cubic are obse
@2–7# depending upon thex parameter as well as on th
relative lengths ofA and B blocks. In most cases, thex
parameter depends inversely on the temperature. Hence
lamellar and other modulated phases will not be stable
high temperatures and the polymer melt will be in a dis
dered state.

The equilibrium behavior of diblock copolymers in th
bulk is by now well understood@5–7#. Single domain bulk
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phases, however, are rarely observed in experiments bec
it is extremely difficult to completely anneal defects. In mo
cases, due to very slow dynamics and energy barriers,
microstructural ordering is limited to finite-size domains~or
grains! separated by grain boundaries. These defects are
common to block copolymer systems and are readily
served in experiments@3,4#.

Because these domain boundaries and defects ar
abundant in polymer melts, it is of interest to study th
energetics and other characteristics. In this paper, we con
trate on the relatively simple situation of domain boundar
in lamellar phases in which there is no twist between the t
grains, only a tilt, as is shown schematically in Fig. 1~a!. The
system is translationally invariant along thez direction and
can be described by itsx-y cross section only, reducing it to
an effective two-dimensional system. As can be seen in
1~a!, the distance between lamellae along the grain bound
dx is larger than the lamellae spacing in bulkd, by a factor of
1/cos(u/2). This causes an increase in the local free ene
density related to the grain boundary.

The experiments of Gido and Thomas@3# and Hashimoto
and coworkers@4# show that the response of the system
this increase in free energy depends strongly on the tilt an
u between the grains. The so-calledchevronmorphology@3#
occurs when the angle is small. In such a situation, lame
transform smoothly from one orientation to the other, cre
ing V-shaped tips. The rounding of these tips reduces
interfacial area between lamellae at the expense of introd
ing a curvature energy. For block copolymers the pro
2848 ©2000 The American Physical Society
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shape at the tip is determined by the local relaxation of
stretched chains. The chevron morphology is shown~sche-
matically! in Fig. 1~b! and again in Fig. 2~a!. A gradual
transition to anomega-shapedtip is observed whenu is in-
creased, as seen in Fig. 2~b!. This morphology is character
ized by protrusions of the lamellae along the interface
tween the two phases. The protrusions can be understoo
a different attempt of the system to reduce the cost of
boundary, while still complying with the geometrical co
straints. Essentially, the system tries to create a lamella s
lar to those in the bulk but that is aligned along the interfa
itself.

The basic phenomenology of these grain boundaries
presented by Gido and Thomas@3#. Netz, Andelman, and
Schick @2# then considered the phenomenon employing
Ginzburg-Landau free energy, which was minimized nume
cally, and obtained both the chevron and omega morph
gies. Matsen@8# considered the block-copolymer system e
plicitly and employed self-consistent field theory. Not on
did this produce the chevron and omega morphologies
small and intermediate angles, respectively, but also
symmetry-broken omega for large enough angles. In the

FIG. 1. A schematic drawing of the geometry of the system
~a! the tilt angleu between the normal of the two lamellar phases
shown. The bulk periodicityd is smaller than the local periodicity
dx5d/cos(u/2) at the interface,y50. In ~b! a schematic drawing o
a chevron morphology with roundedV-shaped tips is shown.
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ter case, the response~and shape! of lamellae composed o
one of the blocks differs from that of the other. Su
symmetry-broken boundaries were indeed observed by G
and Thomas@3#.

In Sec. II, we adopt the Ginzburg-Landau free ener
functional employed earlier@2#. The advantages to using th
functional are its simplicity and generality, while retainin
the essential ingredients that capture the behavior of the
tem. In contrast to the complete minimization of the fr
energy functional, which requires a numerical calculatio
we shall employ here a simple ansatz for the form of
grain boundary in order to obtain analytic results. Recen
similar methods were employed to obtain analytically t
interface between the lamellar and disordered phases
diblock copolymers@9#. Our motivation is to demonstrat
that the essence of these interesting morphologies does
depend on strong segregation conditions or a large numbe
Fourier components, and so should be observable in all
tems with modulated phases.

The chevron structure is obtained by using the bulk lam
lar phase solution with a constant amplitude, but with va
ing wave vector. Minimizing the free energy subject to t
proper geometrical constraints, we find an equation for
wave vector. This is done in Sec. III. Beyond the chevr
regime~i.e., for large interdomain angles!, this approach will
not be adequate, because the amplitude of modulations
have to vary as well. To this end, we expandf(x,y) around
the two bulk lamellar phases, giving rise to an equation fo
small distortion field. Close to the interface, the sharp tips
the lamellar phase@see Fig. 1~a!# are smoothed out and th
protrusion characteristic of the omega morphology appe
Far away from the interface, the disturbance vanishes and
bulk lamellar phase is recovered, as is shown in Sec. IV
Sec. IV A, we discuss some features of our method,
analogy to, and the differences from the Schro¨dinger equa-
tion for electrons in a one-dimensional periodic potent
~known also as the Mathieu equation!. In Sec. V, we report
our results, and discuss them in Sec. VI.

II. MODEL

An order parameterc(R)5@cA(R)2cB(R)# is defined
as the difference is localA andB monomer volume fractions
We employ the following Ginzburg-Landau free ener
functional of this order parameter

F@c#

kBT
5E Fc1

2
c21

c2

12
c41

c3

2
~¹c!21

c4

2
~¹2c!2Gd3R,

~1!

wherekB is the Boltzmann constant, andT is the tempera-
ture. With c1 and c2 positive, the first two terms favor a
uniform, disordered state. The coefficient of the third ter
c3 , is negative and therefore induces the system to a mo
lated, ordered phase. The Laplacian squared term ens
that these modulations are not too large. This type of f
energy functional~and some variants of it! has been success
fully used to describe the bulk phase of diblock copolym
@5,6#, amphiphilic systems@10#, Langmuir films @11#, and
magnetic~garnet! films @12#.



es

-

2850 PRE 61YOAV TSORI, DAVID ANDELMAN, AND M. SCHICK
FIG. 2. Black and white contour plot of the
order parameter profilefV, as obtained from the
profile solutions of Sec. IV. The grayness denot
the value of the order parameter (A/B relative
volume fraction!. Black domains areA rich,
white domains areB-rich. The value of the inter-
action parameter isx51 and the average differ
ence of monomer volume fractions isf050. For
the small angle (u520°, top plot! chevron mor-
phology appears, while foru5130° ~bottom plot!
omega takes over.
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Assuming an infinite system that is nonuniform on
along one direction, one can minimize this free ene
to obtain a solution describing the lamellar pha
cL}cos(Q•R). One readily finds that the transition to th
lamellar phase first occurs at a wave numberQ5
(2c3/2c4)1/2. It is convenient, therefore, to introduce th
dimensionless position vectorr via

r[S 2c3

c4
D 1/2

R ~2!

and further to rescale the order parameter

f~r ![S c2c4

c3
2 D 1/2

c~R! ~3!

and the free energy

F@f#[S 2c2
2c4

c3
5 D 1/2F @c#

kBT
~4!

so that the dimensionless and rescaled free energy funct
takes the form
y

nal

F@f#5E Fc1c4

2c3
2 f21

1

12
f42

1

2
~¹f!21

1

2
~¹2f!2Gd3r .

~5!

The coefficientc1 changes sign as the interaction streng
increases or temperature decreases. In a polymer systemc1

can be shown to be proportional to 12x f /x f* , wherex f is
the Flory parameter@13#, andx f* the value of this paramete
at which the coefficientc1 passes through zero@14#.

To make contact with Ref.@2#, we set the ratio of coeffi-
cientsc1c4 /c3

2 to be equal to 12x. For this particular choice
of coefficients, the free energy functional becomes

F@f#5E F1

2
~12x!f21

1

12
f42

1

2
~¹f!21

1

2
~¹2f!2Gd3r

~6!

The bulk lamellar phase, with wave vector in thex direc-
tion, is described by

fL5f01fq cos~qx! ~7!

with f0 the average volume fraction differenc
q[Q(2c3 /c4)21/251/& the optimal wave vector, and
fq52Ax2f0

223/4 the amplitude of the variations@9#. It
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can be shown@5–7# that this lamellar phase is the therm
dynamical stable phase in a range of the system parame
f0 and x. For block copolymers,f0 is proportional to the
difference in the average volume fractions ofA andB mono-
mers.

Upon substitution offL into Eq. ~6!, one obtains the free
energy per unit volume of the bulk lamellar phase

F@fL#

V
5

1

2 F ~12x!f0
21

f0
4

6 G2
1

2 Fx2
3

4
2f0

2G2

, ~8!

whereV5*d3r is the rescaled, dimensionless, volume of t
system.

Some remarks are now in order. First, as was mentio
in the introduction, the free energy~6! can have other non
lamellar modulated solutions@2,15#. We will not consider
them in this paper since our aim is to study defects ins
lamellar phases. Second, the validity of a single-optim
mode can be justified in the weak segregation limit~i.e., near
a critical point or a weak first-order transition!. Far from the
critical point, higher harmonics are needed to describe
optimal lamellar phase@2,8#. In addition, very close to the
critical point corrections due to fluctuations are importa
@16,17#.

We now turn to the tilt-boundary problem, where tw
lamellar domains, both lying parallel to thex-y plane, meet
with an angleu between their normals@see Fig. 1~a!#. Thex
axis is along the line interface between the two lamellar
mains. They axis is perpendicular to it. In these variables t
lamellae in the two grains are described by

fL5f01fq cos~qxx7qyy!, ~9!

whereqx[q cos(u/2) andqy[q sin(u/2) are the component
of the optimal wave vector,q5(qx ,qy). Their inverses pro-
vide characteristic length scales in thex and y directions,
respectively. They,0 half plane is a reflection through th
x axis of they.0 half plane, so it is sufficient to conside
only the upper half plane,y.0. The system is periodic alon
the x axis, with wavelengthdx52p/qx52p/@q cos(u/2)#.

III. DESCRIPTION OF THE CHEVRON MORPHOLOGY

For small tilt angles, the lamellae transform smooth
from one orientation to the other, showing the chevron m
phology. We will assume that for small enough tilt angle
the only change of the functional form of the order parame
is through the wave vector@18,19#. The aim of this section is
to show that, in the chevron regime, the behavior of
system close to the interface is, in essence, quite simila
that far from the interface. The diagonal lines in Fig. 1~a!
show each bulk lamellar phase in its respective half pla
and the sharp tips which result from their intersection. Th
sharp tips will be smoothed out in the chevron morpholo
Fig. 1~b!.

We use the following ansatz for the order parameter

fc~r !5f01fq cos@qxx1qxu~y!#, ~10!

where the amplitudefq is identical to that in the bulk solu
tion fL . This choice is motivated by the fact that, in th
chevron morphology, the amplitude of the order parame
rs:
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appear to be rather constant, while it is the phase wh
changes smoothly from one grain to the other. The lo
direction and magnitude of the wave vector depends on
distancey from thex axis. Far away from the interface, th
lamellae must return to their bulk orientation, implying

lim
y→6`

u~y!57~qy /qx!y57tan~u/2!y ~11!

and at the interface, the continuous functionu(y) satisfies

lim
y→0

u~y!50. ~12!

Symmetry with respect to inversion across thex axis
means that

]fc

]y U
y50

52fqqxu8~0!sin~qxx!50, ~13!

which implies

u8~0!50. ~14!

We insert the form~10! into the free energy functiona
~6!. The integration overx and z can be carried out. The
remaining integration overy shows thatF@fc# is propor-
tional to the dimensionless, rescaled, volumeV of the sys-
tem. This reflects the fact that the order parameter pro
approaches its bulk value far from the grain boundary. S
traction of the bulk free energy produces a functional for
free energy per unit area of the grain boundary. After sim
manipulation, one finds the expression

g[
F@fc#2F@fL#

A

5
fq

2

4
sin2~u/2!

3E
0

`

dyF S ds

dyD
2

1
sin2~u/2!

2
~12s2!2G , ~15!

where

s~y![2
1

tan~u/2!

du

dy
. ~16!

From the boundary condition, Eq.~11!, one sees that fa
from the grain boundarys attains the value61 and that its
derivative vanishes. It is clear, therefore, that ifs approaches
its limiting value sufficiently quickly, the grain boundar
free energy is finite. This is indeed the case.

The Euler-Lagrange equation, which minimizes the gr
boundary free energy is

d2s

dy2 1s~12s2!sin2~u/2!50, ~17!

which has the solution

s56tanhF 1

&
sin~u/2!yG56tanhqyy ~18!
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and

u~y!57
1

qy
tan~u/2!ln cosh~qyy!. ~19!

We have thus found the order parameter profile following
initial ansatz~10!

fc~x,y!5f01fq cos$qxx2 ln@2 cosh~qyy!#%. ~20!

The grain boundary free energy can now be obtained
inserting the profile solution, Eq.~20!, into Eq. ~15!

g5
2

3
fq

2qy
3 ; sin3~u/2!. ~21!

The order parameter we have calculated describes
chevrons very well. The tips of theV-shape structure ar
rounded off, and far away from the interface the bulk pha
is restored. The values of the grain-boundary energy
close to those obtained from full numerical minimization
the free energy functional~6!, see Ref.@2#. The expression
~21! for the grain boundary energy shows au3 scaling for
small angles@18#.

The width of the grain boundary is the characteristic d
tance over which the phase of the order parameter pro
deviates from its bulk value. From the profile of Eq.~20!, we
see that this distance is 1/qy , which, for small grain bound-
ary angles, varies as 1/u, in accord with well-established
results@18#.

The deficiency of the above approach is that it does
give the cross over from the chevron to the omega morp
ogy. For this end, another approach will be used in the n
section.

IV. DESCRIBING THE V MORPHOLOGY

As the tilt angleu is increased, the chevron structure
deformed more and more. For large angles the lamellae
trude along the interface between the grains, creating
V-shaped structure. In this regime, the polymer profile
qualitatively altered, and calls for a different approach.

In this section, we use the bulk-phase solution as a zer
order approximation and determine a correction to it; tha
we write

f~x,y!5fL~x,y!1df~x,y!. ~22!

Of course our ansatz for the chevrons, which was motiva
by the smooth variation of phase, which they display, c
also be written in this form with a particular choice ofdf.
Below, we shall choose a differentdf based on the observa
tion that the distortion of the omegas is well localized ne
the grain boundary.

After substitution of this form into Eq.~6! the free energy
can be written as a sum of two parts

F@f#5FL1gA, ~23!

whereFL5F@fL# is the bulk free energy, proportional to th
volume andgA is the grain boundary energy proportional
the area of the boundary. To second order indf, the latter is
e
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g@df#5
1

A E H F ~12x!fL1
1

3
fL

3Gdf1
1

2
~12x1fL

2!df2

1¹2fL¹2df1
1

2
~¹2df!22¹fL¹df

2
1

2
~¹df!2J d3r . ~24!

Since fL minimizes FL , we need to find the function
df(x,y) that minimizesg. This, in principle, is done via the
Euler-Lagrange equation.

The boundary conditions forf(x,y) follows from the
symmetry of the grain boundaries, and from the requirem
that f approach its bulk value away from the interface:

]nf

]ynU
y50

50 ~25!

lim
y→`

f→fL . ~26!

In the above,n is odd. These conditions impose bounda
conditions ondf, becausefL is known, andf5fL1df.

The distortion fielddf(x,y) will be found based on an
ansatz. Let us evaluate they-derivative of the bulk tilted
lamellar phase

]fL

]y U
y50

52qyfq sin~qxx!. ~27!

Because the distortion of the omegas is well localized n
the grain boundary aty50, it is therefore reasonable to a
sume thatf has the following form:

fV~x,y!5fL~x,y!1 f ~y!sin~qxx!. ~28!

The procedure we adopt is as follows. This ansatz forf is
inserted into the free energy density and the integration o
x andz is carried out. The grain-boundary energy function
g then depends on the unknown amplitudef (y). This is
minimized by an Euler-Lagrange equation, which results i
fourth order ordinary differential equation forf (y). The
boundary conditions, Eqs.~25!–~26!, will translate into
boundary conditions onf (y). The solution of the Euler-
Lagrange equation gives, in principle, everything we wan
know about the system: spatial distribution of the order
rameter, line tension, etc.

We begin by putting our ansatz~28! into the expression
~24! for g. Integration overx andz and a little simplification
yields

g@ f #52E
0

` H 1

4
qy

2fqf sinqyy1
1

4 F12x1f0
21

1

4
fq

2

3~112 sin2 qyy!1qx
42qx

2G f 21
1

2
fqqyf 8

3cosqyy2
1

4
f 821

1

2
q2fqf 9 sinqyy2

1

2
qx

2f f 9

1
1

4
~ f 9!2J dy. ~29!
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FIG. 3. Same as Fig. 2, but withx50.76. Top
plot is for u520° and the bottom plot is for
u5130°. The system is closer to the ODT tha
that of Fig. 2, and the modulations of the lamell
thickness are more prominent.
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The Euler-Lagrange equation for the functionf (y) is ob-
tained by minimizing Eq.~29!

@A1C cos~2qyy# ! f 1B f91 f 9950, ~30!

whereA, B, andC depend on the parameters of the proble
as follows:

A~u!512x1f0
21

1

2
fq

21qx
42qx

2

B~u!52qy
2

C52
1

4
fq

2.

Note that the profile Eq.~30! is linear in f because the
free energy, Eq.~24! is second order indf. Equation~30! is
similar to the Mathieu equation, which is the Schro¨dinger
equation for an electron in a periodic~sinusoidal! one-
dimensional potential as appears in many solid-state phy
problems. The parameterA plays the role of the electron tota
energy, andC is the amplitude of the periodic potential. Un
like the solid-state case, here the ‘‘energy’’ parameterA, the
‘‘kinetic term’’ parameterB as well as the periodicity of the
cs

‘‘potential’’ term depend on the angleu, leading to a more
complex band structure as function ofu. Lastly, the differ-
ential equation is of fourth, not second order. Another use
observation is that Eq.~30! is invariant with respect to the
spatial variable transformationy→2y. Therefore, the solu-
tions can be classified as symmetric and asymmetric. As
will see, the symmetric and asymmetric solutions do not s
isfy separately the boundary conditions, so a combination
them will be needed.

Since this equation is linear with periodic coefficients
solution to it will have the Bloch form. This is also known a
the Floquet theorem@20#

f ~y!5ekyg~y!, ~31!

where g(y) is a periodic function with perioddy5p/qy ,
which is the same periodicity as appears in Eq.~30!. Hence,
it is appropriate to write it as a Fourier series

g~y!5 (
n52`

`

ane2inqyy. ~32!

Substituting the Bloch form Eq.~31! into Eq. ~30!, we get a
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FIG. 4. Black, white and gray contour plo
showing A-rich, B-rich, and interfacial regions
respectively. Black regions areA rich (fV.
0.2), white regions areB rich (fV,20.2),
while gray regions marks the interfacial region
(20.2<fV<0.2). Top plot is foru520° and in
the bottom plotu5130°. The interaction is set to
x51.
s
e
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ity,
sum of exponential terms. Demanding that the coefficient
front of every exponent vanish, we obtain the following r
cursion relation:

@A1B~k12inqy!21~k12inqy!4#an

1
1

2
C~an211an11!50. ~33!

The appearance ofan21 andan11 is due to the cos(2qyy)
term in Eq.~30!. At first glance, it seems that for everyk,
choosing ‘‘initial values’’ for the coefficients$an% gives a
valid solution. However, a closer inspection shows that
an arbitraryk vector the seriesan will diverge. Only a very
specific value ofk ~eigenvalue! will give a convergent series

The method by which we find this value is as follow
~e.g., see Ref.@20#!. Rewrite the recursion relations~33! as

an

an21
5

2C/2

A1B~k12inqy!21~k12inqy!41Can11 /2an
,

~34!

for n.0, and similarly
in
-

r

an

an11
5

2C/2

A1B~k12inqy!21~k12inqy!41Can21 /2an
~35!

for n,0. For very large values ofn, an11 /an should be
much smaller than one, so one can start from someN@1,
assuming thataN11 /aN →0, and get

aN

aN21
'

2C/2

A1B~k12iNqy!21~k12iNqy!4 ~36!

then iterating backward gives the ratios$an /an21% for
0,n<N. Carrying out the same procedure for negativen’s
one arrives at thestopping condition:

A1Bk21k452
1

2
CS a21

a0
1

a1

a0
D , ~37!

from which k is deduced, because the ratiosa1 /a0 and
a21 /a0 are already known from Eqs.~34!–~35!. The itera-
tion scheme is to choose an initial guess fork, put it in Eq.
~36!, and use Eqs.~34! and ~35! successively for allnÞ0.
Whenn50 is reached,k is calculated from Eq.~37!, and put
back in Eq.~36!. The process repeats until convergence
achieved. From the required boundary conditions at infin
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FIG. 5. As in Fig. 4, but withx50.76. Top
plot is for u520° and the bottom plot is for
u5130°. Comparison with Fig. 4 shows that fo
fixed tilt angle u, the omega structure and th
modulations of the lamellar thickness are mo
evident closer to the ODT.
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only k’s such that Re(k),0 are acceptable, recalling that th
Bloch form ~31! contains aneky term.

It can be seen from Eqs.~34! and ~35! that if a certain
value of k gives a physical converging solution fory→`,
thenk* , the complex conjugate ofk, will also be a conver-
gent solution, but with amplitudesa2n* . Solutions with2k
and 2k* are possible, too, but are discarded because
them f (y) diverges asy→`. The functions with definite
symmetry include bothk and2k and hence diverge at infin
ity. Consequently, by dropping the2k solution we choose a
specific combination of the symmetric and asymmetric fu
tions with respect toy. The functionf is a combination of the
two independent solutions, and since it is real, it must
equal to

f ~y!5eky (
n52`

`

ane2inqyy 1 c.c., y>0. ~38!

A choice ofk such that Re(k),0 ensures that the distur
bance will decay away far enough from the interfac
y→`. The use of a linearization scheme leaves us wit
linear ordinary differential equation, so that we lose the a
or

-

e

,
a
l-

ity to impose all boundary conditions, and forces us to u
only the first and third derivatives off, which by the use of
Eqs.~7!, ~25!, and~28! are

] f

]yU
0

5qyfq ~39!

]3f

]y3U
0

52qy
3fq . ~40!

In summary, the series$an% can be determined from th
recursion relations~35! and ~34!, while the only remaining
unknown is the complex parametera0 . The function f (y)
itself depends on this series as well as on the two bound
conditions. Substitution of Eq.~38! in the above boundary
conditions fully determines both the phase and magnitude
a0 and therefore sets the complete solution to the proble

Band gaps and degeneracy

In the usual Schro¨dinger equation for periodic potentials
one encounter energetic gaps in the energy spectrum. T
occur whenever thek vector crosses the edges of a Brillou
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zone. It should be expected that similar phenomenon h
pens here, too. Indeed, in our case it will happen whene

Im~k!5mqy , ~41!

for some integerm. Fork fulfilling ~41! there is adegeneracy
in the two previously found solutions. It can be seen
noticing that if Eq.~41! holds, k and k* differ by 2imqy .
Therefore, the amplitudes$an% corresponding to the eigen
value k* are the same as those$an21% corresponding tok,
and the two solutions are dependent. Ifm is even, the two
solutions are real. One can see this by usingk5kr12inqy ~n
being an integer! and noticing that

FIG. 6. Plot of the equi-f contour lines corresponding t
f50.5, with the same conditions as in Fig. 4~b!. Although the pro-
file shown in Fig. 4 is symmetric with respect to the interchange
A andB, clearly the leading and trailing edges of the lamellae
not identical.

FIG. 7. Plot of the grain-boundary energyg as function of the
tilt angleu, for x50.76.u ranges from 0 to 180°. The curve marke
with rectangles shows the results obtained in Sec. III for the ch
ron morphology, withg5

2
3 fq

2qy
3. The curve with circles shows th

results of Sec. IV. Notice that the two expressions are very sim
but at some intermediate values ofu (u.50°) there is a crossove
from the chevron to the omega morphology. Evidently, for large
angles the omegas cost less energy than the chevron.
p-
r

y

e~kr12inqy!y (
n52`

`

ane2inqyy5ekry (
n52`

`

an21e2inqyy.

~42!

Using the right term of Eq.~42! in the iteration process, we
see thatan5(a2n)* , and f (y) is real.

In these band gaps there is asplitting of the real part ofk;
anotherindependent kvector appears whose imaginary pa
is the same, but which has a different real part. This is clea
seen in Fig. 8~a!, where the band gaps appear to be cente
around 18°, 26°, and 42°. The last gap occurs foru.127°.

The two solutions constructed by the Bloch form~31! are
obviously independent. It should be noted that the appe
ance of energy gaps is a mathematical consequence w
does not introduce any singularity into the physical gra
boundary energy. It is due to our approximative linearizat
scheme, and is not expected to occur if nonlinearity wo
have been included.

V. CHEVRONS AND OMEGA-LIKE PROFILES

We discuss the results obtained by using the analyt
eigenvalue scheme detailed above. For small angles~small
tilt ! the response of the system is weak. Namely, the lame
gradually change their orientation and the profile is well d
scribed by the analytical chevron form, Eq.~20!. At higher
tilt angles the polymer chains at the interface are stretc
much more than their preferred length. Here, our analyt
scheme~Sec. IV! gives rise to profile shape quite differen

f
e

v-

r,

t

FIG. 8. In ~a! the grain-boundary energyg of Fig. 7, is plotted
asg1/3 against the tilt angleu. The curve marked with rectangles
straight for small angles, depicting perfectg;u3 dependence. The
curve marked with circles shows a power exponent 2.91. In~b! the
two line tension are plotted on a log-log plot. The results of Sec.
showu3 scaling, while the omegas show a smaller power expon
Possible small numerical errors in our scheme to find the wave
tor k are important for small angles~the leftmost point being at
u52°!, and this may easily change the line tension exponent fr
the expected 3 to 2.91.
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than those obtained in Sec. III for the chevron.
Figure 2 shows contour plots of the order parameter p

file fV(x,y). We have taken the average of the order para
eter,f0 , to be zero. The gray levels indicate the magnitu
of the order parameter: black regions corresponding to
maximum values offV ~rich in A polymer!, while white to
its minimum value~rich in B polymer!. The interaction is se
to x51. In Fig. 2~a!, the chevron morphology is represent
using the results of Sec. IV, with tilt angleu520°. The plot
is identical when using the expressions of Sec. III. A smo
changeover between the two lamellar phases is obser
The chevron solution follows nicely the analytical form

FIG. 9. The imaginary and real parts of the wave vectork in
expression~31! are shown in~a!, for x51. The line with rectangles
corresponds to the imaginary part. Only the positive imaginary p
is shown. The line with circles corresponds to the real part ok.
Dotted line showsqy , being the characteristic length scale in they
direction. Notice the splitting of the real part ofk in the band gaps.
An enlargement of the same curve of the imaginary part ofk, for
17°<u<50° is shown in ~b!. The black lines indicates intege
multiples ofqy in order to show the regions of degeneracy. Thr
band gaps are shown, around 18°, 26°, and 42°. In these
Im(k)5imqy for some integerm.
-
-

e
e

h
d.

Eq. ~20!. For large angles (u5130°), the omega structur
takes over as is shown in Fig. 2~b!, with large protrusions of
the lamellae at the interface. As is explained below, for la
angles the excessive packing frustration of the chevrons
more energy than theV. Chevron andV morphologies are
also shown in Fig. 3 but withx50.76 much closer to its
critical value of 3

4. As one goes away from they50 inter-
face, undulations offV are encountered. There are more
them as the order-to-disorder transition~ODT! is ap-
proached, and the omega structure is more evident.

Figures 4 and 5 show the same plots, but with the lines
interface enhanced. The regions in white, gray, and bl
correspond tofV,20.2,20.2<fV<0.2, andfV.0.2, re-
spectively. The gray marks the interface between theA andB
rich regions. The equi-fV lines clearly show the form of the
interface in the chevron and omega morphologies. No
that as the ODT is approached (x50.76 in Fig. 5!, there are
more undulations apparent on top of the bulk lamellar pha
In the chevron regime, theA/B interfacial width remains
almost uniform, while in the omega regime it varies close
the kink @8#. Figure 4 shows quite clearly that the leadin
and trailing edges of the lamellae are quite different when
angle of the grain boundary is large. This is emphasized
Fig. 6, for u5130° andx51.0, the same conditions of th
lower plot of Fig. 4. The lines indicate wheref50.5. That
the protrusion at the leading edge is much more pronoun
than at the trailing edge is quite reminiscent of the profi
seen in experiment@3# with one exception; in experiment
only half of the lamellae look this way, the other half hard
display protrusions at all; that is, the symmetry betwe
positive and negative order parameter domains is broken

Results for the grain-boundary energygTB are shown in
Fig. 7. Thex parameter is arbitrarily fixed to bex50.76. We
show the grain-boundary energy calculated analytically
means of the methods of Sec. III and which is valid for sm
u, as well as that calculated in Sec. IV. The grain-bound
energygTB is an increasing function of the angleu. In the
small angle regime the grain-boundary energy obtained
Sec. III scales asg;u3. This scaling is also satisfied~to a
good approximation! by the solutions obtained in Sec. IV. T
see this, the same data is plotted in a different fashion in
8. In Fig. 8~a! g1/3 is plotted as function ofu, while in Fig.
8~b! the data is plotted on a log-log plot. From both parts
Fig. 8 we conclude that the solution obtained in Sec.
gives a power law with exponent of 2.91. Accuracy of t
leftmost point of the solid curve in Fig. 8~b! is doubtful, due
to poor convergence of the numerical iteration scheme
small angles,u,5°. As the tilt angle grows, deviations from
the u3 behavior become larger, and the omega morpholo
with its lower energy, appears gradually.

For intermediate and large angles, our results are s
ported by a full numerical solution of this problem@2#. Pre-
sumably, for small angles there is agreement too. This ne
to be further checked since in Ref.@2# the smallest angle wa
u528°. Note that in contrast to the full numerical solution
which the order parameter profile was obtained via a fu
tional minimization, here we employed numerical mea
only to obtain the value of the eigenvaluek, while the profile
equation was solved analytically.

In Fig. 9 we show thek vectors found by the use of th
iteration scheme, as a function of tilt angleu, with x51
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fixed. Outside of the band-gaps,k andk* are valid solutions,
so for clarity only thek with Im(k).0 is shown. Notice that
Re(k) is always negative. The band gaps are clearly seen
this graph as regions where Re(k) have two distinct values
~hollow circles!. A check on the imaginary part ofk in these
regions reveals that it is an integer multiple ofqy .

Our results agree well with experiment with the except
that we do not obtain the symmetry-breaking transition of
omega morphology@8#. To do so, one must add to an ansa
for the order parameter at least a term which varies as 2qxx,
in addition to the fundamental term varying asqxx.

VI. CONCLUDING REMARKS

We have used a simple Ginzburg-Landau free ene
functional to investigate the profiles between lamellar pha
of diblock copolymer. Our analytic results give good qua
tative agreement with experiment in the weak segrega
regime, and with full numerical solution of the same fr
energy model. The observed chevron morphology deve
gradually into an omega morphology for intermediate
angles. For small angles, the use of a periodic order par
eter with constant amplitude but varying wavevector suffi
to describe the order parameter profile. This is well descri
by the chevron morphology. For intermediate angles
change of the profile at the interface deviates significan
from the bulk, and requires a different treatment. The dev
to

,

hy
on

e

y
s

n

ps
t

-
s
d
e
y
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tion from the bulk lamellae was found, and gave rise to
protrusion characterizing the omega morphology. The sy
metry breaking of this phase was not obtained.

We were able to calculate grain-boundary energies an
determine that they scale as the cube of the angle@2,18# for
small angles. As the tilt angle grows into the intermedia
regime, the profiles deviate continuously from the chevr
shape. As the angle approaches 180°, the energy must g
zero because the grain boundary vanishes at that angle.
does not occur in our analytic derivation, since, for su
large angles, the linearization assumption is no longer va

Interesting extensions of the present paper would desc
interfaces of two perpendicular lamellar phases~so-calledT
junctions!, interfaces between modulated phases of ot
symmetries, and the inclusion of a twist instead of a
@21,22#.
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