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We consider a membrane that adheres both weakly and strongly to a geometrically structured substrate.
The interaction potential is assumed to be local, via the Deryagin approximation, and harmonic.
Consequently, we can analytically describe a variety of different geometries; such as, smooth substrates
interrupted by an isolated cylindrical pit, a single elongated trench, or a periodic array of trenches. We
present more general expressions for the adhesion energy and membrane configuration in Fourier space
and find that, compared with planar surfaces, the adhesion energy decreases. We also highlight the possibility
of overshoots occurring in the membrane profile and look at its degree of penetration into surface indentations.

1. Introduction

The statistical mechanics of membranes is an important
branch of soft-condensed matter physics, not least because
of its application to biological systems. Examples of
membranes that can be studied experimentally include
those of liposomes or vesicles, microemulsions, lamellar
liquid crystals, as well as biological cells, such as red blood
cells.1 Of great importance is a detailed understanding of
the adhesion between two membranes or between a
membrane and a substrate. This adhesion occurs ubiq-
uitously in nature, with vesicle adhesion playing a
dominant role in endo- and exocytosis,2 which is the
communication of a cell with its immediate environment.
Efficient drug delivery is dependent on the adhesion
between a liposome and the plasma membrane of the
target site,3 while adhesion phenomena are also indis-
pensable to biotechnology with, for example, biosensors
being based on the binding of membranes to substrates.

In this paper we choose to concentrate on the latter, the
adhesion between a membrane and a solid substrate, to
provide theoretical support for recent experiments aimed
at creating new biotechnology. All of this research has
involved the study of adhesion on materials that are not
flat and chemically homogeneous but that have a deliber-
ate chemical or geometrical patterning. As far as we are
aware, there has been no theoretical work describing
membrane adhesion on such structured surfaces. Previous
studies have looked at vesicle adhesion on simple, planar,
chemically homogeneous substrates,4,5 and we hope now
to redress this imbalance.

First of all, we distinguish between weakly and strongly
adhering vesicles or membranes. Weakly adhering giant
vesicles have been studied using reflection interference

contrast microscopy6 and have been found to lie at
distances between 300 and 400 Å from a planar substrate.
Here, van der Waals attractions to the substrate are
mainly counterbalanced by a repulsive entropic Helfrich
force. Strongly adhering or supported membranes,7 how-
ever, sandwich a water or polymer film between them
and the substrate and typically have a much smaller
separation lying at distances between 10 and 40 Å.
Hydration forces are now the dominant repulsive interac-
tion.

Supported membranes provide perhaps the most po-
tential for biotechnological applications. They can be
formed by the spreading of a bilayer over a substrate, by
vesicle fusion taking place at a substrate, or by lipid
monolayer transfer using a Langmuir-Blodgett tech-
nique.7 These membranes are useful because they enable
biofunctionalization of inorganic solids and provide a
means to immobilize proteins (e.g., lipid coupled antigens
and antibodies) with a well-defined orientation and in
nondenaturing conditions.8 The environment thus created
is suitable to investigate protein-membrane coupling and
protein-protein recognition processes. These processes
can be used to design phantom cells that allow study of
the interplay between specific (lock and key) and universal
forces during cell adhesion.7

However, we wish to highlight the role played by
supported membranes in biosensors. They can provide
ultrathin, highly electrically resistant layers on top of a
conducting substrate. If protein receptors are incorporated
into these layers, then one can use electrical or optical
means to detect or “sense” ligand binding to the receptors.
Alternatively, protein ion channels can be embedded in
the membrane, in which case their effect on its perme-
ability endows the membrane with sensor-like properties.9

Proteins included in the membrane often have a
dimension greater than its thickness (which is ∼40 Å)
and so can lift the membrane off the substrate. This effect
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is undesirable and can be prevented by creating water
pockets on the surface of the substrate that then act as
protein “docking” sites. Therefore, one is naturally led to
consider membrane adhesion on geometrically structured
substrates that have been indented in some way. This
structure can be made by a variety of methods, for example,
chemical etching of silicon wafers can lead, due to their
particular crystal structure, to long “V”-shaped channels.10

Alternatively, one can use micelles made from diblock
copolymers to coat any semiconductor wafer. If this is ion
sputtered, then loading of the micelles in advance with an
inorganic compound can provide large etching contrasts.
Using this technique one can pattern a planar substrate
with pits or islands on a nanometer scale.11

Motivated by such experiments, we discuss here a
straightforward theoretical approach that allows the
adhesion energy of a bound membrane to be calculated
for a variety of different geometrical configurations of the
substrate. The techniques used have been strongly
influenced by recent work in wetting phenomena. There
is now quite a substantial literature covering the effect
of geometrical and chemical substrate structure on wetting
films. A general form of Young’s equation has been
derived,12,13 the influence of disorder14 and corrugation15

of the substrate on wetting transitions has been deter-
mined, and the effect of chemical patterning16 on the
shapes of adhering drop has been studied. However, we
use as the inspiration for our approach a systematic
description of the configuration of wetting films on
nonplanar surfaces17-19 in which one can account for the
full nonlocal form of the van der Waals interaction.

There are also many interesting applications involving
the adhesion of membranes on chemically structured
substrates. However, we will not discuss this further here
but return to it again in an accompanying publication.20

To start, we describe the various molecular interactions
included in our model and differentiate between strong
and weak adhesion. In Section 3, we consider simple,
planar surfaces, that serve as the basis for nearly all the
following work. The most profitable analytic approach,
the Deryagin approximation, is detailed in Section 4. We
consider (separately) a corrugated substrate (Section 4A)
and one broken by a single (long) trench (Section 4C), a
pit (Section 4D), and a periodic array of trenches (Section
4E). We calculate the equilibrium membrane profile and
the adhesion energy. The variation of this energy with
respect to the parameters characterizing the geometric
structure is emphasized.

2. The Free Energy

To begin, we consider a membrane with an elastic
modulus κ and tension σ interacting with a rough surface.
For a free, almost flat membrane, which is infinite in

extent, the bending energy can be described by an effective
free energy functional,21

where (s1, s2) are coordinates in the membrane surface,
g is the determinant of the metric, H ) (c1 + c2)/2 is the
mean curvature, and c1 and c2 are the two principal
curvatures. As the Gaussian curvature is a total diver-
gence, the Gauss-Bonnet theorem implies that it can be
ignored for a membrane with fixed topology, and we
proceed to do just this here. Working in the Monge
representation, let G ) (x, y) be a two-dimensional planar
vector and the heights of the surface and membrane above
some reference G-plane be zs(G) and h(G), respectively. The
geometry and notation used is shown in Figure 1.

For an experimental system in which giant vesicles
(rather than the infinite membrane considered here) are
involved, the tension usually arises due to the conservation
of the vesicle total surface area. However, an additional
contribution develops for a weakly adhering vesicle as
the lipids making up the membrane try to move from areas
far from the substrate into the more energetically favorable
region near its surface. Fortunately, for our case, none of
these intricacies arise, and we can consider the tension
just as an external parameter.

If the membrane thickness is δ, the interaction between
the surface and the membrane can be accounted for by a
potential V(h, δ; zs), and total membrane free energy is
given as

The interaction can be broken down into several
components.22,23 We include an external pressure, a van
der Waals attraction and a repulsive force, whose nature
will be different for strong and weak adhesion. In principle,
other possible interactions (e.g., electrostatic forces24) can
be added for more refined calculations. The total potential,
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Figure 1. A membrane adhering to a rough surface. The
reference G-plane is shown as a dashed line. The height of the
lower membrane lipid leaflet and the surface, measured from
this plane, are denoted by h(G) and zs(G), respectively. The
membrane thickness is δ.

∫ds1ds2 xg [σ + 1
2
κ(2H)2] (2.1)

F [h] ) ∫d2G{x1 + (∇h)2[σ + κ

2(∇B‚ ∇Bh

x1 + (∇h)2)2] +

V(h,δ;zs)} (2.2)

Substrate Structure Influences Membrane Adhesion Langmuir, Vol. 15, No. 26, 1999 8903



used in eq 2.2, is then

A different dependence on the surface height has been
emphasized as, in general, the interaction potential is a
functional of zs. Note that in eq 2.2, the potential V is
integrated over the projected area, A0 ) ∫d2G, only because
all nonlocal effects of the solid roughness and membrane
fluctuations are, in principle, incorporated into the
potential itself.

The existence of an external pressure p in eq 2.3 implies
that there is a difference in pressure across the membrane.
Recalling that the membrane is infinite in its lateral
extent, the pressure couples linearly to the membrane
height and could arise, for example, from the existence of
macromolecules on one side of the membrane only.25

The van der Waals attraction that the membrane feels
toward the solid surface is given by

where W(h;zs) is an interfacial-like van der Waals poten-
tial. Equation 2.4 arises because of the bilayer nature of
the membrane and can be understood as a supposition of
two wetting layers. One of these has height h + δ, whereas
the other is of height h and has a Hamaker constant of
opposite sign. For a wetting fluid film of thickness h(G)
resting on a solid substrate, with a rough surface con-
figuration given by z ) zs(G), W(h; zs) satisfies the
following:17

In eq 2.5, the kernel interaction is

Following convention, we have denoted the Hamaker
constant A and will usually set the integer m ) 2 to
model nonretarded van der Waals interactions. Equation
2.5 comes from the sum over all possible pair interactions
between the molecules making up two half spaces that
are capped by either the surface z ) h(G) or z ) zs(G).

Notice that eq 2.5 is a function of h(G) but a functional
of zs(G). For a flat membrane on top of a smooth and planar
solid surface, which will be discussed in the following
section, this functional dependence on zs(G) can be ignored
and then (for m ) 2)

This is the standard result for the van der Waals potential
between two semi-infinite bodies with planar surfaces held
a distance h - zs apart.23

To counterbalance this attractive force, a repulsive
interaction is included, and we define two different possible
scenarios; they are, the weak and strong adhesion regimes.

A. Weakly Adhering Membranes. In this case, we
consider a repulsive force that is entropic in origin. This
force arises because of the surface cutting off the region
that can be sampled by the membrane as it undergoes

thermal fluctuations. A renormalization group description
is the only general approach that can be used to describe
such effects but, depending on the nature of the inter-
molecular interactions, a simple supposition ansatz can
sometimes suffice.22 Helfrich26 was the first to include an
entropic term in the potential but considered only
tensionless membranes. When a membrane is under
tension, the extent to which it can fluctuate is much
reduced and there is a corresponding decrease in the
entropic repulsion. Although there is some controversy of
the exact form of the potential,22,27,28 a decay exponential
in h has been verified by Monte Carlo simulation.29

Unfortunately, analytical expressions are only available
for the tension- and rigidity dominated regimes. However,
a simple argument by Seifert5 gives a form that takes the
correct limit for σ f 0 or h f 0 and has the dominant h
exponential decay in the tension regime. For simplicity,
we choose

where

We denote the temperature by T and have set here and
hereafter the Boltzmann constant kB to unity. The
prefactor of eq 2.8 has been chosen to be consistent with
the renormalization group description22 as h f ∞, but we
note that the exact value has no special importance in our
model. In the limit of zero tension, eq 2.8 tends to the
well-known result 3T2/(2π2κh2). For large Ωh, the potential
decays exponentially as exp(-2Ωh).

Equation 2.8 was initially assumed to be valid only for
a membrane fluctuating near a flat surface. However, a
number of different methods have shown that the Helfrich
term can also be used for a rough substrate if h is replaced
by the local height of the membrane. This approach has
been adopted by several authors considering spatially
inhomogeneous scenarios30-32 and agrees with scaling
arguments based on exact solutions.33 Consequently, for
a rough surface, we choose a fluctuation repulsion
satisfying Vfluc(h; zs) ) Vfluc(h - zs), with Vfluc(h) given by
eq 2.8.34

B. Strongly Adhering Membranes. Because the
membrane now lies much closer to the substrate (a typical
distance can be 30 Å as compared with 340 Å for the weakly
adhering case), the repulsive interaction becomes domi-
nated by hydration forces. Although their exact origin is
not entirely understood (see ref 23), experimentally they
decay exponentially35 and have an angstrom range

where b is a dimensionless number and R an inverse
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V(h,δ;zs) ) p(h - zs) + Vvdw(h,δ;zs) + Vrep(h;zs)

(2.3)

Vvdw(h,δ;zs) ) -[W(h;zs) - W(h+δ;zs)] (2.4)

W(h;zs) ) ∫h(G)

∞
dz∫d2G′ ∫-∞

zs(G + G′)
dz′ w(G′,z-z′) (2.5)

w(r) ) A
π2(1r)2m+2

(2.6)

W(h,zs) ) A
12π

1
(h - zs)

2
(2.7)

Vfluc(h) ) 6T2

(2π)2
κ

( Ω
sinh Ωh)2

(2.8)

Ω ) (πσ
2T)1/2

(2.9)

Vhyd(h) ) bσ e-Rh (2.10)
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length, typically R-1 = 2-3 Å. For a rough substrate we
again assume that we can replace h by the relative height
and so use the local expression for the interaction potential,
Vhyd(h - zs), in the free energy. Such an assumption seems
reasonable because of the very short-range nature of the
interaction in eq 2.10.

C. The Adhesion Energy. To summarize, the total
free energy consists of

that is, a bending energy made up of tension (coupled to
the membrane area) and rigidity (coupled to its total mean
curvature squared, H2) terms and an interaction potential
V given by eq 2.3. The latter contains a contribution from
an external pressure, the full nonlocal van der Waals
interaction, and a local repulsion, Vrep, which we consider
either as a fluctuation (see eq 2.8) or a hydration
interaction (as in eq 2.10).

One of the most relevant quantities in experiments is
the membrane adhesion energy. Within our general mean-
field approach, the optimal height of the membrane is
that which minimizes eq 2.11. The value of the free energy
of the system when the membrane takes up this optimum
configuration, Fmin, leads to the following natural defini-
tion of the adhesion energy per unit area

Here, A0 is the total area of the projected reference G-plane,
A0 ) ∫ d2G.

Notice that in eq 2.12, a tension-dependent term has
been added. Doing so conveniently shifts the origin in
such a way that the adhesion energy for a completely flat
membrane has no tension-dependent contribution. This
result agrees with one’s intuitive picture and is necessary
because the membrane tension couples to the entire
membrane area and not just to any excess area arising
from a nonplanar configuration. Consequently, for a
membrane adhering to a flat wall and being itself flat
[h(G) ) h0 for some constant h0], the adhesion energy is
simply given as the negative of the interaction potential
experienced by the membrane. For example, from eq 2.11
(see also eq 2.2)

and therefore eq 2.12 implies that

and the tension contribution vanishes. Hence, U is positive
for all sufficiently attractive potentials, V.

D. Rescaling of Lengths and Interactions. Before
we proceed and calculate the adhesion energy U for
different types of corrugated and rough surfaces, it proves
profitable to extract two natural lengthscales present in
the problem.

The first of these is provided by the ratio between the
Hamaker constant, A, appearing in the van der Waals
potential (eq 2.5), and the tension σ,36

whereas the second describes the crossover between the
tension and the rigidity dominated regimes

Using these definitions, eqs 2.2 and 2.5 become,
respectively,

and

In the next sections, eq 2.17 will be minimized and the
adhesion energyU will be calculated for various corrugated
and rough surfaces. However, first we discuss the case of
a simple, flat surface.

3. A Planar Surface: Choice of Physical
Parameters

For a planar and homogeneous solid surface, mean-
field theory predicts that the membrane also adopts a flat
configuration,

where we use the subscript zero to denote all planar
quantities. Here, we set zs(G) ) 0 to ensure a zero average
surface height. The van der Waals term (for m ) 2) also
simplifies considerably

and the repulsion satisfies eqs 2.8 and 2.10 for weak and
strong adhesion, respectively.

The membrane height h0 obeys V′(h0) ) ∂V/∂h ) 0
(balance of forces), whereas the adhesion energy, eq 2.12
is

where V0(h, δ) ≡ V(h, δ; 0). Equation 3.3 is useful because
it serves as the starting point for which all our perturbation
theories provide corrections.

(36) de Gennes, P. G. Rev. Mod. Phys. 1985, 57, 827.

F [h] ) ∫d2G{xg[σ + 1
2
κ(2H)2] + p(h - zs) +

Vvdw(h,δ;zs) + Vrep(h - zs)} (2.11)

U ≡ -(Fmin

A0
- σ) (2.12)

Fmin ) A0[σ + V(h0,δ;0)] (2.13)

U ) -V(h0,δ;0) (2.14)

a ) ( A
2πσ)1/2

(2.15)

ê ) (κ/σ)1/2 (2.16)

1
σ

F [h] ) ∫d2G{x1 + (∇h)2[1 +

1
2

ê2(∇B‚ ∇Bh

x1 + (∇h)2)2] + 1
σ

V(h,δ;zs)} (2.17)

1
σ

W(h;zs) ) 2a2

π ∫h(F)

∞
dz∫d2G′ ∫-∞

zs(G+G′)
dz′[F′2 +

(z - z′)2]-(m+1) (2.18)

h(G) ) h0 (3.1)

1
σ

Vvdw(h, δ; 0) ) -a2

6 ( 1
h2

- 1
(h + δ)2) (3.2)

-
U0

σ
≡ V0(h0, δ)

σ

) {p
σ

h0 - a2

6 [ 1
h0

2
- 1

(h0 + δ)2] + 3T
4πκ

sinh-2(Ωh0)

weak adhesion

p
σ

h0 - a2

6 [ 1
h0

2
- 1

(h0 + δ)2] + b e-Rh0

strong adhesion

(3.3)
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At this point, to facilitate comparison with experimental
systems, we discuss the numerical values of our model
parameters. A particular example is detailed in Table 1,
where T ) 4.1 × 10-21 J at room temperature and kB was
set to unity. For simplicity, the external pressure is set
equal to zero throughout

Let us discuss now the choice of parameters for weak
and strong adhering membranes, separately. (i) For weak
adhesion, an effective value of the Hamaker constant is
used (A ) 8.67 × 10-22 J = 0.21 T). This value is quite
small to approximately model the screening effect of ions
in the solution surrounding the membrane.23 Setting σ )
1.7 × 10-5 Jm-2, the rescaling length, a, is =28.5 Å, and
h0 is calculated to be =11.85a or =338 Å, which is in
agreement with experimental results.6 Such a value is
reassuring because the expression in eq 3.2 for the van
der Waals interaction is only valid for h < 500 Å before
retardation effects begin to become important.37 From
Figure 2, one can see that V0(h0, δ) = -1.1 × 10-4σ and
so the adhesion energy is positive as expected:

(ii) If we now turn to strong adhesion, ion effects can
be ignored, and we use a larger value of the Hamaker
constant (A ) 2.6 × 10-21 Jm-2 = 0.63 T).6 This approach
implies that a = 49.3 Å and h0 = 0.61a = 30 Å, which are
values that are in agreement with those measured using
specular reflection of neutrons.38 The various parameters
specifying the hydration force (see eq 2.10) are

which are values that are in accordance with those
measured by Gawrisch et al.35 This time (see Figure 2),
V0(h0, δ) = -0.298σ and, therefore,

which is significantly greater than the result in eq 3.5.
Throughout the paper, we will keep to the particular

values of the membrane and external parameters specified
here and in Table 1. It is sometimes convenient to express
lengths in terms of the length a and energies (per unit
area) in terms of the tension σ, which is arbitrarily taken
to have the same numerical value for weakly and strongly
adhering membranes. We should say, however, that our

model can offer only qualitative, or at best semiquanti-
tative comparison with experiment.

4. The Deryagin Approximation

One of the most useful approaches, which provides good
opportunity for analytic progress, is the Deryagin ap-
proximation.39 First of all, the full nonlocal van der Waals
potential (eqs 2.4 and 2.5), is replaced by a planar potential
that is simply a function of the local relative height
coordinate. Because the pressure term is always local and
Vrep already has this form, the total potential is written
as

(37) Lipowsky, R.; Leibler, S. Phys. Rev. Lett. 1986, 56, 2541.
(38) Johnson, S. J.; Bayerl, T. M.; McDermott, D. C.; Adam, G. W.;

Rennie, A. R.; Thomas, R. K.; Sackmann, E. Biophys. J. 1991, 59, 289.

(39) Deryagin, B. V. Kolloidn. Zh. 1955, 17, 827. Deryagin, B. V.;
Churaev, N. V.; Muller V. M. Surface Forces; Consultants Bureau: New
York, 1987.

Table 1. Numerical Values of Model Parameters

general parameters
κ ) 35T σ ) 1.7 × 10-5 Jm-2 δ ) 38 Å p ) 0
Ω = 8.07 × 107 m-1 b = 5.47 × 104 R-1 ) 2.2 Å T ) 4.1 × 10-21 J

weak adhesion
A ) 8.67 × 10-22 J a = 28.5 Å h0 = 11.85a = 338 Å U0 = 1.1 × 10-4 σ
ê = 32.25a v = 8.04 × 10-6a-2σ êσ = 352.62a êκ = 106.64a
ø = 0.302 η+ = 0.0309a-1 η- = 0.0028a-1 L = 259.1a

strong adhesion (supported membrane)
A ) 2.6 × 10-21 J a = 49.3 Å h0 = 0.61a = 30 Å U0 = 0.298σ
ê = 18.62a v = 22.85a-2σ êσ = 0.21a êκ = 1.97a
ø = 9.44 η+ = (0.359 + 0.357i)a-1 η- = (0.359 - 0.357i)a-1 L = 22.3a

p ) 0 (3.4)

U0 ≡ -V0(h0,δ)

= 1.1 × 10-4σ ) 1.87 × 10-9 J m-2 (3.5)

b ) (0.93 J m-2)/σ = 5.47 × 104 R-1 ) 2.2 Å (3.6)

U0 = 0.298σ ) 5.07 × 10-6 J m-2 (3.7)

Figure 2. A plot of the various interactions described in Section
2, with parameter values given in Table 1, for a membrane (a)
weakly and (b) strongly adhering to a planar substrate. All
potentials are measured in units of the tension, σ ) 1.7 × 10-5

Jm-2, and lengths in terms of a. The system can be seen to
equilibrate at h0 = 12a and h0 = 0.6a for weak and strong
adhesion, respectively.
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where V0(h,δ) ) V(h,δ;0) as before. Notice that eq 4.1
corresponds to replacing zs(G + G′) in eq 2.5 with zs(G); that
is, removing the functional dependence of the potential
on zs. The resulting free energy is then expanded to second-
order in h - h0 and zs. Because the equilibrium position
of the membrane is given by setting the variation to zero,
the first-order term in h and zs vanishes, yielding

with

Writing δh(G) ) h(G) - h0, the Euler-Lagrange equation,
giving the value of δh which minimizes eq 4.2, is relatively
straightforward:

To solve eq 4.4, it is convenient to convert to Fourier
space. Defining for any function f(G)

we find

with the correlation lengths having the usual defini-
tions:22

For small qêσ, eq 4.6, implies that the membrane follows
the rough surface. However, as qêσ increases, both the
tension and the rigidity act to dampen this effect.

Using eqs 2.12, 4.2, and 4.6, one can write the adhesion
energy as

By defining the excess in the adhesion energy to be with
respect to the planar case [recall that U0 ) -V0(h0, δ)] as

we obtain

which is only strictly valid up to O(q4) because higher
order terms in q have not been included in our starting
equation.

Equation 4.10 has buried within it several assumptions
that we will now make more explicit. It is important to
realize that eq 4.6 is not necessarily the general solution
to eq 4.4 but just a particular solution. The general solution
itself can be found by adding eq 4.6 to the homogeneous
solution; that is, the solution of eq 4.4 when zs is set to
zero. This solution then contains the four constants of
integration required to satisfy any boundary conditions.
Therefore, eq 4.10 is only correct when the homogeneous
solution of eq 4.4 is identically zero, which is true, for
example, at a sinusoidally corrugated substrate (see
Section 4A). Otherwise, although eq 4.10 is certainly
included in U, it is not the whole picture and, in this case,
it may well be better to work entirely in real space.

For the particular experimental system specified in
Section 3, one can calculate the various correlation lengths.
These lengths have been included in Table 1 for com-
pleteness.

The approximations used in this section have, as their
basis, essentially a perturbation theory (assuming h - h0
- zs is small) around the planar value of the adhesion
energy, U0. Generally, one can only believe such an
approach if the correction term, ∆U, is much smaller than
the result upon which it is trying to improve. Consequently,
our findings are strictly only valid when

which in fact limits the roughness of the substrates we
can consider.

A. Sinusoidally Corrugated Surface. The simplest
case to look at is a sinusoidally corrugated surface

with an amplitude c and period 2π/q. Solving eq 4.4, one
can show that

Similarly, ∆U in eq 4.10 is

which is valid for small cq.
In Figure 3, U/U0 (using the parameters of Table 1) is

plotted as a function of the rescaled wavenumber aq for
both weak and strong adhesion. From eq 4.13, the average
height of the membrane is unchanged from the planar
result h0. However, as q increases and the surface becomes
corrugated with shorter wavelengths, the adhesion energy
decreases (relative to the planar case).

Two factors contribute to this result. First, there is an
extra bending energy cost as the membrane tries to follow
the substrate configurations. Second, the roughness acts,
despite the increased surface area, to reduce the absolute

∆U
σ

) - 1
A0

∫ d2q
2(2πêσ)

2 { q2êσ
2 + q4êκ

2

1 + q2êσ
2 + q4êκ

4}|z̃s(q)|2 (4.10)

|∆U
U0

| , 1 (4.11)

zs(G) ) c sin(qx) (4.12)

δh(G) )
c sin (qx)

1 + q2êσ
2 + q4êκ

4
(4.13)

∆U
σ

) - c2

4êσ
2( q2êσ

2 + q4êκ
4

1 + q2êσ
2 + q4êκ

4) (4.14)

V(h,δ;zs) = V0(h-zs,δ)

) p(h - zs) + Vvdw(h-zs,δ;0) +
Vrep(h - zs) (4.1)

1
σ

F [h] = ∫d2G{1 + 1
2

(∇h)2 + 1
2

ê2(∇2h)2 + 1
σ

V0(h0,δ) +

v
2σ

(h - h0 - zs)
2} (4.2)

v ) ∂
2

∂h2
V(h,δ;0)|h)h0

) -a2σ[ 1
h0

4
- 1

(h0 + δ)4] + V′′rep(h0) (4.3)

(κ∇4 - σ∇2 + v)δh(G) ) vzs(G) (4.4)

f̃(q) ) ∫d2G f(G)e-iq‚G (4.5)

δh̃(q) )
z̃s(q)

1 + q2êσ
2 + q4êκ

4
(4.6)

êσ
2 ) σ/v êκ

4 ) κ/v (4.7)

U
σ

) 1 - 1
A0

∫d2G{1 +
V0(h0,δ)

σ } -

v
A0σ ∫ d2q

2(2π)2 { q2êσ
2 + q4êκ

4

1 + q2êσ
2 + q4êκ

4}|z̃s(q)|2 (4.8)

∆U ≡ U - U0

) U + V0(h0,δ) (4.9)
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value of the membrane potential energy. This reduction
occurs because of the nonlinear way zs enters eq 2.5, and
is best seen in eq 4.2. Given that we are approximating
the total potential harmonically and so as a parabola, eq
4.2 shows that the effect of the surface structure is to lift
(v is always positive) the membrane potential out from
the minimum, V0. An identical, more familiar, phenom-
enon takes place when one wishes to include Gaussian
thermal fluctuations in a mean-field Hamiltonian. Both
contributions to the free energy are thus made more
positive and so the adhesion energy (see eq 2.12) is
decreased.

For large q, U flattens out; any point on the membrane
is almost equidistant from a crest or trough on the
substrate surface and so there is little energetic benefit
in mimicking them. From eq 4.14 we have the following40

in the limit q . max(êσ
-1, êκ

-1)

which is in accordance with U/U0 = 0.54 and U/U0 = 0.51
(see Figure 3) for weak and strong adhesion, respectively.
For small q , min(êσ

-1, êκ
-1), the membrane can always

follow these long wavelength perturbations,

and U remains q dependent.
It is worth pointing out the very different x-axis scales

and choices of c in Figure 3. For weak adhesion where c
) 5a (i.e., c = 143 Å), the adhesion energy “bottoms out”

for q = 0.03/a. For strong adhesion, c is much smaller (c
= 8 Å), and much larger values of q are needed before the
structure of the substrate is effectively smeared away.
The values of c in both cases were chosen to ensure that
eq 4.11 remains valid and one can see that U/U0 is never
much smaller than 0.5. Our perturbation theory appears
to work for amplitudes c that which do not grow signifi-
cantly bigger than approximately one third of the height
taken by the membrane above a planar substrate (i.e.,
h0/3).

By noting that êκ
2 ) êêσ, eq 4.14 can be written as

and so one can also look at the effect of the elastic modulus
κ on the adhesion energy by plotting U/U0 against the
crossover length ê/a while keeping êσ constant (see Figure
4). As ê increases, κ becomes greater than the Hamaker
constant, A. This increased bending energy (coupled with
the fact that the membrane average position is fixed at
h0) leads to a raise in magnitude of ∆U, and so the adhesion
energy decreases relative to U0.

B. Membrane Profiles for Piecewise Constant
Surfaces. For piecewise constant surfaces, eq 4.4, is quite
easily solved (see Appendix A). For substrates with one-
dimensional symmetry, zs(G) ) zs(x), the general solution
is (for constants c0, c1, c2, and c3)

where the expressions for η( are given in eq A3 in Appen-
dix A. The implications of eq 4.18 will be explored in the
following subsections.

C. An Isolated Trench. We next consider a single,
infinitely long trench parallel to the y axis and of width(40) Assuming eq 4.11 is still valid.

Figure 3. A plot of the adhesion energy versus the rescaled
wavenumber aq of a sinusoidally corrugated surface. For (a)
weak adhesion, the surface amplitude is set to c ) 5a = 143 Å,
whereas for (b) a strongly adhering membrane, it is set much
smaller at c ) 0.16a = 8 Å. All other parameters are given in
Table 1. For these values of c, U soon reaches a small (<1)
asymptotic value, which implies that our perturbation theory
remains valid for all q.

∆U = - c2σ
4êσ

2
(4.15)

∆U = - σc2q2

4
(4.16)

Figure 4. The adhesion energy for a (a) weakly and (b) strongly
adhering membrane above a corrugated surface, with c ) 5a
= 143 Å and q ) 0.02/a for the former and c ) 0.16a = 8 Å and
q ) 1/a for the latter. Increasing ê/a corresponds to increasing
κ/A. All other parameter values are given in Table 1.

∆U
σ

) - c2

4 ( q2

1
1 + q2ê2

+ q2êσ
2) (4.17)

δh(x) ) c0e
η+x + c1e

-η+x + c2e
η-x + c3e

-η-x + zs (4.18)
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d and depth λd. The height profile of the surface takes
either of two fixed values: -λd for |x| < d/2, and zero
otherwise (see Figure 5). This profile can be also written
as

where θ(x) is the Heaviside step function, being only
nonzero (and equal to unity) for positive x. The one-
dimensional solution of eq A1 is given by eq 4.18, with zs
taking either of the fixed values -λd for |x| < d/2 or zero
otherwise. The constants of integration can be determined
from the following boundary conditions

and by imposing continuity (up to the third derivative in
x) at the edges of the trench, x ) (d/2. The final solution
is (for positive x g 0)

and

Here, ø ) ê/êκ (see eq A4).
In Figure 5, the membrane profile is sketched for a

supported membrane (strong adhesion case) with the same
parameters as those given in Table 1. The trench is
specified by d ) 3a (i.e., 148 Å) and λ ) 0.2. The membrane
can be seen to follow the contour of the surface, as expected
from the general prediction (eq 4.6), without developing
a similar discontinuity to that occurring at the boundary

of the trench. In addition, it can be seen that an overshoot
is present, with the membrane having a height greater
than h0 (for an extensive discussion of overshoots see ref
32). From eq 4.22, δh ) h - h0 can be shown to be negative
for all x > d/2, providing η( are real. Therefore, the
overshoot can only arise if η( go complex. A necessary
condition found from eq A3 is that 1 - 4ø4 < 0 or that

i.e., one must be in the rigidity dominated regime (4κ >
σ2/v).

Equation 4.24 can be understood by realizing that the
rigidity term in the free energy (eq 4.2) prevents the
membrane from turning any sharp corners (see Appendix
B). For a pure interface (κ ) 0 and σ * 0), eq 4.24 cannot
be satisfied and, within the Deryagin approximation, no
overshoot ever occurs.

It is also interesting to look at the extent to which the
membrane penetrates into the trench. A natural measure
of this quantity is the membrane height in the trench
center:

In Figure 6, this quantity is plotted against d/a, the
trench width (here, λ simply scales out; see eq 4.25). For
larger d, the membrane is able to enter the trench more
easily because there is less bending energy cost in the
smoother configuration required to do so. For small d/a,
δh(0) f 0 and h(0) tends towards the planar value of the
average membrane height as the trench becomes increas-
ingly more narrow. In the opposite limit (not yet visible
in Figure 6), where d/a . 1, eq 4.25 implies that δh(0)/a
f -λd/a, although here we are pushing our perturbation
theory beyond its region of validity.

The adhesion energy (eq 2.12) is defined as an energy
per unit of projected area. To obtain a finite contribution
in the case of an isolated surface perturbation like a trench,
we need to consider one occurring in an otherwise flat
surface of finite lateral extent L. Hence, using a local
definition, involving a cutoff L, we can write that the
change in U, ∆U (up to second-order in δh), is

From eq 4.18 we can see that for real η, the cutoff should
be proportional to η+

-1 because of the exponential decay.
However, for ø > 1/x2, both η+ and η- are no longer real
and it is straightforward to show that

Figure 5. The membrane profile h(x) for strong adhesion to
a solid surface (thick line) broken by a single trench of width
d ) 3a = 148 Å and depth λd, with λ ) 0.2. The inset region
shows a blowup of the profile, with scales chosen to emphasize
the overshoot. The local adhesion energy is U/U0 = 0.51. All
lengths are in units of a without explicit statements for clarity.
Parameter values are given in Table 1 (strong adhesion) and
only the lower lipid leaflet is shown.

zs(G) ) zs(x) ) -λd{θ(x + d/2) - θ(x - d/2)} (4.19)

δh(-x) ) δh(x) (4.20)

δh((x) f 0 as |x| f ∞ (4.21)

1
λd

δh(x) )

{-1 + 1
2

k-e-η+d/2 cosh(η+x) + 1
2

k+e-η-d/2 cosh(η-x)

for 0 e x e d/2
(4.22)

- 1
2

k-sinh(η+d
2 )e-η+x - 1

2
k+ sinh(η-d

2 )e-η-x

for x e d/2

k( ) 1 ( 1

x1 - 4ø4
(4.23)

Figure 6. The height of the membrane δh(0) ) h(0)-h0 at the
center of an isolated trench of width d and depth λd, where
λ ) 0.2. See Table 1 (strong adhesion) for choices of the other
parameters.

2ê > êσ (4.24)

δh(0) ) λd(-1 + 1
2

k-e-η+d + 1
2

k+e-η-d) (4.25)

∆U ) - 1
2L ∫0

L
dx{σ(δh′)2 + κ(δh′′)2 + v(δh - zs)

2}

(4.26)
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where the asterisk denotes complex conjugation. In this
case, eq 4.18 implies that for x > d/2, the profile has an

exponential term, exp(-xx2ø2 + 1/2ê), and so a natural
choice for L is

where the prefactor was chosen by examining some
numerical solutions for the profile. If η+ is complex, then

eq 4.27 implies that 1/Re{η+} ) 2ê/x2ø2 + 1. Using this
definition, L = 22.3a for the system specified in Table 1,
which is a sensible value (see Figure 5).

Using eqs 4.22 and 4.26, one can show that

where Λ( ≡ η(d is introduced,

with

and k( are defined in eq 4.23. The function I(u,v) can be
seen by inspection to be positive, given that 2 L g d (from
eq 4.28), implying that ∆U is negative. Any nonplanar
membrane configuration (and such a configuration must
be adopted by a membrane adhering to a rough substrate)
will give an additional bending energy cost in the definition
(eq 2.12) and so decrease U.

Equation 4.29 is illustrated in Figure 7. The adhesion
energy decreases for larger d as the membrane adopts a
more and more nonplanar configuration. For small d/a,
one can show that eq 4.29 becomes

and vanishes as d f 0, in agreement with Figure 7. For
larger values of d/a, Figure 7 would seem to imply that
∆U continues to grow in magnitude. This implication, of
course, is false and is an unfortunate artifact of going
beyond the valid limit of our perturbation theory. Exact
numerical solutions for a similar scenario will be discussed
in a companion paper20 and do not exhibit such unphysical
behavior.

Again, we emphasize that the parameters specifying
the substrate geometry (λ and d in this case) were chosen
so that the constraint in eq 4.11 was obeyed.

D. An Isolated Pit. We next consider a single cylindri-
cal pit of radius r and depth λr. Equation 4.4 is now only

a function of F ) xx2+y2 and is solved by Bessel functions
(see Appendix A), as is usual for systems with cylindrical
symmetry

Here, zs ) -λr for F < r and is zero elsewhere. Requiring
a finite solution at F ) 0 and a vanishing one as F f ∞,
implies that

The constants of integration can be found by imposing
continuity at F ) r.

The cylindrical symmetry results in little qualitative
changes from the previous section (see Figure 8). However,
our perturbation theory is now acceptable up to a large
hole of radius r ) 350a = 0.997 µm because of the much
smaller nonplanar area of the substrate. A quick glance
at Table 1 shows that in this case, η( are real, and from
eqs A3 and 4.24, no overshoot can then occur.41 This can
also be seen in Figure 8. A local adhesion energy can be
defined similarly to eq 4.26, with the cut-off L obeying

(41) Like the exponentials in eq 4.18, K0(η) and I0(η) are single-valued
functions for real η > 0, and so an overshoot can only occur for complex
η.

Figure 7. The relative adhesion energy, U/U0, plotted for a
trench of width d and depth λd, with λ ) 0.2. For an isolated,
nonplanar perturbation of the substrate, a local definition of
the adhesion energy needs to be used and involves the cutoff
L (see text). All other parameters used here are given in Table
1 (for strong adhesion case).

Figure 8. A typical membrane configuration h(F) (of the lower
lipid leaflet) weakly adhering over a cylindrically symmetric
pit of depth λr and radius r, where λ ) 0.012 and r ) 350a =
0.997 µm (for further choices see Table 1 for weak adhesion).
The local adhesion energy (with L = 259.1a ) is U/U0 = 0.50.
The inset shows that no overshoot is present as η( are now real.
All lengths are given in units of a.

δh(F) ) c0I0(Fη-) + c1K0(Fη-) + c2I0(Fη+) +
c3K0(Fη+) + zs (4.32)

δh(F) ){c0I0(Fη-) + c2I0(Fη+) - λr for F < r
c1K0(Fη-) + c3K0(Fη+) for F > r

(4.33)

η+ ) η-
/ ) 1

2
ê-1{x2ø2 + 1 + ix2ø2 - 1} (4.27)

L ) 8 × max(d2, 1
Re{η+}) (4.28)

∆U
σ

) - λ2d
32L{(k-

Λ+
)2

I(Λ+,Λ+) + (k+

Λ-
)2

I(Λ-,Λ-) +

(2ê
d )2

k+k- I(Λ+,Λ-)} (4.29)

I(u,v) ) uv(u + v)(eu - 1)(ev - 1) e-(u+v)(1/2+L/d) ×

[e(u+v)(L/d-1/2)

w(u,v)
- 1

2] (4.30)

w(u,v) ) 1 -
u(ev - 1) + v(eu - 1)

ueu(ev - 1) + vev(eu - 1)

∆U
λ2σ

) - a3ø4

4ê2L(da)3
+ O((da)4) (4.31)
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Unfortunately, for this case, ∆U is a very complicated
expression and it is not possible to proceed analytically.
Therefore, as in Section 4C, ∆U is calculated using eq
4.26, with the solution given by eq 4.33 but then the
integrals are evaluated numerically. One finds that U
decreases with r in a manner similar to that in Figure 7.

E. Periodic Array of Trenches. The next, more
complicated scenario to consider is a periodic array of one-
dimensional trenches. These trenches are of depth λd and
width d in the x direction, and infinitely long in the y
direction. We let the length of the repeating unit making
up the surface be µd (see Figure 9), then

summing over integer n.
By ensuring that the solution is locally symmetric about

each trench center, it is possible to write out, using eq
4.18, δh explicitly over one period

Because the configuration taken up by the membrane is
symmetric around x ) µd/2,

one can show that c3 ) c2eη+µd and c5 ) c4eη-µd and so reduce
the number of unknowns to four. These unknowns can be
found by imposing continuity of δh and its derivatives at
x ) d/2.

The change in adhesion energy (to second-order in δh)
is

and after some algebra, can be found to satisfy

where we define

recalling that Λ( ) η(d. Again, it is possible to show that
∆U is always negative. Note, that the dependence of the
adhesion energy on the depth of the trenches, via λ and
from eq 4.39, is simply parabolic (providing eq 4.11 holds).

For a surface roughness of this form, an interesting
consequence of eq 4.39 is that the excess adhesion energy,
∆U, has a minimum as a function of µ at µ ) µ*. This
phenomenon is illustrated for a strongly adhering mem-
brane in Figure 10. If we use ε ≡ d/ê as an expansion
parameter, (for Figure 10, ε = 0.11 ), then perturbation
theory gives

Equation 4.41 implies that

This implication can be understood by looking at the
average height of the surface,

For 1 < µ < 2, as µ increases, eq 4.43 evaluated near
µ ) 1 implies that the surface can be visualized as an
array of spikes perturbing an “initial” planar state with
〈zs〉 ) -λd/2. For µ ) 1, the substrate is flat and

Figure 9. The profile of a membrane h(x) supported (strong
adhesion) above a periodically structured substrate with
trenches of infinite length, width d, and depth λd. We have set
λ ) 0.22, µ ) 10, and d ) 2a = 99 Å in the above. The membrane
configuration (thin line) follows that of the substrate (thick
line) but at a much reduced amplitude (due to the effects of
rigidity and tension). All lengths are shown in units of a.

L ) 8 × max(r, 1
Re{η+}) (4.34)

zs(F) )
1

2
λd - λd ∑

n ) -∞

∞

[θ(x - nµd + d/2) -

θ(x - nµd - d/2)] (4.35)

δh(x) )

{c0 cosh(η+x) + c1cosh(η-x) - λd
2

for 0 < x < d/2

c2e
η+x + c3e

-η+x + c4e
η-x + c5e

-η-x - λd
2

for d/2 < x < µd - d/2

c0 cosh(η+(x - µd)) + c1 cosh(η-(x - µd)) - λd
2

for µd - d/2 < x < µd

(4.36)

δh(x) ) δh(µd - x) (4.37)

Figure 10. For λ ) 0.12 and d ) 2a = 99 Å, the relative adhesion
energy, U/U0, in the strong adhesion case is plotted against µ,
the periodicity parameter. For the two flat limiting surfaces,
µ ) 1 and µ ) ∞, the decrement ∆U is zero and U ) U0. The
minimum in the curve occurs near µ ) 2, as described in Section
4E.

∆U ) - 1
µd ∫0

d/2
dx[σ(δh′)2 + κ(δh′′)2 + v(δh + λd/2)2]

- 1
µd ∫d/2

µd/2
dx[σ(δh′)2 + κ(δh′′)2 + v(δh - λd/2)2]

(4.38)

∆U
σ

) - λ2

2µ
[I(Λ+,Λ-) + I(Λ-,Λ+)] (4.39)

I(u,v) )
(eu - 1)(e(µ-1)u - 1)

eµu - 1
uv2

(u2 - v2)2[ v2 - 2(dê)2
ø4]

(4.40)

∆U
λ2σ

) - µ - 1
2µ2

ø4
ε

2 +
(µ - 1)2

1440µ
(µ2 + 2µ - 2)ø8

ε
6 + O(ε8)

(4.41)

µ* ) 2 - ø4

30
ε

4 + O(ε6) (4.42)

〈zs〉 ) 1
µd ∫0

µd
dx zs(x)

) λd
2 (1 - 2

µ) (4.43)
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consequently the general solution, eq 4.18, implies that
the membrane is also flat, with δh ) -λd/2 and U ) U0.
As the thickness of the spikes increases, the membrane
responds and is forced to bend more and more. This
bending costs energy and ∆U increases in magnitude.
However, for µ > 2, the surface (and hence the membrane)
starts to tend towards another, “final”, planar state of
〈zs〉 ) λd/2, which occurs when µ) ∞. Because δh of the
membrane, at this extreme point, also satisfies δh ) λd/2
(i.e., the membrane is flat), |∆U| decreases with growing
µ. Looking at the two extreme values, µ ) 1 and µ ) ∞,
one can see from eqs 4.39 and 4.40, that ∆U vanishes as
expected.

This behavior becomes more transparent if the variance
in the height of the surface is considered

with the average defined in eq 4.43. Equation 4.44 vanishes
for µ ) 1 and µ ) ∞, and has a maximum at µ ) 2. Therefore,
we find that the excess adhesion energy is greatest (in
magnitude) for that value of µ at which the surface is the
most rough (i.e., µ ) 2). In fact, if U is plotted against
〈∆zs

2〉, it is just a monotonically decreasing function. From
eqs 4.41 and 4.44 we have

and, at this level of approximation, there is a simple, linear
relationship.

The average height of the membrane is

and µ ) 2 again arises as a significant value. It is also
interesting to examine the extent to which the membrane
penetrates each of the trenches. Concentrating on δh(0),
we find

where

and Λ( ) η(d. Hence, at the level of the Deryagin
approximation, there is a linear dependence on the trench
depth, λd. Looking at h0 + δh(0) - 〈zs〉, from eq 4.43, one
can see [as I(u) is a monotonically increasing function]
that the membrane always penetrates further into the
trenches as their depth grows. The membrane experiences
a more attractive potential due to the greater surface area
of the substrate. However, one must be aware that
increasing λ can quickly cause eq 4.11 to be broken.

Finally, in Figure 11 we plot δh(0) against the periodicity
parameter, µ. It is, perhaps, at first sight surprising to
see that for large µ, δh(0) does not vanish. However, this
function is the wrong one with which to take this limit,
as one always has at least one trench in the system and

is always looking at the depth in this trench. If δh(µd/2)
is considered instead, this parameter tends quite rapidly
to λd/2, and the membrane returns to its height above a
planar substrate. However, one can see from Figure 11
that for µ = 8, the trenches no longer have a significant
effect and δh(0) plateaus; the membrane effectively
experiences a potential generated by a flat surface.

F. Tensionless Membranes. So far we have only
considered membranes that have a finite tension, σ, and
now, for the sake of completeness, we will briefly illustrate
how our results change in the limit of σ f 0. For vanishing
membrane tension, the definitions given in eqs 2.16, A3,
and A4 imply that

Equation 4.18 then indicates that the profile will have an
oscillatory though exponentially damped form.

To see how U alters, we can look at, for example, the
adhesion energy of Section 4E given by eq 4.39, which is
valid for a surface periodically patterned with trenches.
Multiplying eq 4.39 by σ, one is naturally led to consider

in the limit of zero tension. A little thought then gives

with

and Λ( ) dη(, where η( are given by eq 4.49. Although
it is not as obvious as before, ∆U is again negative.

5. Discussion
In this paper, we have looked at the effect of geometric

surface structure on the adhesion properties of a mem-
brane and a solid substrate. The membrane interacts with
the substrate via a van der Waals potential and experi-
ences either a Helfrich-like entropic repulsion, if it is
weakly adhering, or hydration forces, if it is strongly
adhering (supported membrane). We find it convenient to
use the Deryagin approximation in which the entire
interaction potential is expressed analytically as a local
function of membrane height. By making a further
harmonic approximation, one can solve for quite a large
number of surface geometries.

〈∆zs
2〉 ) 〈(zs - 〈zs〉)

2〉

) (λd
µ )2

(µ - 1) (4.44)

∆U
σ

) -
ø4〈∆zs

2〉

2d2
ε

2 + O(ε6) (4.45)

〈h〉 ) h0 + 〈δh〉

) h0 + λd
2 (1 - 2

µ) (4.46)

δh(0)
λd

) Λ+
2 Λ-

2 {I(Λ+) - I(Λ-)

Λ+
2 - Λ-

2 } - 1
2

(4.47)

I(u) ) - e-u/2

u2
eµu - eu

eµu - 1
(4.48)

Figure 11. The height deviation of the membrane in the middle
of a trench (strong adhesion), δh(0) ) h(0) - h0, as a function
of µ for fixed λ ) 0.12 and d ) 2a = 99 Å.

η( ) ( 1
x2

(1 ( i)êκ
-1 for σ ) 0 (4.49)

σø4

ê2
f κêκ

-4 (4.50)

∆U ) λ2

µ (d
êκ

)2
κêκ

-2[I(Λ+, Λ-) + I(Λ-, Λ+)] (4.51)

I(u, v) )
(eu - 1)(e(µ-1)u - 1)

eµu - 1
uv2

(u2 - v2)2
(4.52)
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The nonplanar substrate leads to an interaction po-
tential, which is position dependent, and therefore to the
membrane following the surface shape. However, this
rough membrane configuration is damped due to the
membrane tension and bending rigidity and is unfavorable
because of its bending energy cost. Short wavelength
undulations are very difficult for the membrane to mimic
and two lengthscales, êσ and êκ, analogous to the “healing”
length17 for interfaces in wetting problems, emerge and
control the membrane damping.

We find on very general grounds that increasing the
roughness of the surface reduces the membrane adhesion
energy. Note that the adhesion energy is always calculated
per unit of projected area to facilitate comparison with
the planar surface case. The structured substrate leads
to a competition between the bending and potential energy
contributions to the free energy; the bending energy tries
to flatten the membrane and so move it away from the
surface to heights where the effect of the geometrical
heterogeneity is strongly reduced. On the other hand, the
potential energy is attractive and acts to bring the
membrane in closer to the solid surface.

Looking at eq 4.2, we can see that the local Deryagin
approximation leads to the surface height entering the
free energy only with a term describing the deviation of
the membrane away from its planar height. Remembering
that we are approximating the interaction potential as a
harmonic one (having a parabolic shape), the substrate
roughness acts to push the membrane potential energy
away from its minimum, V0. This behavior resembles that
of thermal fluctuations. Consequently, the absolute value
of the potential energy is reduced relative to the planar
case. In addition, the free energy is further increased due
to the extra bending energy contribution, which is always
absent for flat membrane configurations. This rise in the
free energy leads to a reduction in the probability that the
membrane lies close to the substrate and so to a decrease
in the adhesion energy.

These considerations are borne out by the particular
examples considered in the text. Sinusoidal surfaces,
trenches, and pits all act to reduce the membrane adhesion
energy U. The rougher the surface, the less likely a
membrane is to adhere. This inverse dependence of U is
perhaps best illustrated in Figure 10, which refers to
surfaces patterned with a regular array of infinitely long
trenches. Here, by changing µ, a parameter controlling
the distance between successive trenches, we move
through different surface configurations whose roughness
passes through a maximum. The adhesion energy clearly
responds to such behavior, going through a minimum at
the point of maximum substrate roughness.

The membrane is unable to “feel” very small scale
surface undulations because of the resulting high bending
energy cost of adapting to them and the resulting adhesion
energy is almost unchanged from its planar value. Figure
3 shows that, for a sinusoidal substrate, U gradually
decreases as the surface undulations grow and eventually
plateaus at short wavelengths.

As mentioned in Section 1, supported membranes are
invaluable for the construction of biosensors.7-9 The
proteins that endow the membrane with these properties
can, unfortunately, disturb it from a favorable planar
configuration. One way to surmount this problem is to
indent the substrate with pockets that then act as
“docking” pods for the proteins. However, this technique
can be disadvantageous in that the membrane itself may
change its configuration significantly in response to the

now nonplanar surface. Consequently, we have concen-
trated on looking at substrates sculptured by trenches
and pits.

Our work predicts that the narrower the trench or pocket
(Figure 6) and the more widely spaced apart they are
(Figure 11), the less likely is the membrane to penetrate
into them. Wider trenches are more favorable because
the bending energy of the resulting configuration is less.
The membrane is flatter in wider trenches and also gains
more potential energy because it is able to straighten out
at the trench base and lie closer to the surface. We also
find that increasing the trench depth (within the limits
of our perturbation theory) encourages membrane pen-
etration into them.

The membrane can also overshoot (similar to the
behavior in a laser trap31) near a disturbance in the planar
structure of the surface. Overshooting (i.e., having a height
greater than that it would have had for a completely flat
surface) occurs for 2ê > êσ (at least, within Deryagin) and
consequently is directly due to the membrane having a
finite (non-zero) rigidity.

To summarize, a membrane is less likely to adher to a
rough substrate. It tries to follow the substrate surface
but only does so for long wavelength fluctuations because
of their low bending energy cost. Thus, the membrane
prefers to enter broad, widely separated indentations.

In an accompanying paper,20 we will explore nonlocal
methods, which enable progress beyond the Deryagin
approximation, and also will perform some exact numer-
ical calculations. We shall extend the method to include
chemical heterogeneity, which then opens up the pos-
sibility of modeling chemically and geometrically struc-
tured substrates that are becoming crucial to new,
pioneering biotechnological research.
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Appendix A: Solution of the Euler-Lagrange
Equation for Piecewise Constant Surfaces

In some cases, and in particular if zs is piecewise
continuous, it is more convenient to work directly in real
space (as opposed to Fourier space). To find the membrane
profile, one must then solve eq 4.4 and use eq 4.2 to
calculate U. Given a piecewise constant surface, eq 4.4
becomes

for a constant zs (but which changes value discontinu-
ously for different ranges of G).

The operator in eq A1 can be factorized

(κ∇4 - σ∇2 + v)(δh(G) - zs) ) 0 (A1)

κ∇4 - σ∇2 + v ) κ(∇2 - η+
2 )(∇2 - η-

2 ) (A2)
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where η( are complex in general and satisfy

with

a dimensionless ratio of lengths. For our chosen set of
parameters (Table 1), ø = 0.302 and ø = 9.44 for weak and
strong adhesion, respectively.

Therefore, to solve eq A1, which is a fourth-order
differential equation, we can consider equivalently two
coupled second-order differential equations,

for the function δh(F) and a second function u0(F). However,
because of the underlying linearity of the second-order
differential equations, the general solution is simply

with constants c0, c1, and zs, and where u1(G) satisfies

Thus, we have reduced the fourth-order differential
equation to two familiar second-order Helmholtz equa-
tions. This approach is most useful for systems with
cylindrical or spherical symmetry.

Appendix B: Kink Configurations in Membranes
and Interfaces

In this Appendix, we consider the elastic energy cost of
a membrane adopting a configuration containing sharp
kinks. Let us, for the purpose of illustration, consider a
one-dimensional membrane embedded in a two-dimen-
sional space having the profile

with the two lengths L and c obeying L . c. In the limit
of ε f 0, h(x) develops two sharp kinks

and becomes a step function. We can examine the effect
this has on the asymptotic behaviors of the two adhesion
energy densities (per unit area)

and

Equations B3 and B4 provide the contributions to the free
energy from the tension (interface-like) and the rigidity
(membrane-like) terms in eq 2.2, respectively.

The interfacial elastic energy cost is simply proportional
to the length of the membrane in the step configuration

where we have taken the limit of ε f 0. This is clearly
finite.

To find the asymptotic limit of the rigidity contribution,
we notice that

is an even function and so, writing t ) tanh (x/εL), we
have

which can be integrated by parts

Because

the integral in eq B8 is well-defined and finite.
Therefore, for small ε, we have

and so the tension or interface-like contribution is
constant, whereas that from the rigidity (membrane-like)
diverges. Therefore, an interface (κ ) 0 and σ * 0) can
have a configuration with a sharp kink, whereas a
membrane cannot.

LA990503M

η( ) ê-1[1 ( x1 - 4ø4

2 ]1/2

(A3)

ø ) (κv/σ2)1/4 ) ê
êκ

(A4)

(∇2 - η-
2 )(δh(G) - zs) ) u0(G) (A5)

(∇2 - η+
2 )u0(G) ) 0 (A6)

δh(G) ) c0u0(G) + c1u1(G) + zs (A7)

(∇2 - η-
2 )u1(G) ) 0 (A8)

h(x) ) c tanh( x
εL) (B1)

lim
εf0

h(x) ) c[2θ(x) - 1] (B2)

uσ ) σ
2L ∫-L

L
dx x1 + h′2 (B3)

uκ ) κ

2L ∫-L

L
dx h′′2

(1 + h′2)5/2
(B4)

uσ =
σ

2L
2(L + c)

∼ σ (B5)

uκ ) 2c2
εκ

L5 ∫-L

L
dx

tanh2( x
εL) cosh-4 ( x

εL)
[ε2 + (c

L)2
cosh-4 ( x

εL)]5/2
(B6)

uκ ) 4c2
κ

ε
3L4 ∫0

tanh(1/ε)
dt

t2(1 - t2)

[1 + ( c
εL)2

(1 - t2)2]5/2
(B7)

uκ ∼ 2κ

3L2
ε{1 - ∫0

tanh(1/ε) dt

[1 + (c
L)2(1 - t2

ε )2]3/2} (B8)

lim
εf0

{1 - tanh2(1/ε)
ε

} ) 0 (B9)

uσ ∼ σ and uκ ∼ κ

L2
ε

-1 (B10)
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