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The adsorption at the interface between an aqueous solution of several surface-active agents and another
fluid (air or oil) phase is addressed theoretically. We derive the kinetic equations from a variation of the
interfacial free energy, solve them numerically, and provide an analytic solution for the simple case of a
linear adsorption isotherm. Calculating asymptotic solutions analytically, we find the characteristic time
scales of the adsorption process and observe the behavior of the system at various temporal stages. In
particular, we relate the kinetic behavior of the mixture to the properties of its individual constituents
and find good agreement with experiments. In the case of kinetically limited adsorption, the mixture
kinetics is found to be considerably different from that of the single-surfactant solutions because of strong
coupling between the species.

1. Introduction

The kinetics of surfactant adsorption plays an important
role in various interfacial phenomena and has been an
active field of research, both experimentally and theoreti-
cally, since the 40s.1 Recently, a new theoretical approach
based on a free-energy formalism was presented and
applied to nonionic as well as ionic surfactant adsorption.2
The main advantage of this approach is that all the
equations are derived from a single functional. This feature
facilitatesgeneralizationsof themodel tomorecomplicated
situations.

Surfactant mixtures are used in numerous industrial
applications, and are also encountered in many systems
because of the presence of surface-active impurities.
Experiments portray a large variety of phenomena specific
to the kinetics of mixed systems.3-8 For instance, more
complex dynamic surface tension is observed due to
competition between the different species.

The equilibrium behavior of mixed-surfactant solutions
was studied in detail in previous works.9-13 One of the
important results, both theoretically and from the ap-
plication point of view, is the ability to relate the mixed-
surfactant behavior to that of the better understood, single-

surfactant one. In the current work we focus on kinetic
aspects, deriving equilibrium results merely for complete-
ness and comparison with previous models. One of our
aims is to predict the mixture kinetics from the behavior
of the single surfactants. A particularly interesting
question is whether mixing several species would lead in
certain cases to a significant difference in the kinetics as
compared to the single-surfactant systems.

In this paper we extend our previously introduced model
to describe the competition between two nonionic adsorb-
ing species. In section 2 we present the model and derive
the equilibrium relations and kinetic equations. The
complete set of kinetic equations can be solved only
numerically, as is done in section 3. We then discuss, in
section 4, the asymptotic time dependence of diffusion-
limited and kinetically limited adsorption and the cor-
responding characteristic time scales. We focus on the
relation between the adsorption behavior of the mixture
and the properties of its individual constituents. Good
agreement is found between the experimental results and
our predictions. In addition, we give an analytic solution
for the kinetics in the simple case of a linear adsorption
isotherm.

To make the formulation as transparent as possible,
we have tried to minimize the number of symbols and
used dimensionless forms whenever possible. To facilitate
translation into experimentally useful, dimensional quan-
tities, a nomenclature section is provided.

2. The Model
Our model is based on the free-energy formalism

presented in detail in previous papers.2 We consider a
semi-infinite aqueous solution of nonionic surfactants
having, at x ) 0, a flat, sharp interface with a nonpolar
fluid phase (such as air or oil). The solution is in contact
with a bulk reservoir, at x f ∞, containing two types of
surfactant molecules, denoted by A and B. It is considered
dilute, with the volume fraction of the two constituents
well below their critical micelle concentration (cmc)
values.14 At the interface, however, the surfactant volume
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fraction is usually much larger. Hereafter, we use φ to
denote the volume fraction of surfactant A, ψ for the
volume fraction of surfactant B, µ for the chemical
potential, and D for the diffusion constant. The subscripts
A and B distinguish between the two different surfactants.
The subscripts 0, 1, and b are used to distinguish between
different positions in the solution, corresponding respec-
tively to the interface, subinterface layer, and bulk
reservoir.

The excess interfacial free energy is equal to the
reduction in surface tension,

where ∆f is the bulk contribution per unit volume of each
species and f0 the interfacial contribution per unit area.
In dilute nonionic surfactant systems, the dominant
contribution to the surface tension is usually the interfacial
one, f0. Since the surfactant solution is considered dilute,
the bulk free energy is taken to be the sum of ∆f(φ) and
∆f(ψ). Each of these contributions contains the entropy of
mixing in the ideal, dilute limit and a contact with the
bulk reservoir. For species A we write

and similarly for species B. As this is a lattice model, it
is conveniently formulated using volume fractions as the
degrees of freedom. The translation to mole fractions or
concentrations requires specifying molecular sizes for the
various species. Here, the surfactant molecular size, a, is
assumed to have the same value for both species, on
account of simplicity.15 All the energies, chemical poten-
tials, and interaction parameters are expressed in units
of kBT where kB is the Boltzmann constant and T the
temperature. At the interface, the surfactant volume
fractions are usually much larger and we have to consider
the full, nonideal entropy of mixing and additional
interaction terms:

where R is the energy gain of adsorption onto the interface,
â the interaction energy between molecules of the same
kind, ε the interaction between different surfactants,16

and η0 ≡ 1 - φ0 - ψ0 is the surface coverage of the solvent
(water). The interface is in contact with the subsurface
layer, having a chemical potential µ1 ≡ µ(x f 0). Out of
equilibrium µ1 may differ from the bulk chemical potential,
µb. Although both R and µ1 are linearly coupled with the
surface coverage, their physical origin is quite different.
The former is constant in time, characterizing the surface
activity of the specific surfactant and mainly dependent

on the molecular structure (number of hydrocarbon groups
in the surfactant tail). The latter is a time-dependent
function participating in the surface kinetics. Variation
of ∆γ with respect to φ and ψ yields the excess chemical
potential at distance x from the interface:

and at the interface itself,

2.1. Equilibrium. At equilibrium the chemical poten-
tials are equal to their bulk values throughout the solution,
leading to two uniform profiles, φ(x > 0) ≡ φb and ψ(x >
0) ≡ ψb. At the interface we obtain a Frumkin adsorption
isotherm,17 generalized for the A/B mixture case:

The adsorption of species A depends on species B because
of the entropy of mixing (steric effect) and surfactant-
surfactant interactions. The corresponding generalized
Langmuir isotherm is obtained in the limit of no interac-
tions, âA ) âB ) ε ) 0. Finally, the equilibrium equation
of state, ∆γ ) ∆γ(φ,ψ), takes the form

which is equivalent to Lucassen-Reynders’ result,9 when
differences in molecular sizes are neglected.

2.2. Out of Equilibrium. We apply the procedure
presented in ref 2, where the kinetic equations are derived
from the variation of the free energy. The procedure is
generalized for the present case of a two nonionic
surfactant mixture. Since the bulk solution is dilute, two
independent diffusion equations for the two surfactants
are obtained, leading to two Ward-Tordai equations,18

similar to previous models:4

At the interface, however, the two species are correlated

(15) Generalization of a lattice model to the case of different molecular
sizes is, at least approximately, quite straightforward. See, for example,
Andelman, D.; Kozlov, M. M.; Helfrich, W. Europhys. Lett. 1994, 25,
231. On the effect of different molecular sizes on the adsorption, see:
Fainerman, V. B.; Miller, R. Langmuir 1997, 13, 409.

(16) Note that this is a tertiary system (two solutes in a solvent),
requiring three parameters for a complete description of the interactions
(in our case âA, âB, and ε).

(17) Adamson, A. W. Physical Chemistry of Surfaces, 5th ed.; Wiley:
New York, 1990; Chapter XI.

∆γ[φ,ψ] ) ∫0

∞
{∆f[φ(x)] + ∆f[ψ(x)]} dx + f0(φ0,ψ0)

(2.1)

∆f(φ) ) 1
a3

[φ ln φ - φ - (φb ln φb - φb) - µb,A(φ - φb)]

(2.2)

f0(φ0, ψ0) ) 1
a2[φ0 ln φ0 + ψ0 ln ψ0 + η0 ln η0 -

(RA + µ1,A)φ0 - (RB + µ1,B)ψ0 -
âA

2
φ0

2 -
âB

2
ψ0

2 - εφ0ψ0] (2.3)

∆µA(x) ) ln φ(x) - µb,A

∆µB(x) ) ln ψ(x) - µb,B (2.4)

∆µ0,A ) ln
φ0

η0
- RA - âΑφ0 - εψ0 - µ1,A

∆µ0,B ) ln
ψ0

η0
- RB - âΒψ0 - εφ0 - µ1,B (2.5)

φ0 )
φb(1 - ψ0)

φb + e-(RA+âAφ0+εψ0)

ψ0 )
ψb(1 - φ0)

ψb + e-(RB+âBψ0+εφ0)
(2.6)

∆γ ) 1
a2(ln η0 +

âA

2
φ0

2 +
âB

2
ψ0

2 + εφ0ψ0) (2.7)

φ0(t) ) 1
axDA

π [2φbxt - ∫0

t φ1(τ)

xt - τ
dτ] + 2φb - φ1

ψ0(t) ) 1
axDB

π [2ψbxt - ∫0

t ψ1(τ)

xt - τ
dτ] + 2ψb - ψ1

(2.8)
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and the procedure yields two coupled kinetic equations:

As can be seen from the equation above, the coupling
between the kinetics of the two species arises from an
interaction term as well as an entropic one (via the η0
term). It should be mentioned that this form of interfacial
kinetic equations is particular to our free-energy approach.
Close enough to equilibrium, however, it coincides with
the usual adsorption-desorption form, as discussed in
ref 2. The system of four equations, (2.8 and 2.9), with the
appropriate initial conditions, completely determines the
mixture kinetics and equilibrium state. Several limits,
such as diffusion-limited and kinetically limited adsorp-
tion, can be treated analytically, as presented in section
4. The full solution of the mixed-kinetics case is obtained
numerically.

3. Numerical Solution of the Full Equations

Several numerical schemes have been proposed for
solving the Ward-Tordai equation with various boundary
conditions.19-21 We generalized the recursive scheme
suggested by Miller et al.19 to a surfactant mixture having
time-dependent boundary conditions. The complete set of
integro-differential equations were solved, as is explained
in the Appendix.

The time dependence of φ0, ψ0, and their sum φ0 + ψ0
can be seen in Figure 1. The mixture parameters are
specifically chosen to show the interesting case of com-
petition between the two species. While surfactant B
diffuses more rapidly and is more abundant at the interface
during the initial stages of the adsorption process,
surfactant A has a higher surface affinity and dominates
the later stages of adsorption. We note that, because of
this competition, surfactant A not only takes over the
adsorption at the later time stages but also forces
surfactant B to desorb from the interface. In Figure 2 the
dynamic surface tension is shown for the same time scales
and adsorption parameters as those of Figure 1. The
competition between the A and B surfactants results in
a more complex decrease of the surface tension at
intermediate times.

4. Limiting Time Behavior

The asymptotic time behavior close to equilibrium of
the kinetic equations provides a means for comparing
theoretical predictions to experimental results.3 Two
limiting cases of adsorption can be distinguished and
treated separately for long and short times: Diffusion-
limited adsorption (DLA) occurs when the kinetics at the
interface is much faster than the diffusion from the bulk
to the subsurface layer. Equation 2.9 then equals zero,2
since the interface is taken to be at equilibrium with the
subsurface layer. The profiles in the bulk, φ(x > 0) and

ψ(x > 0), depend on the diffusion and evolve in time. On
the other hand, Kinetically limited adsorption (KLA) takes
place in the opposite limit, for which φ1 ) φb and ψ1 ) ψb

throughout the process, implying that the bulk is con-
stantly at equilibrium with the reservoir but not with the
interface.

4.1. DLA Process at Long Times. Diffusion-limited
processes such as the DLA considered here have a
characteristic asymptotic t-1/2 dependence as t goes to
infinity. This is demonstrated in Figure 3. The asymptotic
time dependence of all variables can be written in a generic

(18) Ward, A. F. H.; Tordai, L. J. Chem. Phys. 1946, 14, 453.
(19) Miller, R.; Dukhin, S. S.; Kretzschmar, G. Colloid Polym. Sci.

1985, 263, 420.
(20) Chang, C. H.; Wang, H. L.; Franses, E. I. Colloid Surf. 1992, 62,

321.
(21) Lin, S. Y.; McKeigue, K.; Maldarelli, C. AIChE J. 1990, 36, 1785.

∂φ0

∂t
) φ1

DA

a2 [ln (φ1

φ0
η0) + RA + âAφ0 + εψ0]

∂ψ0

∂t
) ψ1

DB

a2 [ln (ψ1

ψ0
η0) + RB + âBψ0 + εφ0] (2.9)

Figure 1. Surface coverage in a mixture of interacting
surfactants. The dotted, dashed and solid lines are the surface
coverages of surfactants A (φ0), B (ψ0), and the total coverage
(φ0 + ψ0), respectively. The assigned parameters are φb ) 1 ×
10-4, ψb ) 2 × 10-4, RA ) 10 , RB ) 9 , âA ) âB ) 3, ε ) 1, xDA/a
) 300 s-1/2, and xDB/a ) 900 s-1/2. This implies that surfactant
A diffuses more slowly but is more surface-active (RA > RB).

Figure 2. Dynamic surface tension for the system of Figure
1.
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form as

where the subscript “eq” stands for equilibrium values.
Note that the various time constants may generally depend
on the surface coverages of both species. Taking the limit
t f ∞ of the Ward-Tordai relation 2.8 we get

The presence of surfactant B changes the equilibrium
value of φ0 (see eq 2.6). This is the only reason the
relaxation time τ1,A depends on surfactant B. For a DLA
process, the surface and subsurface layers are considered
at equilibrium with each other, and the coverage instan-
taneously follows any change in the subsurface concen-
tration according to

We now omit the subscript eq for brevity. Substituting
(4.1) into (4.3) and comparing powers of t, we get two
linear equations for τ0,A and τ0,B:

Let us consider a single-surfactant system (say the A) as
a reference state. This is simply achieved by setting ψ0,eq

and τ0,B to zero, and denoting φ0 f φh0, η0 f ηj0 ) 1 - φ0.
Consequently,

where the “bars” throughout the paper denote values
obtained for this single-component system.

In a DLA process, the equation of state (2.7) holds also
out of equilibrium,2 since the equilibration of the interface
with the subsurface layer is very fast for both species.
Substituting (4.1) into (2.7), the asymptotic behavior of
the surface tension is obtained:

Without surface interactions (âA ) âB ) ε ) 0 ) only
steric effects and surface activity terms are taken into
account. The Frumkin-like isotherm (4.3) is simplified in
this approximation to a Langmuir-like isotherm, and eq
4.4 takes the form

Using eqs 4.5-4.7, we obtain a simple expression,
relating τγ of the mixture with those of each species
separately, τjγ,A and τjγ,B:

where ∆γjA and ∆γjB are the equilibrium reduction in
interfacial tension of the single-surfactant solutions. This
correspondence relates the time scale of the surface tension
relaxation in the mixture with the time scales corre-
sponding to the individual species. As was pointed out
previously, most common nonionic surfactants usually
undergo DLA. Thus, the above result provides a convenient
way of predicting the behavior of multicomponent surf-
actant mixtures based on single-surfactant data. In Table
1, we compare the predicted xτγ of eq 4.8 with experi-
mental results obtained by Fainerman and Miller4 for a
sequence of Triton X mixtures. On the basis of single-
surfactant values and equilibrium isotherms for the
mixture, the two terms of eq 4.8 are calculated separately.

Figure 3. Dynamic surface tension for the system of Figure
1, redrawn for long times. The curve exhibits the t-1/2 asymptotic
behavior characteristic of DLA.

φ0(t) = φ0,eq (1 - xτ0/t)

φ1(t) = φb (1 - xτ1/t)

∆γ(t) = ∆γeq (1 - xτγ/t) (4.1)

τ1,A ) a2

πDA
(φ0,eq

φb
)2

(4.2)

φ0 )
φ1(1 - ψ0)

φ1 + e-(RA+âAφ0+εψ0)

ψ0 )
ψ1(1 - φ0)

ψ1 + e-(RB+âBφ0+εφ0)
(4.3)

η0xτ1,A ) (1 - ψ0 - âAφ0η0)xτ0,A + ψ0(1 - η0ε)xτ0,B

η0xτ1,B ) (1 - φ0 - âBψ0η0)xτ0,B + φ0(1 - η0ε)xτ0,A
(4.4)

Table 1. Comparison of the Predicted xτγ (eq 4.8) to
Experimental Results4,a

A B φ0/φh0 ψ0/ψh 0 ∆γjAxτjA ∆γjBxτjB

∆γxτγ
(th)

∆γxτγ
(exp) error

X-405 X-45 0.13 0.69 0.6 62 29.5 32 8%
X-405 X-100 0.25 0.67 0.6 38 17.1 17 0.6%
X-405 X-114 0.06 0.71 0.6 14 7.1 6.8 4%
X-405 X-165 0 1.4 0.6 4.4 8.6 6.5 33%

a The materials used were sequences of Triton X mixtures. The
single-surfactant values, φh0, ψh 0, ∆γjAxτjA, ∆γjBxτjB, and equilibrium
isotherms for the mixture, φ0,eq and ψ0,eq, were taken from the same
reference. The values for ∆γxτγ (given in units of dyn s1/2/cm) are
obtained experimentally from the asymptotic slope of the γ vs t-1/2

curves (see eq 4.1). The predicted values for ∆γxτγ of the mixture
and the corresponding experimental results are given in the columns
indicated by “th” and “exp”, respectively. The last column shows
the respective error between theory and experiment.

xτj0,A )
1 - φh0

1 - âA(1 - φh0)φh0
xτj1,A (4.5)

-a2∆γxτγ ) (φ0

η0
- âAφ0

2 - εφ0ψ0)xτ0,A +

(ψ0

η0
- âBψ0

2 - εφ0ψ0)xτ0,B (4.6)

xτ0,A ) (1 - φ0)xτ1,A - ψ0xτ1,B

xτ0,B ) (1 - ψ0)xτ1,B - φ0xτ1,A (4.7)

∆γxτγ ) ∆γjA(φ0/φh0)
2xτjγ,A + ∆γjB(ψ0/ψh 0)

2xτjγ,B (4.8)
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The agreement between theory and experiment is quite
good, although experiments were limited to cases having
one species dominating the adsorption. The last entry in
the table corresponds to a mixture of Triton X-405 and
Triton X-165. Here, the predicted τγ deviates from the
experimental one by 33%. Equilibrium measurements on
this mixture reveal an increase in the X-165 coverage in
the presence of the X-405,4 implying strong interfacial
interactions between the species. The deviation in the
predicted kinetics in Table 1 probably arises from those
interactions, which are not taken into account by eq 4.8.
It is possible to treat also the general case, including
interactions between surfactants, by using the full equa-
tions (4.4)-(4.6) instead of the simplified one (4.8). Such
a procedure, however, involves three additional fitting
parameters (âA, âB, and ε). Nevertheless, as demonstraed
in Table 1, the simple prediction (4.8) may be applicable
to various experimental systems.

4.2. KLA Process at Long Times. Although most
nonionic surfactants undergo a DLA process, the adsorp-
tion of some nonionic surfactants as well as ionic ones is
found to be kinetically limited. For a KLA process, the
bulk of the mixture is assumed to be at equilibrium, φ(x)
) φb and ψ(x) ) ψb. The equations governing the kinetics
are now the interfacial ones, (2.9).

Asymptotic solutions at t f ∞ of first-order equations
such as (2.9) have an exponential form characteristic of
KLA. Linearizing eq 2.9 about the equilibrium state, φ0,eq

and ψ0,eq, two time scales denoted τ+ and τ- emerge (τ- >
τ+). These collective time scales correspond to the kinetics
of a certain combination of surfactant coverages,

where ∆φ0 ≡ φ0 - φ0,eq, ∆ψ0 ≡ ψ0 - ψ0,eq, and C1...C4 are
constants. Since τ- > τ+, it is τ- which limits the kinetics
of the system.

In the simple case of no surface interactions between
A and B (âA ) âB ) ε ) 0, yet keeping steric and surface
activity effects), the expressions for τ( are

where τA and τB are the KLA time scales of the single-
surfactant case, defined as

yet φ0 and ψ0 are the equilibrium values for the mixture.
The behavior of the mixed system combines the single-
surfactant kinetics in a complicated manner. We can gain
some insight on this coupling by considering some simple
cases.

For the case where the interfacial kinetics of surfactant
A is much slower than that of B, τA . τB, eqs 4.9 and 4.10
are simplified to

In the other limiting case, where the two species have
similar time scales, τA = τB, we get

The factor 1/η0 in τ- is quite interesting. Since the
equilibrium surface coverage of the solvent, η0, is usually
very small in surfactant systems, this factor implies that
the coupling in a surfactant mixture undergoing KLA may
lead to a significant reduction in adsorption rate. In this
regime the mixture behavior may differ considerably from
that of its individual constituents. Because of the relatively
large factor of 1/η0, the KLA time scale may exceed the
DLA one and the adsorption would become kinetically
limited.

4.3. Short Time Behavior. DLA Regime. Here, we
assume that the surface and subsurface layers are already
at equilibrium and examine the system at short time scales
compared to the diffusion mechanism.

Note that the DLA behavior cannot strictly start at t )
0, since at that instance the interface and subsurface layers
are not at equilibrium with each other. Assuming a DLA
time dependence of the form φ0(t) = const. + xt/τA, the
const. is found to be roughly equal to 2φb. In other words,
only once the surface coverage has exceeded a value of
2φb, indicating an almost complete depletion of the
subsurface layer,18 can one assume a process limited by
diffusion (the same argument applies to the second
surfactant). Figure 4 shows the surface coverage and
surface tension at this DLA stage plotted as a function of
t1/2. The linear dependence of the surface coverages is
evident, whereas the dynamic surface tension, having
contributions from both species, exhibits a small deviation
from the t1/2 behavior. Since surfactant A has been taken
to be much slower than surfactant B, the t1/2 behavior of
the two surfactants overlaps only for a very short period
of time.

Beyond the DLA Regime. At the very early time stages
of the process, most of the molecules in the subsurface
layer migrate rapidly to the interface. Only when the
subsurface layer becomes nearly depleted do molecules
from the bulk start migrating toward the interface by a
diffusive mechanism. Before diffusion sets in, the DLA
assumption is invalid and the interfacial kinetics must be
considered explicitly. To address these very early time
stages, we assume that the bulk solution is still at its
initial equilibrium state, unperturbed by the presence of
the interface. The leading time behavior of the surface
coverage is found from (2.9) to be linear, as can be seen
in Figure 5:

Any correlation between the two species vanishes during
this initial stage since the surfactants at the interface are
dilute and noninteracting. We would like to emphasize
that those very early time scales (10-11-10-7 s) are of no

C1∆φ0 + C2∆ψ0 ∼ e-t/τ-

C3∆φ0 + C4∆ψ0 ∼ e-t/τ+ (4.9)

2
τ(

)
1 - ψ0

τA
+

1 - φ0

τB
( x(1 - ψ0

τA
+

1 - φ0

τB
)2

- 4
η0

τAτB
(4.10)

τA ) a2

DA
(φ0

φb
)2

e-RA

τB ) a2

DB
(ψ0

ψb
)2

e-RB (4.11)

(1 - φ0,eq)∆φ0 - ψ0,eq∆ψ0 ∼ e-t/τ-; τ- ) τA(1 - φ0)/η0

∆ψ0 ∼ e-t/τ+; τ+ ) τB(1 - φ0) (4.12)

∆φ0 - ∆ψ0 ∼ e-t/τ-; τ- ) τA/η0

φ0,eq∆φ0 + ψ0,eq∆ψ0 ∼ e-t/τ+; τ+ ) τA (4.13)

φ0(t f 0) = φb +
DA

a2
φbRAt

ψ0(t f 0) ) ψb +
DB

a2
ψbRBt (4.14)
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experimental interest. We study them as an analytic limit
of the general kinetic equations.

4.4. Linear Isotherm Limit: Weakly Adsorbing
Surfactants. We present now a very simplified and
restricted case which, nevertheless, is of interest since it
has an analytic solution. The assumptions for which this
case can be treated are (i) one of the surfactants (say A)
has a low surface activity and undergoes a slow DLA
process, (ii) the second surfactant (B) is assumed to be at
equilibrium, and (iii) the two species do not interact. Since
the surface coverage of surfactant A is always very low,
its isotherm can be taken as linear in φ1 (Henry’s law):

as can be seen from taking the low-coverage limit of eq
2.6. With the above assumptions, the time-dependent

surface coverages of the two species can be explicitly
calculated,20-22

where τ ≡ (a2/DA)(1 + eRA)2. Note that in the limit t f 0,
the DLA process starts at φ0(t)0) ) 2φb/(e-RA +1) which
is somewhat smaller than 2φb. This result is consistent
with an early-stage dynamics, where the subsurface layer
is entirely depleted, as was discussed in section 4.3.
Furthermore, the linear relation (4.15) is always valid for
short enough times, when the surface coverage is low (with
no further limiting assumptions), as demonstrated in
Figure 6.

5. Conclusions
We have examined the behavior of nonionic surfactant

mixtures by solving numerically the governing kinetic
equations, as well as deriving analytical limiting cases.
A comprehensive description of the different adsorption
stages is obtained. For mixtures of common, nonionic
surfactants, the adsorption process can be divided into
four temporal stages. At the very early times of the
adsorption, the process begins with a short stage, where
the surface coverage and surface tension change linearly
with time because of interfacial kinetics (Figure 5). As
discussed in section 4.3, this stage is practically too short
to be observed experimentally (usually less than micro-
seconds). During this early stage, the subsurface layer
becomes nearly empty, which in turn drives a second,
diffusion-limited stage, where molecules of both species
diffuse from the bulk with a t1/2 time dependence (Figure
4). During this second stage (discussed above in section
4.3), the coverage is dominated by the more mobile species
having a faster diffusion. In cases where the less mobile
species is more surface-active, a third stage is predicted.
Here, one species undergoes desorption, while the coverage
gradually becomes dominated by the second, energetically

(22) Sutherland, K. L. Austral. J. Sci. Res. A 1952, 5, 683.

Figure 4. Surface coverage (a) and dynamic surface tension
(b) for the system of Figure 1, redrawn for intermediate short
times. The curve exhibits the expected t1/2 behavior charac-
teristic of DLA at short times.

φ0 ) eRAφ1 (4.15)

Figure 5. Dynamic surface tension for the system of Figure
1, redrawn for extremely short times. The curve exhibits the
predicted linear behavior.

φ0(t) ) [1 - tanh(RA/2)et/τ erfc(xt/τ)]φbe
RA

ψ0(t) )
ψb[1 - φ0(t)]

ψb + eRB
(4.16)
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favorable surfactant. This competition can be seen in
Figure 1. The final relaxation toward equilibrium is
usually diffusion-limited, exhibiting an asymptotic t-1/2

behavior (Figure 3), which was explained in section 4.1.
For surfactant mixtures exhibiting kinetically limited

adsorption, we find a “synergistic” effect, where the
mixture kinetics may be considerably different from that
of the individual species. In cases of high-equilibrium
surface coverage, our model predicts a significant increase
in the limiting time scale due to coupling between the two
surfactants.

We have managed to relate the kinetic behavior of the
two-surfactantmixturewith thepropertiesof its individual
constituents, (eq 4.8). The kinetic behavior of the mixture
can be predicted on the basis of equilibrium isotherms
and single-surfactant data. Our results are in good
agreement with experiments. However, since previous
experiments were restricted to surfactants of very different
adsorption time scales, our theory could be checked only
in those experimental conditions. Further experiments
on surfactant mixtures, especially with comparable ad-
sorption time scales and equilibrium surface coverages,
are needed in order to get a better verification of our model.

The problem we have dealt with in this work is another
example of the ease at which the free-energy approach to
adsorption kinetics can be generalized. Examples for
further extensions are, for instance, the addition of
adsorptionbarriers andtreatment of surfactant adsorption
from micellar solutions.
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Nomenclature
Below is a summary of the symbols used in this work.

To make the formulation as concise as possible, we have
extensively used dimensionless forms. Whenever neces-
sary, a translation to the more practical, dimensional
quantities is provided, using the symbols of e.g. ref 4.

Symbols
a ) molecular dimension (equal to the inverse square

root of the maximum surface density, Γ∞
-1/2)

D ) diffusion coefficient
∆f ) excess free energy per unit volume of the bulk solution
f0 ) interfacial contribution to the free energy per unit

area
t ) time
x ) distance from the interface
R ) energy (in units of kBT) gained by a surfactant

molecule by migrating to the interface
â ) energy (in units of kBT) of lateral attraction between

two surfactant molecules of the same species
∆γ ) change in interfacial tension
ε ) energy (in units of kBT) of lateral attraction between

two surfactant molecules of different species
µ ) chemical potential (in units of kBT)
τ ) time scale of a kinetic process
φ, ψ ) volume fractions of the two surfactant species (equal

to the corresponding concentrations multiplied by a3; φ )
a3cA, ψ ) a3cB)

φ0,ψ0 ) surface coverages of the two surfactant species
(equal to the corresponding surface densities multiplied by
a2; φ0 ) a2ΓA, ψ0 ) a2ΓB)

φh0, ψh 0 ) surface coverages in the single-surfactant
solutions

Subscripts
A,B ) corresponding to surfactant A, B
0 ) value at the interface
1 ) value at the subsurface layer of the solution
b ) value at the bulk reservoir
eq ) value at equilibrium

Appendix: Numerical Scheme
The objective of the numerical scheme is to solve the set

of four equationssthe two Ward-Tordai equations (2.8)
and the two interfacial ones (2.9). The hardcore of the
problem is the evaluation of the integral in eq 2.8:

This is done by discretizing the time variable t and
transforming the integral into a recursion relation.19 The
singularity in the integrand is removed by substituting
x ) xt-τ. Evaluating the integral at discrete time steps,
∆t ) tk+1 - tk , we obtain

where tk ≡ k ∆t and tn ≡ t . The initial conditions are φ0(0)
) φ1(0) ) φb and ψ0(0) ) ψ1(0) ) ψb. Adding the rest of the
terms in the Ward-Tordai equations, we obtain linear
relations between φ0 and φ1, and between ψ0 and ψ1.
Substituting these relations into the kinetic boundary
conditions (2.9) and using a finite difference to evaluate
the first time derivative, ∂φ0/∂t f [φ0(tk+1) - φ0(tk)]/∆t, we
obtain a set of four algebraic equations, relating the values

Figure 6. Comparison between the numerical solution of the
complete set of equations (solid line) and the analytic solution
assuming a linear adsorption isotherm (dashed line). The
parameters used in the calculations are φb ) 2 × 10-5, ψb )
10-4, RA ) 6, RB ) 5, âA ) âB ) ε ) 0, xDA/a ) 2 × 104 s-1/2,
and xDB/a ) 104 s-1/2. The linear approximation is valid only
in the beginning of the process and fails when the coverage
becomes large.

φ0(t) ) 1
axDA

π [2φbxt - ∫0

t φ1(τ)

xt - τ
dτ] + 2φb - φ1

∫0

t
φ1(τ)

xt - τ
dτ f

∑
k)1

n

[φ1(tn - tk) + φ1(tn - tk-1)](xtk - xtk-1)
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of φ0, ψ0, φ1, and ψ1 at the current time step, t ) tn:

and similar two equations for surfactant B. This set of
equations is solved numerically, using a binary search
method.

LA980774H

φ0(tn) )
1

axDA

π [2φbxtn -

∑
k)1

n-1

φ1(tn - tk)(xtk+1 - xtk-1) - φ0(xtn - xtn-1)] +

2φb - (1 +
1

axDA

π
x∆t)φ1(tn)

φ0(tn) ) φ0(tn-1) +
DA

a2
∆t{φ1(tn) ln [η0(tn)φ1(tn)

φ0(tn) ] +

RA + âAφ0(tn) + εψ0(tn)}
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