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Abstract. The behavior of polyelectrolytes and polyampholytes in semi-dilute solutions is investigated
theoretically. Various statistical charge distributions along the polyelectrolyte chains are considered: (i)
smeared, where the charges are uniformly distributed along the chain. (ii) Annealed, where the charges
are allowed to associate and dissociate from the chain. (iii) Permuted, where the total number of charges
on the chain is fixed, but the charges can move along the chain. (iv) Quenched, where the charges on the
chains are “frozen” in a random configuration. Finally, we also consider (v) polyampholytes, where each
monomer can be positively or negatively charged, or neutral. Path integral formulation was used to derive
mean field free energies for the different models. Self-consistent field equation is obtained for the polymer
order parameter and a Poisson-Boltzmann like equation for the electrostatic potential. We show that the
difference between the permuted and the smeared models is a constant shift in the chemical potential
leading to similar mean field equations. Within mean-field the quenched model is found to be equivalent
to the annealed one, provided that the system is coupled to a reservoir of polyelectrolyte chains. The
random phase approximation is used to calculate the monomer-monomer structure factor S(q) for the
different statistical charge distribution models. We show that in the annealed model fluctuations of the
monomer charges contribute to the electrostatic screening in addition to the free ions in the solution. The
strength of this screening depends on the variance of the monomer charge distribution and is especially
important for polyampholytes in bad solvent conditions where the mesophase separation is enhanced. The
ratio between the variance and the net average charge determines whether polyampholytes behave more
as polyelectrolytes or as neutral chains.

PACS. 61.25.H Macromolecular and polymer solutions; polymer melts; swelling – 36.20 Macromolecules
and polymer molecules – 41.10.D Electrostatics, magnetostatics

1 Introduction

Charged polymers have drawn a considerable amount of
attention in the past years both theoretically and ex-
perimentally [1–3]. This is due, on one hand, to their
wide range of industrial applications in processes involving
charged colloids [4,5] and on the other hand, to their re-
semblance to water soluble bio-polymers such as proteins
and DNA. A distinction is made between polyelectrolytes,
with all charges having the same sign, and polyampholytes
with positively as well as negatively charged monomers
[6–10]. For the former, the electrostatic interactions are
repulsive and long ranged. For the latter, the repulsion
of like-charges competes with the attraction of opposite
charges, resulting in a complex behavior which depends
on the net charge of the chain.
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In spite of extensive investigations of polyelectrolytes
including the pioneering works of Katchalsky et al. [11]
and Manning [12], polyelectrolytes are much less under-
stood than neutral polymers. For example, there exists
a debate regarding the persistence length and the chain
conformations for single chains in dilute solutions [13–18].
This is due to the delicate interplay between the chain
connectivity and the long range nature of electrostatic in-
teractions.

Semi-dilute polyelectrolyte solutions where the chains
interact with one another have been studied as well
[16,17,19,20]. In the so-called “blob” picture, scaling laws
are derived by singling out the most dominant interaction
at different length scales. Another technique is the Ran-
dom Phase Approximation (RPA) [21–26] used for the cal-
culation of the structure factor S(q) as can be measured
by scattering experiments [27,28].

In addition to bulk properties, special attention was di-
rected to adsorption experiments of polyelectrolytes onto
a single charged surface [29,30], and between two charged
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Fig. 1. Schematic view of a polyelectrolyte solution. The
monomer coordinates are rl(s) where l = 1, ...,M labels the
polymer chain and s ∈ [0, N ] is a continuous index along
the chain. The small ion coordinates are R+

i and R−j where

i = 1, ..., N+ and j = 1, ..., N−.

surfaces [31–34]. On the theoretical side, discrete models
have been employed for which the chains are placed on a
lattice [35,36]. This approach has been used by Böhmer
et al. [37] to calculate force curves between two charged
surfaces containing a polyelectrolyte solution.

Another approach is a continuum one [38–42] where
the charge densities, monomer densities and electric field
are treated as continuous functions of the local position.
Varoqui et al. [39,40] investigated polyelectrolyte adsorp-
tion onto one surface, while Podgornik [43] has calculated
inter-surface forces. In recent works [42] non-linear ex-
cluded volume interactions have been included and scaling
laws characterizing the adsorption of polyelectrolytes are
proposed (within mean-field approximation).

In the present work the continuum approach is ex-
tended to random (heterogeneous) polyelectrolytes. We
study several statistical charge distributions (i.e. an-
nealed, quenched and permuted) corresponding to differ-
ent physical situations. Polyampholytes with positive and
negative charges are studied as well. One of the goals of
the present work is to take explicitly into account several
characteristics of polyelectrolytes such as the connectiv-
ity of the polymer chains, the non-electrostatic monomer-
monomer interactions and the Coulomb interactions be-
tween charged monomers, counter-ions and co-ions.

The paper is organized as follows: in the next section
we present a general formalism for calculating the free
energy of randomly charged chains. This formalism is ap-
plied in Section 3 to derive mean-field equations for the
various charge distributions (including polyampholytes).
The reader who is not interested in the technical details
can skip these two sections and go directly to Section 4
where the mean-field results are summarized and the vari-
ous charge distributions are compared. The random phase
approximation (RPA) is used in Section 5 to calculate the
structure factor S(q) of polyelectrolytes and polyampho-
lytes in good and bad solvents.

2 General formalism

Let us consider a semi-dilute solution of polyelectrolytes
in a good solvent in presence of salt (electrolyte). The
system is schematically drawn on Figure 1. In the model,
based on the Edwards’ formalism [44], the microscopic
degrees of freedom are the monomer positions {rl(s)},
where s ∈ [0, N ] is a continuous index along a chain of
N monomers and l = 1, ...,M is the label of the M chains
in solution. The positions of the small co-ions (counter-
ions) are denoted by R+

i (R−j ) where i = 1, ..., N+ and

j = 1, ..., N− are, respectively, the indices of the monova-
lent positive (+e) and negative (−e) ions (see Fig. 1). For
simplicity only a symmetric 1:1 electrolyte is considered.

The partition function Z is then expressed as a path
integral over all possible configurations:

Z =

∫
Drl(s) DR+

i DR−j exp

(
−

3

2a2

M∑
l=1

∫ N

0

ds ṙ2
l (s)

)
× exp

(
−

1

2
β

∫
dr dr′ ρ̂c(r)vc(r− r′)ρ̂c(r

′)

)
× exp

(
−

1

2
v

∫
dr ρ̂2

m

)
(1)

where
∫
Dg denotes the functional integral over the func-

tion g(r). The first term in the exponent is the Wiener
measure representing the connectivity of the polymer ran-
dom walk [45], where ṙl(s) is the derivative of rl(s) with
respect to the monomer index s and the Kuhn length a
is the effective monomer length. In writing this term, we
have assumed that the charged chains can be modeled as
flexible chains. This assumption can be more easily justi-
fied for semi-dilute solutions of weakly charged chains.

The second term is the electrostatic interaction term
where β = 1/kBT is the inverse thermal energy, vc(r) =
1/ε|r| is the Coulomb interaction, ε is the dielectric con-
stant of the solution and ρ̂c(r) is the local charge density
operator including all charges in the solution (charged mo-
nomers, co-ions and counter-ions):

ρ̂c(r) =
M∑
l=1

∫ N

0

ds ql(s)δ(r − rl(s))

+
N+∑
i=1

eδ(r−R+
i )−

N−∑
j=1

eδ(r−R−j ) (2)

where ql(s) is the random variable denoting the charge
carried by the s monomer along the l chain. In the next
section we will consider several charge distributions for
ql(s). For example, in the smeared model, ql(s) = pe is
a constant independent of the position s along the chain
and the chain index l.

The last term in equation (1) is the excluded volume
repulsion between monomers, where v ∼ a3 is the excluded
volume parameter and

ρ̂m(r) =
M∑
l=1

∫ N

0

ds δ(r− rl(s)) (3)
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is the local monomer concentration operator.
It is possible to integrate out the microscopic degrees

of freedom in the partition function equation (1) by in-
troducing two pairs of collective coordinates: (i) the lo-
cal monomer concentration ρm(r) and its conjugate field
ϕm(r); and, (ii) the local charge density ρc(r) and its con-
jugate field ϕc(r). This is done using the following identity

1 =

∫
Dρm δ

(
ρm − ρ̂m

)
=

∫
Dρm Dϕm exp

(
iv

∫
dr ρmϕm

−iv
M∑
l=1

∫ N

0

ds ϕm[rl(s)]

)
(4)

for ρm(r) and an analogous identity for ρc(r). We will
see below that iϕc(r) is in fact the electrostatic potential.
The functional integrals over ρm(r) and ρc(r) are Gaussian
integrals and are evaluated exactly, leading to

Z =

∫
Dϕm Dϕc exp

(
−

∫
dr

{
β
ε

8π
|∇ϕc|

2 +
1

2
vϕ2

m

})
×ζ+ ζ− ζp (5)

where ζ± = (
∫
dr e∓iβeϕc(r))N

±
and ζp are, respectively,

the partition functions of the (small) co-ions, counter-ions
and polymer in the presence of the external fields iϕc(r)
and iϕm(r). In the thermodynamic limit, where N± and
the volume V become large while the bulk concentrations
c±b = N±/V remain fixed, ζ± become (up to a normaliza-
tion constant):

ζ± =

[
1 +

1

V

∫
dr
(

e∓iβeϕc(r) − 1
)]V c±b

−→ exp

(
c±b

∫
dr
{

e∓iβeϕc(r) − 1
})

. (6)

The partition function of the polymer chains ζp in the
presence of the two external fields is:

ζp =

∫
Drl(s) exp

(
−

M∑
l=1

∫ N

0

ds

{
3

2a2
ṙ2
l (s)

+ivϕm[rl(s)] + iβql(s)ϕc[rl(s)]

})
. (7)

Note that the calculation of ζp depends on the specific
charge distribution ql(s).

3 Mean-field equations

We apply the general formalism introduced above to dif-
ferent monomer charge distributions: smeared, annealed,
permuted, quenched and polyampholytes. These charge
distributions are applicable to different experimental sys-
tems.

3.1 “Smeared” polyelectrolytes

The simplest model of a charge distribution is the so-called
smeared polyelectrolyte. For a polyelectrolyte with a frac-
tion p of its monomers being charged, this model assumes
that each monomer carries a uniform fractional charge pe,
where e is the electron charge. Namely, ql(s) = pe for any
monomer s on any chain l. Without loss of generality we
shall assume that the polymer is positively charged.

It is possible here to use a well-known analogy from
quantum mechanics to calculate the path integral of equa-
tion (7). The partition function is analogous to a Feynman

integral of the Hamiltonian H = −a
2

6 ∇
2 + ivϕm + iβpeϕc

with imaginary time t → is. Thus, each eigenstate φν
contributes a term of the form exp(−MNEν) where MN
is the total number of monomers in the solution. In the
thermodynamic limit N →∞, the ground state dominates
over all other eigenstates [46], and ζp reduces to:

ζp ≈ e−MNE0

= exp

(
−

∫
dr

{
a2

6
|∇φ|2 + ivϕm(r)φ2(r)

+iβpeϕc(r)φ2(r)− µpφ
2(r)

})
(8)

where E0 is the ground-state energy, φ(r) is the renor-
malized ground-state eigenfunction and µp is a Lagrange
multiplier added in order to ensure the normalization of
the wave-function φ2

b = 1
V

∫
dr φ2(r), φ2

b being the bulk
monomer concentration. The polymer analog of the wave-
function φ(r) is usually referred to as the polymer order
parameter, and the local monomer concentration per unit
volume can be shown to be ρm(r) = φ2(r) [2].

The field ϕm can now be integrated out leaving a func-
tional integral only over ψ ≡ iϕc, and the partition func-
tion reduces to:

Z =

∫
Dψ exp (−βFs) (9)

where

βFs =

∫
dr

{
−β

ε

8π
|∇ψ|2 +

∑
±

c±b (1− e∓βeψ(r))

+
a2

6
|∇φ|2 +

1

2
vφ4(r) − µpφ

2(r) + βpeψ(r)φ2(r)

}
.(10)

Note that ψ(r) is identified as the electrostatic potential.
Within a mean-field approximation, the functional in-

tegral is dominated by the saddle point given by the con-
dition δF/δψ = 0. This results in a Poisson-Boltzmann
(PB) like equation for the electrostatic potential, which
includes all charge sources

∇2ψ(r) =
8πe

ε
cb sinh(βeψ)−

4πe

ε

(
pφ2 − pφ2

be
βeψ
)
.

(11)
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The right hand side represents the local charge density.
The first term is the symmetric 1:1 electrolyte contri-
bution, the second term is associated with the (posi-
tive) charges on the polymer chains, while the last term
comes form the counter-ions which dissociated from the
chains. Note that charge neutrality implies c+b → cb and

c−b → cb + pφ2
b .

Since φ(r) is the ground state eigenfunction, it satis-
fies the variational equation δF/δφ = 0, yielding a self-
consistent field (SCF) equation for the polymer order pa-
rameter:

a2

6
∇2φ(r) = v(φ3 − φ2

bφ) + βpeψφ. (12)

This is an equation for the density of polymer chains in
an external electric potential ψ and with excluded vol-
ume interactions characterized by the parameter v. In the
above equation µp has been substituted in order to have
the correct bulk limit: ψ → 0 and φ2 → φ2

b .
Equations (11, 12) can be also derived in a more heuris-

tic way by performing a variational minimization of a
phenomenological free energy [41]. As shown below, the
present approach can be more easily generalized to take
into account the various models for the charge distribution
along the chain.

3.2 Annealed polyelectrolytes

The derivation presented above for the smeared case can
be extended to more realistic annealed charge distribu-
tions where charges can dynamically associate and dis-
sociate from the chains. The annealed model describes
an experimental system where the monomers have weak
acidic (or basic) groups. The pH of the solution controls
the degree of association/dissociation of ions on the poly-
mer chain.

Assuming no charge correlations along the chain, the
monomer charge distribution f [ql(s)] is defined as the
nominal probability of the monomer s along the chain l
to have a charge ql(s).

f
[
ql(s)

]
=
∑
j

pj δ
(
ql(s)− zje

)
(13)

where the randomly charged chain is described by a set
of valencies {zj} (zj = 0, 1, 2, . . . ) with normalized prob-
abilities {pj} such that

∑
j pj = 1. Here, we concentrate

on a simple example of a polyelectrolyte for which each
monomer can be either positively charged (z = 1 and
q = +e) with probability p or neutral with probability
1− p. The charge distribution for each monomer is

f
[
ql(s)

]
= pδ

(
ql(s)− e

)
+ (1− p)δ

(
ql(s)

)
.

(14)

It is important to note that for annealed polyelectrolytes,
the partition function has to be averaged with respect to
the monomer charges since they are in thermal equilibrium

with the reservoir. As a result the electrostatic contribu-
tion of one monomer in ζp (Eq. (7)) becomes:〈

e−iβql(s)ϕc[rl(s)]
〉
p

= 1− p+ pe−iβeϕc[rl(s)] (15)

where the average is taken over the charge distribution,
〈O〉p =

∫
O(q)f(q) dq, and the annealed free energy be-

comes

βFa =

∫
dr

{
−β

ε

8π
|∇ψ|2 +

∑
±

c±b (1− e∓βeψ(r))

+
a2

6
|∇φ|2 +

1

2
vφ4(r) − µpφ

2(r)

−φ2(r) log
(

1− p+ pe−βeψ(r)
)}

. (16)

The variation of equation (16) with respect to ψ(r), leads
to a PB like equation

∇2ψ(r) =
8πe

ε
cb sinh(βeψ)−

4πe

ε

(
paφ

2 − pφ2
be
βeψ
)
(17)

where

pa(r) ≡ pe−βeψ(r)/(1− p+ pe−βeψ(r)) (18)

can be interpreted as the annealed charge probability and
depends on the local electrostatic potential. Similarly, the
variation of equation (16) with respect to φ(r) gives a
modified SCF equation:

a2

6
∇2φ(r) = v(φ3 − φ2

bφ) + φ log
(
1− pa + paeβeψ

)
.

(19)

Equations (17, 19) are the annealed equations for the
charge distribution equation (14), similar to equations (11,
12) for the smeared case (see also Ref. [41]).

3.3 “Permuted” polyelectrolytes

Another variant of the annealed case is the permuted
model for which a fixed number of charges pN are free to
move along each chain without dissociating from it. Thus,
the total charge on the chain remains constant. This is in-
troduced into the annealed model by adding a constraint
in equation (7) in order to keep the total charge on each
of the chains fixed:

δ

(∫ N

0

ds ql(s)−Npe

)
=

∫
dul exp

(
iul

∫ N

0

ds [ql(s)− pe]

)
(20)
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where ul is a Lagrange multiplier related to the fixed
charge constraint of the chain l. Assuming ground state
dominance, the polymer partition function becomes:

ζp =

[∫
du exp

(
−

∫
dr

{
a2

6
|∇φ|2

+ivϕm(r)φ2(r) + ipeuφ2(r) − µpϕ
2
m(r)

−φ2(r) log
(

1 + e−ipβeϕc(r)+ieu
)})]M

(21)

where the index l is dropped from the functional integral
over ul since the constraint is satisfied separately on each
chain. Note that the fraction p of charged monomers is
introduced through the constraint (Eq. (20)). In order to
carry out the integration over u, we use the identity (sim-
ilar to Eq. (4))

1 =

∫
Dg(r) δ

(
g(r)− u

)
=

∫
Dg(r) Dh(r)

× exp

(
i

∫
dr h(r)g(r)− i

∫
dr h(r)u

)
. (22)

A sequence of saddle point approximations for g(r), h(r)
and u leads to the following mean-field free energy for the
permuted case:

βFp = βFs +

∫
dr {p log p + (1− p) log(1− p)}φ2(r).

(23)

This correction term represents the translational entropy
of the charges on the chain [23]. However, the last term
being quadratic in φ and independent of ψ, only shifts
the chemical potential µp without affecting the differential
equations (11, 12).

3.4 Quenched polyelectrolytes

In the quenched model the charge distribution is frozen.
Experimentally, this corresponds to heterogeneous copoly-
mers with a random sequence of charged and neutral mo-
nomers. The specific sequence of each copolymer is deter-
mined during the polymerization stage and represents one
possible realization of the random distribution. Various
physical quantities are then calculated by averaging over
this random distribution. Instead of averaging the par-
tition function, one should average the free energy itself
over the random charge distribution. A standard method
in quenched systems is the replica trick [47] based on the
following identity:

〈logZ〉 = lim
n→0

d 〈Zn〉

dn
(24)

where 〈. . . 〉 indicates an average over the quenched disor-
der and the nth power of the partition function introduces
n replicas of the system all having the same monomer
charge distribution. Generalizing the above approach we
obtain:

〈Zn〉 =

∫
Dϕαm Dϕ

α
c exp

(
−

n∑
α=1

∫
dr

{
β
ε

8π
|∇ϕαc |

2

+
∑
±

c±b (1− e∓iβeϕ
α
c ) +

1

2
v (ϕαm)2

})
〈ζn〉

(25)

where

〈ζn〉 =

∫
Drαl (s) exp

(
−

n∑
α=1

M∑
l=1

∫ N

0

ds

×

{
3

2a2
(ṙαl (s))2 + ivϕαm[rαl (s)]

})
× exp

( M∑
l=1

∫ N

0

ds log
(
1− p+ pe−iβe

∑
α ϕ

α
c [rαl (s)]

))
(26)

and the superscript α = 1, ..., n is the label of the replica
α. A mean-field estimate of ζn can be obtained by us-
ing again the quantum-mechanical analogy. An additional
complication is that the effective Hamiltonian here is a
many-body one as it couples different replicas:

Hn =
n∑
α=1

{
−
a2

6
∇2
α+ivϕαm

}
− log

(
1− p+pe−iβe

∑
α ϕ

α
c

)
.

(27)

Assuming no replica symmetry breaking, we use a Hartree
approximation to express the ground state of the many-
body eigenfunction φn({rα}) =

∏n
α=1 φ(rα), in terms of

single-body eigenfunctions φ(rα):

ζn ≈ e−MEn

= exp

(
−nM

∫
dr

{
a2

6
|∇φ|2 + ivϕmφ

2 − µpϕ
2
m

})
× exp

(
M

∫
drα

n∏
α=1

φ2(rα)

× log
(
1− p+ pe−iβe

∑
α ϕc(r

α)
))
. (28)

The path integrals over ϕαm(r) can be evaluated exactly,
whereas the path integrals over ϕαc (r) can be approxi-
mated by their saddle point values. Since we assumed no
replica symmetry breaking, all saddle point functions are
identical: iϕαc (r) ≡ ψ(r). When we take into account the
coupling with the polyelectrolyte reservoir, this equation
reduces to the annealed PB equation (Eq. (17)). Similarly,
the SCF equation reduces to equation (19).
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3.5 Annealed polyampholytes

Finally, the mean-field formalism can be generalized in a
straightforward way to treat polyampholytes, consisting
of negatively and positively charged monomers. A gen-
eral polyampholyte is described by a set of valencies {zj}
(zj = 0, ± 1, ± 2, . . . ) with probabilities {pj}, where∑
j pj = 1. The statistical distribution of the charges can

be either annealed, quenched or permuted. For simplicity,
we consider only the annealed case where the contribution
of the charged monomers to the free energy becomes

βF elpa = −

∫
dr φ2(r) log

∑
j

pje
−βzjeψ(r)

 (29)

and should be compared to the last term in equation (16).
The modified PB equation (Eq. (17)) is now:

∇2ψ(r) =
8πe

ε
cb sinh(βeψ) −

4πe

ε

(
zaφ

2 − z̄φ2
be
βeψ
)
(30)

where z̄ ≡
∑
j pjzj is the average monomer charge (in

units of e) and

za(r) =

∑
j pjzje

−βzjeψ(r)∑
j pje

−βzjeψ(r)
(31)

is the annealed (weighted) monomer valence, which is
nothing but the Boltzmann average of the monomer
charge distribution. Although we allow multivalent char-
ges on the polyampholyte chains, we limit ourselves to the
simplest case of a symmetric monovalent electrolyte. Mul-
tivalent electrolytes can be also considered and will only
affect the first term in the PB equation (Eq. (30)).

Finally, the SCF equation (Eq. (19)) is:

a2

6
∇2φ(r) = v(φ3 − φ2

bφ)− φ log

(∑
j

pje
−βzjeψ

)
. (32)

4 Discussion of the charge models

In the previous section we derived the free energies and
mean-field equations for different charge distributions, by
path integral methods. Below we compare the free energies
of the different charge realizations and discuss some of
their physical properties.

4.1 The smeared case

The smeared free energy can be separated into uncharged
polymer and Coulombic contributions [41], Fs = Fpol +
Fel. The polymer part is:

Fpol = kBT

∫
dr

{
a2

6
|∇φ|2 +

1

2
vφ4(r)− µpφ

2(r)

}
.

(33)

This is the Edwards free energy for polymer solutions ex-
pressed in terms of the polymer order parameter φ(r),
which is the square root of the monomer concentration,
ρm = φ2. The first term represents the stiffness of the
polymer chains, the second takes into account the ex-
cluded volume in good solvent conditions, while the last
term represents the coupling to a reservoir of monomers
with chemical potential µp.

The Coulombic free energy reads:

Fel =

∫
dr

{
−

ε

8π
|∇ψ|2 + kBT

∑
±

c±b (1− e∓βeψ(r))

+ peψ(r)φ2(r)

}
. (34)

This free energy contains the electrostatic interactions be-
tween all charges (small ions and charged monomers),
as well as the translational entropy of the small ions in
solution. In the above expression the independent fields
are the electric potential ψ and polymer order parameter
φ. The small ion concentrations are uniquely determined
by the electric potential through the Boltzmann weight:
c±(r) = c±b exp(∓βeψ(r)).

The same free energy Fel can be obtained from a more
direct approach. It is convenient to express the free energy
in terms of the total charge density: ρc = ec+−ec−+peφ2

F̃el =
1

2

∫
dr dr′

ρc(r)ρc(r
′)

ε|r− r′|

+kBT

∫
dr
{
c+(log c+ − 1) + c−(log c− − 1)

}
−

∫
dr
{
µ+c

+ + µ−c
−
}
. (35)

The free energy Fel of equation (34) should be distin-

guished from F̃el. The former depends on ψ and φ while
the latter depends on c± and φ. For the latter, the electric
potential can be defined as

ψ(r) =

∫
dr′

ρc(r
′)

ε|r− r′|
(36)

and it satisfies the Poisson equation

∇2ψ = −
4π

ε
ρc · (37)

Minimizing F̃el with respect to c± we obtain the equilib-
rium charge distribution of the small ions:

c±(r) = c±b exp(∓βeψ(r). (38)

where µ± = kBT log c±b .
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Substituting the above equilibrium condition back into
equation (35) we obtain

F̃el =
1

2

∫
dr peφ2ψ −

1

2

∫
dr (ec+ − ec−)ψ

−kBT

∫
dr
{
c+b e−βeψ + c−b eβeψ

}
.

(39)

From the Poisson equation (37) we can express c+ − c−

in terms of ∇2ψ and φ. Integration by parts of the term
ψ∇2ψ yields exactly the first term of equation (34) with
the correct negative sign [41,48].

4.2 The annealed case

The second type of charge distribution is the annealed
one where each monomer can be either charged or neutral
with bare probabilities p and 1 − p, respectively. Its free
energy equation (16) is similar to the smeared one except
for the coupling term between the charged monomers and
the local electric potential. The difference can be under-
stood in the following way: in the annealed case different
charge configurations will contribute to the free energy
and one needs to trace over those configurations in the par-
tition function before the free energy is calculated. In the
smeared case there is only one charge configuration where
every monomer is assigned a fractional charge pe, whereas
in the annealed case p represents the bare probability of
dissociation and pa = p exp(−βeψ)/(1−p+p exp(−βeψ))
is the effective probability as can be seen in equations (17,
19).

In experiments the effective probability pa is related
to the pH of the solution via

pH = 14 + log10 [OH] = 14− pK0 − log10

pa

1− pa
(40)

where pK0 = − log10 K0 and K0 is the dissociation con-
stant. For example, in the case of weak alkaline monomers

AOH
 A+ + OH− (41)

K0 is given by

K0 =
[A+][OH−][AOH]

·
(42)

From equation (40) one can easily obtain pa as a function
of the pH.

At low electrostatic potentials |βeψ| � 1, the annealed
free energy can be expanded in powers of ψ. The first term
is equal to the smeared free energy Fs, while the next term
is always negative

βFa ' βFs −
1

2
p(1− p)β2e2

∫
dr ψ2(r)φ2(r) < βFs.

(43)

The fact that Fa < Fs is related to the convexity of the
free energy. Indeed, the annealed case has more degrees of
freedom and allows a better minimization.

4.3 The permuted case

The permuted model is a variant of the annealed case.
It models either mobile charges which can hop along the
chain or charges which associate and dissociate while keep-
ing the total amount of charge fixed on each chain.

The free energy for the permuted case can be written as
the smeared free energy, equation (10), plus an additional
term of entropic origin:

Fp = Fs + kBT

∫
dr
{
p log p + (1− p) log(1− p)

}
φ2(r).

(44)

The correction is due to the translational entropy of the
charges along the chains. It amounts to a shift in the poly-
mer chemical potential and thus does not affect the mean
field equation.

The correspondence between the permuted and the
smeared models was not emphasized in previous works. It
can be interpreted as a tendency of the charges in the per-
muted model to spread uniformly along the linear chain.
However, as was discussed earlier [23], changing the pH
of the solution (e.g., by titration) can lead to non trivial
dependence of µp on the physical parameters, since the
reservoir concentration changes in a titration process and
will affect µp.

4.4 The quenched case

In order to obtain the equilibrium state of chains with
frozen (quenched) charge distributions, the free energy has
to be averaged over all possible charge configurations. As
was shown in the previous section, annealed and quenched
polyelectrolytes in contact with an infinite reservoir of
chains have the same mean field free energy.

The physical meaning of this result can be explained
in the following way [49]: when quenched polymers are
allowed to exchange with a bulk reservoir, containing all
possible configurations, the system picks up the optimal
configurations from the bulk. When the polymers are not
coupled to an infinite reservoir the annealed and quenched
cases are different. Furthermore, the dynamics of annealed
and quenched polyelectrolytes can differ considerably.

4.5 The annealed polyampholyte case

This situation corresponds to monomers which can carry a
positive or negative charges of valency zj = 0,± 1,± 2, . . .
with probability pj . As was derived in the previous section
the electrostatic part of the free energy is given by:

F elpa = −kBT

∫
dr φ2(r) log

∑
j

pje
−βzjeψ(r)

 . (45)

For low electrostatic potentials, an expansion of the above
polyampholyte free energy yields:

F elpa ' z̄e

∫
dr ψ(r)φ2(r) −

1

2
βσ2e2

∫
dr ψ2(r)φ2(r).

(46)
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The first term is linear in ψ and reduces to the smeared
contribution where z̄e replaces pe as the average monomer
charge. The second term is a negative correction (as ex-
pected) which depends on the statistical variance of the
charge distribution

σ2 =
∑
j

pjz
2
j −

(∑
j

pjzj

)2

. (47)

This term affects the monomer-monomer correlations and
S(q) as discussed in the following section.

The general distribution treated here has a few simple
and useful limits:

1. The smeared model (Sect. 3.1) is exactly recovered for
p1 = 1 and z1 = p yielding z̄ = p and σ2 = 0.

2. The annealed model (Sect. 3.2) is obtained for p1 = p,
z1 = 1 and p2 = 1 − p, z2 = 0; z̄ being simply p, za
being pa, and the variance σ2 = p(1− p).

3. A trimodal charge distribution can be a good repre-
sentation for some polyampholyte systems.

f(q) = p+δ(q − e) + p0δ(q) + p−δ(q + e)
(48)

where p0 = 1 − p+ − p−. Each monomer can be ei-
ther positively charged, negatively charged or neutral
with probabilities p+, p− and p0, respectively. The tri-
modal distribution is characterized by two independent
parameters. These can be chosen to be the first two
moments: the average z̄ = p+ − p− and the variance
(“width”) σ2 = p+(1 − p+) + p−(1 − p−) + 2p+p−.
Increasing the weight of p0 means that the polyam-
pholyte becomes weakly charged, while increasing the
weight of p+ (or p−) means that the polyampholyte
becomes more asymmetric and resembles more a true
polyelectrolyte.

4. A bimodal distribution of polyampholytes where each
monomer carries either a +e charge or −e one, with
probabilities p and 1− p, respectively.

f(q) = pδ(q − e) + (1− p)δ(q + e) (49)

with z̄ = 2p − 1 and σ2 = 4p(1 − p). Note that for
this fully charged polyampholyte the same parameter
p characterizes both the average z̄ and the variance σ2,
so that σ2 = 1 − z̄2. The distribution is symmetric
around p = 1/2. As |p − 1/2| increases, |z̄| increases,
σ2 decreases, and the polyampholyte resembles more
and more a polyelectrolyte with a net charge.

It is of interest to consider explicitly the symmetric
bimodal case mentioned above having no net charge p =
1/2, z̄ = 0 and σ2 = 1 is maximal. The PB equation
(Eq. (30)) can be written as

∇2ψ(r) =
8πe

ε
cb sinh(βeψ) +

4πe

ε
φ2 tanh(βeψ) (50)

and the SCF equation (Eq. (32)) is:

a2

6
∇2φ(r) = v(φ3 − φ2

bφ)− φ log [cosh(βeψ)] . (51)

The second term in equation (50) represents the contribu-
tion of the charged monomers to the local charge density.
At low potentials |βeψ| � 1 the polymer charge density is
eφ2 tanh(βeψ) ' eφ2 sinh(βeψ). Comparing, in this limit,
the two terms on the right hand side of equation (50), the
polyampholyte can be viewed as a symmetric electrolyte
[8] whose bulk concentration is not a constant but deter-
mined by the local monomer concentration. For a mono-
valent electrolyte, the local concentrations of positive and
negative ions obey a Boltzmann distribution

c±(r) = cb exp(∓βeψ) (52)

where the equilibrium distribution is achieved by exchange
of ions with the reservoir. For the annealed polyampholy-
tes, the concentrations of positive and negative monomers
ρ±m(r) behave in a similar way (for weak potentials),

ρ±m(r) '
1

2
φ2 exp(∓βeψ) (53)

but the mechanism is different. For the latter, the equilib-
rium distribution is achieved by ionizing the monomers,
and this process is limited by the monomer concentration,
whereas for the former case, the reservoir contains an in-
finite amount of ions. This difference becomes evident at
high potentials where tanh(βeψ) saturates to +1 or −1,
depending on the sign of the potential. Under these ex-
treme conditions the polyampholyte chains are no longer
neutral. Instead, they are fully ionized.

5 Structure factor within RPA

Density-density correlations are measured in scattering
experiments [27,28] and can be calculated using the ran-
dom phase approximation (RPA) [21–26]. This is done by
considering small fluctuations of the homogeneous bulk
state. Since we are interested in the monomer-monomer
density correlations, we do not perform the integration
over ρm(r) in equation (5), and express the partition func-
tion in terms of the three fields ρm(r) = φ2

b + δρm(r),

ϕm(r) = ϕ
(0)
m + δϕm(r) and ϕc(r) = ϕ

(0)
c + δϕc(r). As in-

troduced in Section 2, ϕm is the conjugate field of the local
monomer concentration ρm and ϕc is the electric potential

conjugate to the charge density ρc. Note that ϕ
(0)
c = 0 in

the bulk.
The free energy is then expanded to second order in

these fluctuations. Since the linear terms in δρm, δϕm and
δϕc cancel out, the first non-zero corrections are of second
order.

It is more convenient to write this expansion in Fourier
space:

δρm(r) =

∫
dq

(2π)3
δρm(q) eiq·r (54)

and similarly for δϕm and δϕc.
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5.1 Smeared S(q)

Using the smeared free energy, the expansion yields

βFs(δρm, δϕm, δϕc ) '

∫
dq

(2π)3

{
v δρm(−q) δρm(q)

+v2φ2
bS0(q) δϕm(−q) δϕm(q)

+β
ε

4π

[
q2 + κ2

s + pκ2
pS0(q)

]
δϕc(−q) δϕc(q)

+βpevφ2
bS0(q) δϕm(−q) δϕc(q)

−iv δρm(−q) δϕm(q)

}
(55)

where the integral is over the wavevector q, and S0(q)
is the structure factor of Gaussian chains. For chains of
length N , it is equal to S0(q) = ND(1

6a
2q2N) where

D(ζ) = (2/ζ2)(e−ζ + ζ − 1) is the Debye function [2].
For infinitely long chains N →∞, the structure factor is
independent of the chain length, S−1

0 (q) = 1
12a

2q2.
The Debye-Hückel screening length has two contribu-

tions:

κ2
tot = κ2

s + pκ2
p = 8πlBcb + 4πlBpφ

2
b . (56)

The first contribution arises from the 1:1 symmetric elec-
trolyte while the second one comes from the polymer coun-
terions, lB = e2/εkBT being the Bjerrum length, equal to
about 7 Å at room temperature.

The Fourier transform of the monomer-monomer cor-
relations 〈δρm(r)δρm(0)〉 is proportional to the experi-
mentally measured structure factor S(q). It can now be
calculated as a Gaussian integral giving:

S−1
s (q) =

φ2
b

〈δρm(−q)δρm(q)〉

= S−1
0 (q) + vφ2

b +
p2κ2

p

q2 + κ2
s + pκ2

p

· (57)

Similar expressions were obtained in previous works
[21–25], using somewhat different derivations.

5.2 Annealed S(q) for polyelectrolytes
and polyampholytes

Repeating the above calculation for the annealed case
leads to the same form for S(q) where κ2

tot is replaced
by κ2

tot + p(1− p)κ2
p in equation (57)

S−1
a (q) = S−1

0 (q) + vφ2
b +

p2κ2
p

q2 + κ2
s + p(2− p)κ2

p

· (58)

The enhanced screening here is due to the additional an-
nealed degrees of freedom of the charges on the polymer
chains. Local fluctuations of the monomer charge density
effectively increase the local ion concentration leading to
stronger screening.

The structure factor is also calculated for annealed
polyampholytes. It amounts to replacing κ2

tot by κ2
s+

(|z̄| + σ2)κ2
p and p2κ2

p by z̄2κ2
p in equation (57) leading

to:

S−1
pa (q) = S−1

0 (q) + vφ2
b +

z̄2κ2
p

q2 + κ2
s + (|z̄|+ σ2)κ2

p

·

(59)

For neutral (symmetric) polyampholytes, z̄ = 0, expres-
sion (59) is the same as S−1(q) of neutral polymers.
We note that this approximated result is an outcome of
the RPA which neglects higher order charge correlations.
However, the mean field equations themselves as well as
the free energy (45) depend on the charge distribution
and, in particular, on the variance σ2.

At high charge fraction |z̄| and low salt concentra-
tion, the structure factor S(q) exhibits a peak at a finite
wavenumber q0 > 0 satisfying[

q2
0 + κ2

s + (|z̄|+ σ2)κ2
p

]2
= 12z̄2κ2

p/a
2. (60)

This peak is characteristic of polyelectrolyte and asym-
metric polyampholyte solutions at low salt concentration.
It can be understood in the following way: since S−1(q)
is the energy of the q mode density fluctuations, a maxi-
mum in S(q) corresponds to the lowest energy fluctuation.
Here q0 > 0 results from the competition between the first
term in (59), originating from the polymer elasticity, and
the last term due to the electrostatic interactions screened
by the small ions.

The peak q0 can be observed experimentally for q val-
ues in the range κ < q < a−1. For example, in the absence
of salt, the condition for having a peak at q0 > 0 is

0 <
σ2

|z̄|
<

2
√

3

κpa
− 1. (61)

The right hand side is positive as long as κ−1
p ≥ a (we

recall that κ−1
p = 1/

√
4πlBφ2

b and a is the monomer size).
The above inequality is satisfied for highly asymmetric

polyampholytes, the behavior of which is similar to that
of polyelectrolytes (see case 3 of Sect. 4.5). In the opposite
limit, low |z̄| and/or high σ, the random polyampholyte
behaves essentially as a neutral polymer (q0 → 0).

For fully charged polyampholytes (where each
monomer carries a positive or negative charge, see case 4
of Sect. 4.5), we have σ2/|z̄| = (1− z̄2)/|z̄|. As long as the
net charge |z̄| is large enough, the inequality (61) is sat-
isfied, and the polyampholytes resemble polyelectrolytes
and S(q) will exhibit a peak at finite q0.

In Figure 2 the structure factor S(q) is plotted as func-
tion of the wavenumber q for smeared polyelectrolytes
(σ2 = 0) for different salt concentrations and charge frac-
tions z̄. The structure factor at wavenumber q = 0 is pro-
portional to the osmotic compressibility. As depicted in
Figure 2, S(q = 0) increases upon addition of salt, while
the peak position at q0 shifts to smaller wavenumbers un-
til the peak disappears and S(q) becomes a monotonous
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Fig. 2. The effect of salt concentration on the structure factor
S(q) of polyelectrolytes, equation (59). The parameters used
are: φ2

b = 10−6 Å−3, a = 5 Å, v = 0.1a3, z̄ = 0.1 and σ2 = 0.
The salt concentration is: cb = 1 mM (solid curve); cb = 2 mM
(dots); cb = 5 mM (short dashes) and cb = 10 mM (long
dashes). The inset shows the effect of the average monomer
charge at small salt concentration cb = 0.1 mM. The different
curves correspond to: z̄ = 0.10 (solid curve); z̄ = 0.03 (dots)
and z̄ = 0.01 (dashes).

decreasing function. The inset of Figure 2 shows the effect
of decreasing the average monomer charge |z̄|. The peak
increases and shifts towards smaller values of q.

5.3 Mesophases in bad solvent

We end this section by examining polyelectrolytes and po-
lyampholytes in bad solvent conditions. The excluded vol-
ume parameter v is negative leading to collapse (and seg-
regation) of the chains, and higher order virial terms have
to be included in the free energy. Assuming that the third
order virial coefficient w is positive, with a contribution
of 1

6wρ
3
m to the free energy, we obtain

S−1
pa (q) = S−1

0 (q)−|v|φ2
b+wφ4

b+
z̄2κ2

p

q2 + κ2
s + (|z̄|+ σ2)κ2

p

·

(62)

An analogous expression was obtained for smeared poly-
electrolytes [21,22,25] and is generalized here to annealed
polyampholytes.

An instability of the homogeneous phase is determined
by S−1(q0) = 0, indicating a mesophase separation, where
the size of the micro-domains is λ0 = 2π/q0. In Figure 3,
the line marking the instability of the homogeneous phase
is plotted for different salt concentrations. At high ionic
strength, dilute polyelectrolyte solutions become unstable.
This reflects the macroscopic phase separation of neutral
(screened) polymers in a bad solvent (q0 → 0 as is seen in
Fig. 2).

Fig. 3. The effect of salt concentration on the stability line
of the homogeneous phase. The parameters used are: a = 5 Å,
w = 5×105 Å6, z̄ = 0.01 and σ2 = 0. The salt concentration is:
cb = 0 (solid curve); cb = 1 mM (short dashes); cb = 1.5 mM
(dots and short dashes); cb = 2.5 mM (long dashes) and cb =
5 mM (dots).

Fig. 4. The effect of the variance σ2 on the stability line of
the homogeneous phase. The parameters used are: a = 5 Å,
w = 5 × 105 Å6, z̄ = 0.01 and cb = 0.01 mM. The different
curves correspond to σ2 = 0 (solid curve); σ2 = 0.01 (short
dashes) and σ2 = 0.04 (long dashes).

In Figure 4 we show the dependence of the micro-
domain stability line on the variance of the charge distri-
bution, σ2. One important consequence of equation (62) is
the equivalence of electrostatic screening induced by fluc-
tuations in the polyampholyte charges and screening by

added salt with effective bulk concentration ceff
b = 1

2σ
2φ2
b

(for example, for φ2
b = 10−6 Å−3, ceff

b /σ2 = 0.8 mM) .
This effect is more pronounced in polyampholytes at low
ionic strength than in annealed polyelectrolytes. Indeed
for almost symmetric polyampholytes, the excess charge
is small, |z̄| � 1, while the variance of the charges σ2 can
be close to one.
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Fig. 5. The shift in the θ-temperature of polyampholytes:
∆Tθ = Tθ−T

0
θ in units of T 0

θ as function of the excess charge |z̄|
for different salt concentrations, equation (64). Only the fully
charged polyampholyte case: zj = ± 1 is shown. The polymer
concentration is φ2

b = 10−6 Å−3, |v|φ2
b = 0.01 and the salt

concentrations are: cb = 0 (solid curve); cb = 10 mM (dots);
cb = 0.1 M (short dashes) and cb = 1 M (long dashes).

It is instructive to look at the instability of the ho-
mogeneous system towards macro-phase separation as a
function of the polyampholyte average net charge. We
emphasize that in some cases this macro-phase separa-
tion occurring at q = 0 is preempted by a mesophase at
q0 > 0. Nevertheless, let us consider the change in the sec-
ond virial coefficient v ∼ T − T 0

θ due to the electrostatic
interactions where T 0

θ is the θ-temperature in the absence
of electrostatic interactions. We note that for z̄ = 0 there
is no electrostatic contribution to S(q) in our RPA calcu-
lation. For z̄ 6= 0, the q = 0 instability will occur for

|v|φ2
b − wφ

4
b =

z̄2κ2
p

κ2
s + (|z̄|+ σ2)κ2

p

· (63)

For fully charged polyampholytes (taking the bimodal dis-
tribution: zj = ± 1 and |z̄| ≤ 1), the θ-temperature in the
presence of charged monomers is

T 0
θ − Tθ(z̄) ∼

z̄2

2cb/φ2
b + |z̄|+ 1− z̄2

· (64)

This behavior is similar to the one found for single
chains [7]. In Figure 5 we plot the dependence of the θ-
temperature on the net charge z̄ for different salt concen-
trations. As expected, the θ-temperature is a decreasing
function of the net charge |z̄|. As can be seen from Fig-
ure 5, addition of salt extends the bad solvent regime to
higher values of |z̄|. At high salt concentrations, the elec-
trostatic interactions are screened and Tθ(z̄) is very close
to its pure value T 0

θ .

6 Conclusions

In this work we have studied bulk properties of charged
polymers in aqueous solutions in the presence of added
salt. Starting from a path integral formalism which takes
into account the chain connectivity, short range and
electrostatic interactions we derived mean-field equations
describing the behavior of polyelectrolytes and polyam-
pholytes in solution. We compared several models for the
statistical charge distribution corresponding to different
experimental realizations. The simplest and most fre-
quently used model is the smeared one where charges are
uniformly distributed. The permuted model, where the
charges are mobile along the chain, is found to be equiv-
alent to the smeared model except for a constant shift
in the monomer chemical potential. This shift has to be
taken into account in titration experiments.

The annealed model was found to have a lower free
energy than the smeared one. This is related to the addi-
tional degrees of freedom of the charges of the monomers.
We find that the effective dissociation depends on the lo-
cal electric potential. At thermodynamic equilibrium, the
quenched case is found to be equivalent to the annealed
one, as long as the system is in contact with an infinite
reservoir (bulk) of polyelectrolyte chains.

Annealed polyampholytes are characterized by their
net charge and variance. We find different behavior for
symmetric polyampholytes (no net charge) as compared
to asymmetric ones (closer to polyelectrolytes). At low
electrostatic potentials, all the above mentioned models
have the same limiting behavior.

The monomer-monomer structure factor S(q) is
calculated within the Random Phase Approximation for
annealed polyelectrolytes and polyampholytes. The elec-
trostatic screening depends not only on the salt and coun-
terions but also on the variance of the annealed charge
distribution.

A peak in S(q) for polyampholytes at finite wavenum-
ber is shown to appear at a high net charge and/or low
variance indicating polyelectrolyte-like behavior. For bad
solvent conditions, the variance enhances the tendency of
the system to undergo a mesophase separation.

Let us mention that the main limitations of our cal-
culations are those inherent to the mean field approxima-
tion and RPA. In particular, higher order correlations and
strong fluctuations are neglected.

Finally, this study provides a systematic framework
for the study of charged polymers in ionic solutions, and
can be further extended to treat polyelectrolytes and po-
lyampholytes in restricted geometries and close to charged
surfaces [29,39,41–43]. In particular, it will be interesting
to address the question of how the different charge dis-
tributions are coupled with the polymer adsorption onto
a single surface and the forces exerted by polyelectrolytes
and polyampholytes between planar, cylinders or spherical
surfaces.
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