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Abstract We review a new theoretical 
approach to the kinetics of surfactant 
adsorption at fluid-fluid interfaces. It 
yields a more complete description of 
the kinetics both in the aqueous 
solution and at the interface, deriving 
all equations from a free-energy 
functional. It also provides a general 
method to calculate dynamic surface 
tensions. For  non-ionic surfactants, 
the results coincide with previous 
models. Non-ionic surfactants are 
shown to usually undergo diffusion- 
limited adsorption, in agreement with 
the experiments. Strong electrostatic 
interactions in salt-free ionic sur- 
factant solutions are found to 

lead to kinetically limited adsorption. 
In this case, the theory accounts 
for unusual experimental results 
which could not be understood using 
previous approaches. When salt is 
added, the electrostatic interactions 
are screened and the ionic sur- 
factant adsorption becomes similar to 
the non-ionic case. The departure 
from the non-ionic behavior as the 
salt concentration is decreased is 
calculated perturbatively. 
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Introduction 

The kinetics of surfactant adsorption is a fundamental 
problem of interracial science playing a key role in various 
processes and phenomena, such as wetting, foaming and 
stabilization of liquid films. Since the pioneering theoret- 
ical work of Ward and Tordai in the 1940s [1], it has been 
the object of thorough experimental and theoretical 
research [-2]. 

The problem being a non-equilibrium one, a few theo- 
retical questions immediately arise. One question concerns 
the kinetic adsorption mechanism to be employed by the 
model. One might assume a sort of an equilibrium adsorp- 
tion isotherm to hold at the interface (e.g. as in refs. [3-5]), 
or, alternatively, use a full kinetic equation (e.g. [-6-9]). 
Another important question relates to the definition and 

calculation of the time-dependent interracial tension as 
measured in experiments. 

Previous theoretical works have addressed these ques- 
tions by adding appropriate assumptions to the theory. 
Such models can be roughly summarized by the following 
scheme: (i) consider a diffusive transport of surfactant 
molecules from a semi-infinite bulk solution (following 
Ward and Tordai); (ii) introduce a certain adsorption 
equation as a boundary condition at the interface; (iii) 
solve for the time-dependent surface coverage; (iv) assume 
that the equilibrium equation of state is valid also out 
of equilibrium and calculate the dynamic surface tension 
[103. 

In the current paper, we would like to review an alter- 
native approach based on a free-energy formalism [11, 12]. 
The main advantage is that all the equations are derived 
from a single functional, thus yielding a more complete 
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and consistent description of the kinetics in the entire 
system. Results of previous models can be recovered as 
special cases, and one can check the conditions under 
which such cases hold. The definition and calculation of 
the dynamic surface tension results naturally from the 
formalism itself, and extension to more complicated inter- 
actions can follow. 

We restrict ourselves in the current paper to a simple, 
yet rather general case. A sharp, flat interface is assumed to 
separate an aqueous surfactant solution from another 
fluid, non-polar phase. The solution is assumed to be 
below the critical micelle concentration, i.e., it contains 
only monomers. We start in Section 2 by considering the 
adsorption of non-ionic surfactants, for which previous 
theories yield satisfactory results. We then proceed in 
Section 3 to discuss salt-free ionic surfactant solutions, 
where strong electrostatic interactions exist and interest- 
ing time dependence has been observed in experiments 
[13]. In Section 4 the effect of added salt to ionic surfac- 
tant solutions is examined. 

We shall not describe various experimental techniques 
which have been devised in the context of adsorption 
kinetics of surfactants. Such information can be found in 
ref. [2] and in the contribution by A. Pitt included in this 
volume. 

Non-ionic surfactants 

We identify the measurable change in interfacial tension, 
Ay, with the excess in free energy per unit area due to the 
adsorption at the interface. This definition is assumed to 
hold both at equilibrium and out of equilibrium. The free 
energy excess can be written as a functional of the volume 
fraction profile of the surfactant, ~b(x, t), x being the dis- 
tance from the interface and t the time, 

ATE~b] = ~ AfE(o(x, t)] d x ,  (1) 
0 

where A f i s  the local excess in free-energy density over the 
bulk, uniform solution. 

We take the bulk solution to be dilute and assume 
a contact with a reservior, where the surfactant has 
fixed volume fraction and chemical potential, ~b and 
#b, respectively. Steric and other short-range interac- 
tions between surfactant molecules are assumed to take 
place only within a molecular distance from the interface. 
This is motivated by the observation that the profile of 
a soluble surfactant monolayer is in practice almost 
"step-like", the volume fraction at the interface itself 
being many orders of magnitude larger than that in the 
solution. 

Hence, we write the local free-energy density as 

A f =  {r  [q~(ln ~b - 1) - ~bb(ln qSb -- 1)] --/~b(q5 -- ~bb)}/a 3 

+ {rich lnq~ + (1 - qS)ln(1 - ~b)] 

- ( ~  + #1)q5 -(fl/2)q5 2} cS(x)/a 2, (2) 

where a denotes the surfactant molecular dimension and 
T the temperature (taking the Boltzmann constant as 1). 
Note that this functional divides the system into two 
distinct, coupled subsystems - the bulk solution and the 
interface [14]. As a result, we shall obtain distinct equilib- 
rium and kinetic equations for these two subsystems. The 
contribution from the bulk contains only the ideal entropy 
of mixing in the dilute solution limit and contact with the 
reservoir. In the interfacial contribution, we have included 
the entropy of mixing accounting for the finite molecular 
size, a linear term accounting for the surface activity and 
contact with the adjacent solution [/~ = #(x + 0) being 
the chemical potential at the adjacent layer], and a qua- 
dratic term describing short-range lateral attraction be- 
tween surfactant molecules at the interface. The surface 
activity parameter, ~, is typically of order 10T, and the 
lateral attraction parameter, fi, is typically a few T. 

Although the functional (2) has a simple form, it yields 
physically non-trivial results. More complicated cases, 
e.g., certain surfactants whose adsorption seems to be 
hindered by a potential barrier, may require additional 
terms. Such terms, however, can be easily incorporated, 
as demonstrated in the next section for electrostatic 
interactions. 

Equilibrium relations are readily obtained by setting the 
variation of the free energy with respect to ~b (x) to zero, 

aAy 
- 0, equilibrium. 

ar 

This yields in the current simple case a uniform profile in 
the bulk, ~b(x > 0) =- qSb, and recovers the Frumkin ad- 
sorption isotherm (or the Langmuir one, if/~ = O) [15] at 
the interface, 

4,b 
4)0 (% + e_(~+peo)/r , (3) 

where q~o - ~b(x = 0) denotes the surface coverage. Substi- 
tuting these results in the free-energy functional recovers 
also the equilibrium equation of state, 

A7 = [T  ln(1 -- 4)0) + (fl/2)(o2]/a 2 . (4) 

Kinetic equations can also be derived from the vari- 
ation of the free energy. The conventional scheme in the 
case of a conserved order parameter is [16] 

O--~=(a3D/T)~--~[(o~---s 1 Ot 
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where D is the surfactant diffusion coefficient. This leads to 
an ordinary diffusion equation in the bulk, 

8 r  _ D 8 %  (5) 
& 8x:: ' 

and to a conservation condition at the layer adjacent to 
the interface, 

&b~ 8~x x 8q~o & - (D/a)  ~=~ & , (6) 

where qSx =: q6(x --, 0) is the local volume fraction. Finally, 
at the interface itself, we get 

& - (D /a2 )41  In ~o 

We have assumed, for simplicity, that the surfactant diffu- 
sion coefficient D is the same in the bulk and near the 
interface in spite of the different environments. In reality 
this should not be strictly accurate. 

Our formalism has led to a diffusive transport in the 
bulk [Eqs. (5) and (6)] coupled to an adsorption mecha- 
nism at the interface [Eq. (7)]. Yet unlike previous models, 
all of the equations have been derived from a single func- 
tional, and hence, various assumptions employed by pre- 
vious works can be examined. Treating Eqs. (5) and (6) 
using the Laplace transform with respect to time, we 
obtain a relation similar to the Ward and Tordai result 
[1], 

qbo(t) = ( X / ~ / a ) [ 2 q ~ b X / ~ -  i q~,(z) d'c~ ] 

+ 2G - 4~, (8) 

with a small difference coming from the finite thickness we 
have assigned to the subsurface layer of solution (vanish- 
ing for a -~, 0). 

The diffusive transport from the bulk solution [-Eq. (8)] 
relaxes like 

( ~ 1  ( t ) / ~ b b  ~ 1 - -  NSdd/t t ~ O0 

% - (aZ/~D)(q~o, e q / ( / ) b )  2 , (9) 

where ~bo, eq denotes the equilibrium surface coverage. The 
molecular diffusion time scale, a2/D,  is of order 10-9 s, but 
the factor qS0,r in surfactant monolayers is very large 
(typically 105-106), so the diffusive transport to the inter- 
face may require minutes. The kinetic process at the inter- 
face [Eq. (7)] relaxes like 

(~o( t ) /~bO,eq "" 1 - e-*/~, t ~ oe 

"ok = (a2/D) (q~o, ~q/~bb) 2 e -  <~ + fl4~ (10) 
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Fig. 1 Diffusion-limited adsorption exhibited by non-ionic surfac- 
rants. Four examples for dynamic surface tension measurements are 
shown: decyl alcohol at concentration 9.49 x 10- s M (open circles) 
adapted from ref. [17]; Triton X-100 at concentration 2.32 x 10- 5 M 
(squares) adapted from ref. [8]; ClzEO8 at concentration 6 x 10- 5 M 
(triangles) and CloPY at concentration 4.35 x 10 .4 M (solid circles), 
both adapted from ref. [18]. The asymptotic t- 1/2 dependence shown 
by the solid fitting lines is a "footprint" of diffusion-limited 
adsorption 

Since e for common surfactants is of order 10T, we expect 
zk to be much smaller than %. In other words, the adsorp- 
tion of many non-ionic surfactants, not hindered by any 
high potential barrier, is expected to be dif fusion-l imited.  
The asymptotic time dependence (9) yields a distinct "foot- 
print" for diffusion-limited adsorption, as demonstrated in 
Fig. 1. 

In mathematical terms, the adsorption being diffusion- 
limited means that the variation of the free energy with 
respect to ~bo can be taken to zero at all times whereas the 
variation with respect to ~b(x > 0) cannot. This has two 
consequences. The first is that the relation between ~bo and 
~b 1 is given at all times by the equilibrium adsorption 
isotherm [(3) in our model]. The solution of the adsorp- 
tion problem in the non-ionic, diffusion-limited case 
amounts, therefore, to the simultaneous solution of the 
Ward-Tordai  equation (8) and the adsorption isotherm. 
Exact analytical solution exists only for the simplest, linear 
isotherm, ~bo oc ~bl [19]. For  more realistic isotherms such 
as (3), one has to resort to numerical techniques (useful 
numerical schemes can be found in refs. [2, 8]). The second 
consequence of the vanishing of , 5A7/~)o  is that the dy- 
namic surface tension, AT(t), approximately obeys the 
equilibrium equation of state (4). These two consequences 
show that the validity of the schemes employed by pre- 
vious theories is essentially restricted to diffusion-limited 
cases. 
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Fig. 2A Dependence between surface tension and surface coverage 
in diffusion-limited adsorption [Eq. (4)]. The values taken for the 
parameters match the example in (b). B Typical dynamic surface 
tension curve in diffusion-limited adsorption (reproduced from 
ref. [20]). The solution contains 1.586 x 10 .4 M decanol. The soliod 
line is a theoretical fit using the following parameters: a = 4.86 A, 

= 11.6T, fl = 3.90T (all three fitted from independent equilibrium 
measurements), and D = 6.75 x 10 -~ cm2/s 

The dependence defined by the equilibrium equation of 
state (4) is depicted in Fig. 2A. As a result of the competi- 
tion between the entropy and interaction terms in Eq. (4) 
the surface tension changes very little for small surface 
coverages. As the coverage increases beyond about  
1 - ( f l / T )  -1/2, the surface tension starts decreasing until 
reaching equilibrium. This qualitatively explains the shape 
of dynamic surface tension curves found in experiments for 
non-ionic surfactants (e.g. [8, 20]). We have reproduced in 

Fig. 2B, one such curve published by Lin et al. [8]. The 
theoretical solid curve was obtained by these authors 
using a scheme similar to the one just descr ibed-  solution 
of the Ward-Torda i  equation together with the Frumkin 
isotherm and substitution in the equation of state to 
calculate the surface tension. Note that the parameters c~, 
fi and a can be fitted from independent equilibrium 
measurements, so the dynamic surface tension curve 
has only one fitting parameter, namely the diffusion 
coefficient, D. As can be seen, the agreement with experi- 
ment is quite satisfactory. However, when the adsorption 
is not diffusion-limited, such a theoretical approach is no 
longer applicable, as will be demonstrated in the next 
section. 

Salt.free ionic surfactant solutions 

We turn to the more complicated but important  problem 
of ionic surfactant adsorption, and start with the salt-free 
case where strong electrostatic interactions are present. In 
Fig. 3 we have reproduced experimental results published 
by Bonfillon-Colin et al. for SDS solutions with (open 
circles) and without (full circles) added salt [13]. The 
salt-free ionic case exhibits a much longer process with 
a peculiar intermediate plateau. Similar results were pre- 
sented by Hua and Rosen for DESS solutions [21]. A few 
theoretical models were suggested for the problem of ionic 
surfactant adsorption [22-24], yet none of them could 
produce such dynamic surface tension curves. It is also 
rather clear that a theoretical scheme such as the one 
discussed in the previous section cannot fit these experi- 
mental results. On the other hand, addition of salt to the 
solution screens the electrostatic interactions and leads to 
a behavior very similar to the non-ionic one. We shall 
return to this issue in Section 4. We thus infer that strong 
electrostatic interactions affect drastically the adsorption 
kinetics. Let us now study this effect in more detail. We 
follow the same lines presented in the previous section 
while adding appropriate terms to account for the addi- 
tional interactions. 

Our free-energy functional in the salt-free ionic case is 
divided into three contributions: a contribution from the 
surfactant, one from the counterions and one from the 
electrostatic field. It depends on three degrees of freedom: 
the surfactant profile, ~b § (x, t) (we take the surfactant ion 
to be the positive one), the counterion profile, ~b - (x, t), and 
an electric potential, $(x, t). 

Ayrq~ +, ~b-, g,] = 7 [Af  +(q 5+) + Af-(#)-) 
0 

-}-fel((~ +, ~ - ,  ~)] d x .  (11) 
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Fig. 3 Dynamic interracial tension between SDS aqueous solution 
and dodecane, adapted from ref. [13]: 3.5 x 10 .4 M SDS without salt 
(filled circles); 4.86 x 10 -s M SDS with 0.1 M NaC1 (open circles) 

The surfactant contribution, Af +, is identical to that of the 
non-ionic case [Eq. (2)]. In the counterion contribution, 
A f - ,  we include only the bulk part of Eq. (2), taking the 
counterions at this stage to be completely surface-inactive. 
The electrostatic contribution contains interactions be- 
tween the ions and the electric field and the energy stored 
in the field itself, 

fel = e ((a~@) 3 (a~--~-)3) r 8~ \0x//  
e 

+ ~ 4~ +Ca(x), 

(12) 

where a -+ are the molecular sizes of the two ions, e the 
electronic charge and ~ the dielectric constant of water. 
For simplicity, we have restricted ourselves to fully 
ionized, monovalent ions [which implies that qS~-/(a+) 3 = 
~bb/(a-) 3 = C b ,  the bulk concentration]. 

Ions in solution, apart from interacting with each 
other, also feel repulsion from the interface due to "image- 
charge" effects, as discussed by Onsager and Samaras [25]. 
It can be shown, however, that these effects become negli- 
gible as soon as the surface coverage exceeds about 2% 
[12]. 

Equilibrium equations are readily obtained, as in the 
previous section, by setting the variation of the free energy 
with respect to the various degrees of freedom to zero, 

6At 6A7 
- -  - 0, equilibrium. 

am +- (x) ar 

These equations yield the Boltzmann ion profiles, 

~ +- (x  > O) = O C  e ~ eo(x)/~ , 

the Poisson equation, 

02r 2 _ 47~ee (~-~3 ( 3 , (13) 

the electrostatic boundary condition, 

~r ~=o 4he 
a--~ - 8(a+)2 qSg , (14) 

and, finally, recovers the Davies adsorption isotherm [26], 

Cu+ (15) (P+ = O~ + e-(~+#r176 " 

Combining Eq. (13) with the Boltzmann profiles leads to 
the Poisson-Boltzmann equation, 

02r _ 8r~ecb sinh er  (16) 
~3x 2 ~ T 

for the equilibrium double-layer potential [27, 28]. By 
means of the Poisson-Boltzmann equation, the Davies 
isotherm can be expressed as 

~b~- = ~b~ (17) 
~b~ + [b~bg + x/(bq~3) = + 1]Ze -(~+p*~)/T' 

where b - a+/(4~b~-2), and 2 -= (8Tccbe2/~T) -1/2 is the De- 
bye-Htickel screening length [29]. Similar to Section 2, 
one can calculate the equilibrium equation of state, 

At = [T ln(1 - ~bg) + (fl/2)(q~g) 2 

- ( 2 T / b ) ( ~ f ( b # ) ~ )  2 + 1 - 1 ) ] / ( a + )  2 . ( 1 8 )  

For weak fields the electrostatic correction to the equation 
of state is quadratic in the coverage, thus merely modifying 
the lateral interaction term, and for strong fields it be- 
comes linear in the coverage. 

Kinetic equations are derived using the same scheme as 
before, 

& - T 0~ (a +- Ox\b(~ +-]j '  

where D -+ are the diffusion coefficients of the two ions. 
This variational scheme yields in the bulk solution the 
Smoluchowski diffusion equations, 

(?q 5-+ _ D  • ~ (Oq5 -+ +e~b_+~O ) 
0t ~x \ 0x - T ~x ' (19) 

at the layer adjacent to the interface 

) 
& a -+ \ ~x I . . . .  - r  x=a+- 0t ' 

(20) 
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and finally, at the interface itself 

0t (a+) 2 In r  T 

a+/ 

coverage alone, 

a4~ _ [D+ (a~ ) exp[(4rcl/a+)r 
at \ ( ~ - / [ b ~ b ~ -  + x/(bq~-) 2 + 132 

(21) [~b; (1_ _~ ~bg! + + _  
x In [ ~bo T T 

We have made use of the electrostatic boundary condition 
(14) in order to replace an electrostatic barrier term, 
e(Oo- $I)/T, with the approximate term (4M/a+)Og, 
where I =- e2/eT is the Bjerrum length (about 7 A for water 
at room temperature). 

We neglect electrodynamic effects, so the Poisson 
equation continues to hold. The kinetic equations just 
derived, along with the Poisson equation and the neces- 
sary boundary and initial conditions, can be solved numer- 
ically (a similar set  of equations is solved in ref. [-24]). 

The relaxation in the bulk solution, accounted for by 
the Smoluchowski equations (19), has the time scale 

r e ~--- 2 2 / D  , 

where D is an effective ambipolar diffusion coefficient. This 
time scale is typically very short (microseconds), i.e. the 
bulk relaxation is by orders of magnitude faster than in the 
non-ionic case. The relaxation at the interface [Eq. (21)], 
by contrast, is slowed down by the electrostatic repulsion, 
and has a time scale of 

rk = ~(k ~ exp[e0Po + 01)IT] 

~_ Z(k~ +/22)(q~s +)] 4 exp[-- (4~l/a +)(~,eq] , 

where r(k ~ denotes the kinetic time scale in the absence of 
electrostatics [Eq. (10)]. In salt-free surfactant solutions 
the surface potential reaches values significantly larger 
than T/e, and hence, the interfacial relaxation is by 
several orders of magnitude slower than in the non-ionic 
case. 

This analysis leads us to the conclusion that ionic 
surfactants in salt-free solutions undergo kinetically limited 
adsorption. Indeed, dynamic surface tension curves of such 
solutions do not exhibit the diffusive asymptotic time 
dependence of non-ionic surfactants, depicted in Fig. 1. 
The scheme of Section 2, focusing on the diffusive trans- 
port inside the solution, is no longer valid. Instead, the 
diffusive relaxation in the bulk solution is practically 
immediate and we should concentrate on the interfacial 
kinetics, Eq. (21). In this case the subsurface volume frac- 
tion, ~b[, obeys the Boltzmann distribution, not the Davies 
adsorption isotherm (15), and the electric potential is given 
by the Poisson-Boltzmann theory. By these observations 
Eq. (21) can be expressed as a function of the surface 

- 2 s inh- l (bq~)} ,  (22) 

thus reducing the problem to a single integration. 
Not only does the scheme for solving the kinetic equa- 

tions differ from the non-ionic case, but also the way to 
calculate the dynamic surface tension has to change. In 
kinetically limited adsorption the variation of the free 
energy with respect to the surface coverage does not van- 
ish, and, therefore, the equation of state (18) is strictly 
invalid out of equilibrium. We derive the expression for the 
dynamic surface tension in the kinetically limited case 
from the general functional (11) by assuming quasi-equilib- 
rium inside the bulk solution (i.e. using Boltzmann profiles 
and the Poisson-Boltzmann equation). This gives 

A7[~)~(t)] = {T[qSg ln(qS+/qS~) + (1 - qSg)ln(1 - ~bg)] 

- c~b~- - (fi/2)(qS~-) 2 + 2T[q~g sinh- ~(b4~ -) 

- ( , f ( b r  2 + 1 - 1 ) / b ]  }/(a +)2. (23)  

Assuming high surface potentials (b~b~-> 1), the 
function defined in Eq. (23) becomes non-convex for 

fi/r > 2(2 + xf3) -~ 7.5, as demonstrated in Fig. 4. If that 
is indeed the case, our model predicts an unusual time 
dependence for the dynamic surface tension, as observed in 
experiments (Fig. 3). We thus infer that the shape of the 
experimental dynamic surface tension curves is a conse- 
quence of a kinetically limited adsorption brought about 
by strong electrostatic interactions. Physically, the non- 
convexity results from a competition between short- and 
long-range interactions. It suggests the following scenario: 
As the surface coverage increases, the system reaches a lo- 
cal free-energy minimum leading to a pause in the adsorp- 
tion (the intermediate plateau of the experimental curves). 
This metastable state lasts until domains of the denser, 
global-minimum phase are nucleated, resulting in further 
increase in coverage and decrease in surface tension. 
A complete, quantitative treatment of such a scenario 
cannot be presented within this framework, since our cur- 
rent formalism inevitably leads to a monotonically de- 
creasing free energy as a function of time, and hence, 
cannot account for nucleation [16]. 
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Fig. 4 Dependence between surface tension and surface coverage in 
kinetically limited adsorNion [Eq. (23)]. The values taken for the 
parameters are: a + = 8.1 A, ~b~- = 1.1 x 10 -4, c( = 14T and fl = 9T. 
Such a curve should lead to the qualitative time dependence found in 
certain salt-free cases (see Fig. 3) 

A value of fi > 7.5T is somewhat large for the lateral 
attraction between surfactant molecules. Experimental 
estimation of this parameter for common non-ionic 
surfactants yields a few T [20]. Throughout the above 
calculations we have assumed, to a sort ofa zeroth approx- 
imation, that no counterions are adsorbed at the interface. 
It can be shown that the presence of a small amount of 
counterions at the interface introduces a correction to the 
free energy which is, to a first approximation, quadratic in 
the surfactant coverage, i.e. leading to an effective increase 
in lateral attraction [12]. The addition to fl due to the 
counterions turns out to be [2rcla-/(a+) 2] T, which may 
amount to a few T. This addition accounts for the larger 
value of/~ required for non-convexity. 

Ionic surfactants with added salt 

Finally, we consider the effect of adding salt to an ionic 
surfactant solution. For simplicity, and in accordance with 
practical conditions, we assume that the salt ions are much 
more mobile than the surfactant and their concentration 
exceeds that of the surfactant. In addition, we take the salt 
ions to be monovalent and surface inactive. 

Under these assumptions, we can neglect the kinetics of 
the salt ions and reduce their role to the formation of a thin 
electric double layer near the interface, maintaining quasi- 
equilibrium with the adsorbed surface charge. We take the 

double-layer potential to be in the linear, Debye-Htickel 
regime [28, 29], 

O(x, t) =--4~e';t (~o(t)e_~/~ ga 2 

with a modified definition of the Debye-Hfickel screening 
length, 2 - (8rccfl)- 1/2, Cs >> Cb being the salt concentration 
(the superscript + is omitted from the surfactant symbols 
in this section). 

Substituting this double-layer potential in Eqs. (19) 
and (20), we obtain the kinetic equations in the bulk and at 
the layer adjacent to the interface, 

t?~b 8(8~b 4)o e-x/~ ) 
a t  = O ~x ~ 2aZ2Zcs (~ ' (24) 

8~b, (8q5 ~bo ) & b o  (25) 
& = (D/a) ~x x=, 2aZ22cs ~bt 8t 

The kinetic equation at the interface itself remains the 
same as (21). 

Considering the electric potential as a small perturba- 
tion, Eqs. (24) and (25) lead to the asymptotic expression 

(]~l(t)/(]~b " ~  1 -- (ao.eq/(2a22cs) -- zx~a/t, t ~ oo 

[ Cb qSO,eq ( 3Cu~] 2 (26) 
"Id ~ "C(d 0) 1 2C~ ~ 1 -- ~-c~]J ' 

where Z(d ~ denotes the diffusion time scale in the non-ionic 
case [Eq. (9)]. As expected, the screened electrostatic inter- 
actions introduce a small correction to the diffusion t ime  
scale. This correction decreases with increasing salt 
concentration. 

Since the kinetic equation at the interface is identical to 
the one in the absence of salt, so is the expression for the 
corresponding time scale. However, in the case of added 
salt the electrostatic interactions are screened, the surface 
potential is much smaller than T/e, and, therefore, the 
kinetic time scale, zk, is only slightly larger than the non- 
ionic one [Eq. (10)]. 

We infer that ionic surfactants with added salt behave 
much like non-ionic surfactants, i.e. undergo diffusion-lim- 
ited adsorption provided that no additional barriers to 
adsorption exist. The departure from the non-ionic behav- 
ior depends on the salt concentration and is described to 
first approximation by Eq. (26). The "footprint" of diffu- 
sion-limited adsorption, i.e. the t-1/2 asymptotic time de- 
pendence, is observed in experiments, as demonstrated in 
Fig. 5. Consequently, the scheme described in Section 2 for 
solving the adsorption problem and calculating the dy- 
namic surface tension in the non-ionic case is applicable 
also to ionic surfactants in the presence of salt, and good 
fitting to experimental measurements can be obtained [13]. 
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Fig. 5 Diffusion-limited adsorption exhibited by ionic surfactants 
with added salt: Dynamic interracial tension between an aqueous 
solution of 4.86 x 10 -5 M SDS with 0.1 M NaC1 and dodecane (open 
circles and left ordinate), adapted from ref. [13]; Dynamic surface 
tension of an aqueous solution of 2.0 x 10 -4 M SDS with 0.5 M 
NaC1 (squares and left ordinate), adapted from ref. [30]; Surface 
coverage deduced from second-harmonic-generation measurements 
on a saturated aqueous solution of SDNS with 2% NaC1 (filled 
circles and right ordinate), adapted from ref. [31]. The asymptotic 
t -  1/z dependence shown by the solid fitting lines is a "footprint" of 
diffusion-limited adsorption 

Summary 

We have reviewed an alternative theoretical approach to 
the fundamental problem of the adsorption kinetics of 
surfactants. The formalism we present is more complete 
and general than previous ones as it yields the kinetics in 
the entire system, both in the bulk solution and at the 
interface, relying on a single functional and reducing the 
number of externally inserted assumptions previously 
employed. 

Non-ionic surfactants, not hindered by any high bar- 
rier to adsorption, are shown to usually undergo diffusion- 

limited adsorption, in agreement with experiments. In the 
non-ionic case our general formalism coincides with pre- 
vious ones and helps clarify the validity of their assump- 
tions. Strong electrostatic interactions in salt-free ionic 
surfactant solutions are found to have a dramatic effect. 
The adsorption becomes kinetically limited, which may 
lead to an unusual time dependence, as observed in certain 
dynamic surface tension measurements. Such a scenario 
cannot be accounted for by previous models. Addition of 
salt to ionic surfactant solutions leads to screening of the 
electrostatic interactions, and the adsorption becomes 
similar to the non-ionic one, i.e. diffusion-limited. The 
departure from the non-ionic behavior as the salt con- 
centration is lowered has been described by a perturbative 
expansion. 

A general method to calculate dynamic surface tension 
is obtained from our formalism. In the diffusion-limited 
case, it coincides with previous results which used the 
equilibrium equation of state, but in the kinetically limited 
case it produces different expressions leading to novel 
conclusions. 

Our kinetic model is restricted to simple relaxation 
processes, where the free energy monotonically decreases 
with time. In order to provide a quantitative treatment of 
more complicated situations, such as the ones described in 
Section 3 for certain ionic surfactants, a more accurate 
theory is required. 

Finally, the approach presented here may be easily 
extended to more complicated systems. This flexibility has 
been demonstrated in Section 3 by introducing electro- 
static interactions. Solutions above the critical micelle 
concentration and adsorption accompanied by lateral dif- 
fusion [32] are just two examples for other interesting 
extensions. 
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