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Roughness-induced wetting

Roland R. Netz* and David Andelman
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Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
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We investigate theoretically the possibility of a wetting transition induced by geometric roughness of a solid
substrate for the case where the flat substrate does not show a wetting layer. Our approach makes use of a
closed-form expression that relates the interaction between two sinusoidally modulated interfaces to the inter-
action between two flat interfaces. Within the harmonic approximation, we find that roughness-induced wetting
is indeed possible if the substrate roughness, quantified by the substrate surface area, exceeds a certain
threshold. In addition, the molecular interactions between the substrate and the wetting substance have to
satisfy several conditions. These results are expressed in terms of a lower bound on the wetting potential for a
flat substrate in order for roughness-induced wetting to occur. This lower bound has the following properties.
A minimum is present at zero or very small separation between the two interfaces, as characteristic for the
nonwetting situation in the flat case. Most importantly, the wetting potential needs to have a pronounced
maximum at a separation comparable to the amplitude of the substrate roughness. These findings are in
agreement with the experimental observation of roughness-induced surface premelting at a glass-ice interface
as well as the calculation of the dispersion interaction for the corresponding glass-water-ice system.
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I. INTRODUCTION

The phenomenon of wetting has been the subject of
tense attention and a fairly good understanding of the b
concepts and mechanisms has emerged@1–3#. In the simplest
case, a solid inert surface is put in contact with an unders
rated vapor of a second substance. Typically, a molecul
thick liquidlike film will form on the substrate surface due
favorable molecular interactions. The liquid film is in equ
librium with its undersaturated vapor, thus giving rise to
second interface~the emerging liquid-vapor interface!, re-
ferred to hereafter as the liquid interface. Depending on
detailed molecular interactions between all three phases
the resulting interfacial energies, the liquid film can eith
grow to macroscopic thickness or remain finite as coex
ence between the liquid and its vapor is approached. The
situation corresponds tocomplete wettingwith a diverging
film thickness, the second case is calledincompleteor partial
wetting.

Two other, closely related situations are possible.~i! The
liquid layer ~e.g., water! on the inert substrate can be
equilibrium with its solid phase~ice! at temperatures below
the melting point. In this case the vapor is replaced by a s
and the appearance of a thin liquid layer between the s
strate and the solid phase indicates interfacial premelt
Note that the third phase~the ice! is entirely different from
the solid substrate.~ii ! The substrate itself can be a solid
equilibrium with its vapor phase. Here the formation of
thin liquid layer as three-phase coexistence is approac
corresponds to surface premelting@4#. The phenomenologi-
cal description of these scenarios does not differ from
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zflächenforschung, Kantstr.55, 14513 Teltow-Seehof, Germany
551063-651X/97/55~1!/687~14!/$10.00
-
ic

u-
ly

e
nd
r
t-
rst

id
b-
g.

ed

e

wetting situation, and one finds the analogous phenom
corresponding to partial and complete wetting.

In early theoretical studies, the solid substrate was
sumed to be flat and homogeneous. However, in most exp
mental and technological situations the substrate is b
rough and inhomogeneous. For complete wetting upon
proaching coexistence, where the liquid forms a thin a
continuous film, the influence of substrate roughness
chemical disorder has recently been investigated theo
cally @5–9# and experimentally@10–13# in great detail. It
was found that heterogeneity and roughness of the solid
strate in conjunction with long-range van der Waals inter
tions cause equilibrium undulations of the liquid film su
face. Surface tension, on the other hand, acts as a dam
mechanism that reduces the amplitude of undulations
thicker films. The theoretical results@5,8# were verified re-
cently in small-angle x-ray scattering@11–13#.

Yet another realization of the wetting phenomenon is o
tained if anonvolatileliquid is spread on a solid surface; i
technological applications, the liquid might be a paint or
lubricant. In this case, the liquid is neither in phase equil
rium with the solid substrate nor with the gaseous phase
the total amount of liquid on the substrate is a conser
quantity @1#. In the complete wetting situation, the liqui
forms a continuous film on the substrate; in the partial
incomplete wetting case, the liquid forms droplets with t
contact angle being determined by the interfacial energ
between the three phases meeting at the contact line@14#.
Roughness of the substrate has been shown to cause co
angle hysteresis for advancing and receding contact l
@1,15#.

Much work was specifically concerned with the interf
cial and surface premelting properties of ice, due to its atm
spheric and environmental consequences@16#. Surface pre-
melting of ice has been observed by a variety
687 © 1997 The American Physical Society
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688 55ROLAND R. NETZ AND DAVID ANDELMAN
experimental techniques@17–19# and it is now believed tha
complete surface premelting~i.e., macroscopic growth of the
surface liquid layer as the melting temperature is
proached! occurs only for some orientations of the crys
surface and only if the vapor phase is diluted with air@20#.
Interfacial premelting of ice, giving rise to the low slidin
friction of ice, has been deduced from wire regelation at l
temperature@21# and from viscosity measurements betwe
surfaces of ice and quartz@22#; it also forms the basis fo
frost heave in frozen soils@23#. Complete interfacial premelt
ing between ice crystals and a glass substrate was dete
by ellipsometry@24,25#. The geometric structure of the glas
surface was shown to play a vital role in this premelti
phenomenon; in a series of experiments, the surface has
roughened by exposition to fluoric acid for different amou
of time, leading to surfaces with varying characteris
height-fluctuation amplitudes and wavelengths@25#. For flat
glass substrates the premelting was shown to be incomp
while complete premelting was exhibited for glass substra
with a threshold amount of microroughness@25#.

The latter experimental observation motivated us to
plore theoretically the possibility of aroughness-induced
complete wetting or premelting transition. This describes
situation in which theflat substrate, for a given temperatur
is not covered with a macroscopic liquid layer as coexiste
is approached~corresponding to partial wetting!, but, at the
same temperature, is completely wet if the roughness of
substrate exceeds a certain threshold~in what follows we
will use the wetting terminology both for the phenomena
premelting and wetting!. In this paper we critically examine
the conditions under which such a phenomenon can oc
As a result, roughness-induced wetting is indeed possib
the involved materials have the following properties:~i! The
tension of the substrate-vapor interface has to be larger
that of the substrate-liquid interface,~ii ! the surface area in
crease of the solid substrate due to its roughness has to
ceed a certain threshold, which depends on the interfa
tensions of all three phases@25#, and~iii ! the effective inter-
action between the two interfaces bounding the liquid la
for the flat case has to have a maximum for separation
about the amplitude of the substrate roughness. We also
that roughness-induced wetting is most likely to occur wh
the substrate roughness just exceeds a certain threshold
and will disappear for very large amplitudes of the roug
ness.

The outline of this paper is as follows. In Sec. II w
introduce the model and review some nomenclature for
case of a flat substrate. In Sec. III we extend the analysi
the case of a rough substrate. We first give necessary
rather general conditions under which roughness-indu
wetting is possible. Using a formula that describes the
der Waals interaction between two sinusoidal surfaces,
then construct a sufficient condition for roughness-indu
wetting in the form of a lower bound for the interactio
between two flat interfaces. Finally, Sec. IV contains t
discussion.

II. FLAT SUBSTRATE

Consider the situation as illustrated in Fig. 1, where a t
liquid film intrudes in between an inert solid surface and
-
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top phase. The top phase can be either a vapor or a sol
thermodynamic equilibrium with the liquid film. The soli
substrate, on the other hand, is completely frozen and
from its melting point. In this section, we will review resul
for an ideal solid substrate, namely, molecularly flat and
mogeneous. Using the convention of labeling all physi
quantities with azero subscript for the flat case, the fre
energy per unit area can be written as

F0~ l !5gSL1g1P0~ l !1m l , ~1!

wheregSL denotes the solid-liquid interfacial tension andg
denotes the interfacial tension between the liquid and the
phase. The parameterm is the chemical potential differenc
between the liquid and top phases. Alternatively, it cou
also correspond to a Lagrange multiplier controlling the fi
thickness for nonvolatile liquids with conserved total vo
ume. The potentialP0( l ) represents the interaction per un
area between the two flat interfaces with a separation ofl and
can be viewed as a thickness-dependent correction to
interfacial energies, depending both on the short and lo
ranged parts of the molecular interactions@26#.

In the simplest approach, assuming pairwise additive
teractions between molecules and uniform densities in
coexisting phases,P0( l ) can be expressed as

P0~ l ![E
l

`

dzE d2rE
2`

0

dz8w~r,z2z8!, ~2!

wherew(r,z) corresponds to the local interaction ener
difference per unit volume squared between the solid and
third phase. Dropping some constant terms, it can be wri
as

w~r !5nL
2ULL~r !2nLnSULS~r !2nLnTULT~r !

1nTnSUTS~r !. ~3!

HereUi j (r ) are the pair interactions between molecules a
theni are the particle number densities for each phase, wh
i and j are any of the relevant phases: solid (S), liquid
(L), and top (T) @5#. In a more realistic approach, one ca
culates Eq.~2! directly using the Lifshitz continuum theor
of dispersion interactions@27#.

In general,P0( l ) is expected to vanish forl→` as the
two interfaces become decoupled and approaches a fi
value for l→0 @29#. One therefore defines

FIG. 1. Schematic view of a flat substrate: A liquid layer
thicknessl intrudes between the inert substrate and the top ph
which can be either the vapor or the solid in chemical equilibriu
with the liquid, corresponding to wetting or interfacial premeltin
respectively. The liquid-substrate and liquid-top phase interfa
energies are denoted bygSL andg, respectively.
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55 689ROUGHNESS-INDUCED WETTING
P0~ l !5H 0 for l→`

S for l→0, ~4!

whereS is traditionally called thespreading coefficientand
is given by

S[gST2gSL2g. ~5!

The above definition leads toF0(0)5gST, just as one would
expect: In the absence of any liquid, the total free energ
given by the interfacial tension between the solid and the
phase@30#. On the other hand, for an infinite layer of liqui
coexisting with the top phase, one findsF0(`)5gSL1g for
m50, i.e., the two interfaces bounding the liquid do n
interact and the total free energy is given by the sum of
two interfacial energies alone. One can notice that posi
values ofS5P0(0)2P0(`)5F0(0)2F0(`) correspond to
a situation where an infinite liquid layer is energetically p
ferred over a vanishing liquid layer. Indeed, neglecting
possibility of additional minima ofP0( l ) at intermediate val-
ues of l , positive and negative values ofS correspond to
wetting and nonwetting cases, respectively. On the o
hand, in the case of a nonvanishing chemical potentialm, the
minimum of the free energy will always be at finite film
thickness, even for positive spreading coefficientS @31#.

In the following, we will be exclusively concerned wit
the nonwetting case, i.e.,S,0. It will be convenient to
modify the definition of the free energy slightly and to ta
the infinitely thick liquid layer as the reference state. T
free-energy difference, defined byDF0( l )[F0( l )2F0(`)
and in the case of vanishing chemical potentialm50, is
given by

DF0~ l !5P0~ l !, ~6!

with the limiting values

DF0~ l !5H 0 for l→`

S for l→0. ~7!

Clearly, a wetting situation is realized ifDF0( l ).0 holds
for all l,`.

III. ROUGH SUBSTRATE

We introduce now the necessary framework to desc
wetting on geometrically rough solids@32#. The free energy
per unit projected area for a liquid film on a rough so
substrate~see Fig. 2! can be written as

F~r,@zL# !5A11@¹zS~r!#2gSL1A11@¹zL~r!#2g

1P~r,@zL# !1m@zL~r!2zS~r!#. ~8!

The solid and liquid surfaces are parametrized byzS(r) and
zL(r), respectively, wherer is a two-dimensional vector in a
reference plane. The interaction termP(r,@zL#) is a gener-
alization ofP0( l ) @Eq. ~2!# and is defined by
is
p

t
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e

-
e

er

e

P~r,@zL# !5E
zL~r!

`

dzE d2r8E
2`

zS~r1r8!
dz8w~r8,z2z8!.

~9!

Note that expression~9! is a local function of the liquid
profile zL(r), but a nonlocal functional of the rough soli
surfacezS(r). For the discussion of wetting behavior it
useful to average over the in-plane coordinater, by which
we obtain the effective wetting free energy

F~ l ,@zL# ![^F~r,@zL# !&r , ~10!

where we explicitly pulled out the dependence on the av
age film thickness

l[^zL~r!2zS~r!&r . ~11!

This parameter measures the average distance betwee
two interfaces. The effective free energy~10! can be written
as

F~ l ,@zL# !5aSgSL1aL~ l ,@zL# !g1 P̄~ l ,@zL# !1m l .
~12!

In analogy to Eq. ~10!, the effective wetting potentia
P̄( l ,@zL#) is obtained from Eq.~9! by averaging over the
in-plane coordinate

P̄~ l ,@zL# ![^P~r,@zL# !&r. ~13!

The parametersaS and aL( l ,@zL#) measure the ratios be
tween the actual and projected areas of the substrate su
and liquid interface, respectively, and are defined by

aS[^A11@¹zS~r!#2&r , ~14!

aL~ l ,@zL# ![^A11@¹zL~r!#2&r . ~15!

On the mean-field level considered in this paper, one
take the liquid interface to assume a fixed profilezL* (r) so as
to minimize the free-energy expression~12!. By construction
of the functional~12!, this amounts to a constrained minim

FIG. 2. Liquid film on a rough substrate: For thin mean fil
thicknessl , defined by the averaged local separation between
two interfaces, the liquid interface follows the substrate corru
tions.
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690 55ROLAND R. NETZ AND DAVID ANDELMAN
zation of the free energy for a fixed average film thickne
l . This yields the minimized free energy, denoted byF* , as
a function ofl ,

F* ~ l ![min
@zL#

F~ l ,@zL# !5F~ l ,@zL* # !. ~16!

The area ratio of the optimal liquid interfacezL* has the
limiting values

aL* ~ l ![aL~ l ,@zL* # !5H aS for l→0

1 for l→` ~17!

since a very thin liquid layer follows the solid substra
roughness completely, whereas a thick enough layer wil
essentially flat~neglecting thermal capillary roughness!. Just
as for the flat case,P̄* ( l )[ P̄( l ,@zL* #) is expected to vanish
for infinitely separated interfaces, i.e.,P̄* (`)50. The inter-
action at contact~for l50) is, to a first approximation, given
by the interaction of the flat case times the surface area r
of the rough solid surface, i.e.,P̄* (0)'aSP

0(0)5aSS @33#.
Defining the free-energy difference byDF( l ,@zL#)
[F( l ,@zL#)2F* (`), for which we setm50 ~the introduc-
tion of a nonzero chemical potential is straightforward a
will be treated separately in Sec. III C!, one finds

DF~ l ,@zL# !5$aL~ l ,@zL# !21%g1 P̄~ l ,@zL# !. ~18!

The limiting values of the free energyDF* ( l ) ~obtained by
minimizing with respect to the liquid interface profilezL) are
given by

DF* ~ l !5H aS~gST2gSL!2g for l→0

0 for l→`. ~19!

It is instructive to define the effective spreading coefficie
Seff[DF* (0), which can be written as

Seff5aS~gST2gSL!2g5~aS21!g1aSS. ~20!

From Eq.~2! it follows that the effective spreading coeffi
cient is always larger than the bare spreading coefficienS
sinceg.0 andaS.1. The substrate area ratio can be e
pressed in terms of the spreading coefficients and the liq
interfacial tension as

aS5
Seff1g

S1g
. ~21!

A. Definition of roughness-induced wetting

With the definitions of the previous sections we are n
able to clearly define the subject and purpose of the pre
work. As already stated in the Introduction, we are co
cerned with the case where the flat substrate is not wet,
the free-energy differenceDF0( l ) for the flat case@Eq. ~6!#,
is negative for some finite value ofl . The central question is
under which conditions will the rough substrate be wet, i
under which conditions does
s

e

tio

d

t

-
id

nt
-
e.,

.,

DF* ~ l !.0 ~22!

hold for all finite film thicknessesl,`? The answer of
course imposes conditions both on the magnitude of s
strate roughness~measured byaS) and on the interactions
between the coexisting phases, i.e., on the molecular inte
tion w(r,z), which enters the calculation of the wetting p
tential in Eq.~9!.

In Sec. III B we give two rather general necessary con
tions for roughness-induced wetting, which hold at ve
small wetting-layer thickness and rather large layer thickn
~as compared to the substrate roughness amplitude!, respec-
tively. For the intermediate film thickness, we derive a s
ficient condition in Sec. III C.

B. Necessary conditions for roughness-induced wetting

1. Necessary condition for vanishing film thickness

The necessary condition for a roughness-induced wet
transition that corresponds to Eq.~22! for vanishing film
thickness (l→0) follows from Eqs.~19! and ~20!. It can be
written asSeff.0, which, together with the nonwetting con
dition for the flat case (S,0), leads to the inequalities@25#

gST2gSL,g,aS~gST2gSL!. ~23!

These inequalities can only be satisfied ifgST.gSL holds,
sinceaS>1 by definition. From Eq.~5! one then also obtains
thatg.2S has to hold. Equation~23! also imposes a lowe
bound on the substrate surface ratioaS ,

aS.
1

11S/g
. ~24!

Clearly, the conditions~23! and~24!, although necessary, ar
not sufficient for wetting, since the free energyDF* ( l ) can
develop a minimum at finite separationl . The conditions
~23! and ~24! simply correspond to a situation where th
l→` thick liquid layer has a lower interfacial energy than
film of vanishing thicknessl→0.

2. Harmonic approximation

We now introduce the harmonic approximation, which w
will adhere to in the remainder of this paper. Conside
corrugated solid surface, chosen to have sinusoidal und
tions along one directionr1 of the two-dimensional refer-
ence plane (r1 ,r2) with amplitudehS and wave numberq,

zS~r![hSsin~qr1!. ~25!

The liquid profile is approximately~within linear-response
theory! characterized by the sameq-mode undulation with a
different amplitudehL , vertically displaced by the film
thicknessl ,

zL~r![hLsin~qr1!1 l . ~26!

This geometry is depicted in Fig. 3. To linear order, there
also no phase shift between the two surfaces. In the follo
ing, the amplitudehS is assumed to be positive, with no los
of generality. The interfaces cannot penetrate each ot
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55 691ROUGHNESS-INDUCED WETTING
constituting thenoncrossing condition, which can be written
aszL(r)>zS(r), valid at any pointr. This leads to the con
straints

hS2 l<hL< l1hS . ~27!

Expanding the expressions for the interfacial ratiosaS and
aL @Eqs. ~14! and ~15!# and keeping only terms up to qua
dratic order in the amplitudeshL andhS leads to the follow-
ing expressions for the area ratios:

aS511
1

4
hS
2q21O„~hSq!4…, ~28!

aL511
1

4
hL
2q21O„~hLq!4…, ~29!

which are expected to be good approximations for wea
corrugated interfaces~as long ashSq!1 andhLq!1). The
necessary condition for roughness-induced wetting at van
ing film thickness~24! becomes

aS.11
1

4
hS
2q2.

1

11S/g
. ~30!

We now identify two different physical regimes. Fo
g*2S, defining theinteraction-dominated regime,the nec-
essary condition for wetting leads tohSq@1 and the expan-
sion in terms ofhq breaks down. Here the solid roughne
has to be quite pronounced and the behavior of the liq
interface turns out to be mostly dominated by the sho
ranged part of the molecular interaction. Forg@2S, defin-
ing thetension-dominated regime, condition~30! can be ful-
filled even for small solid roughness (hSq!1); here the
liquid interface is dominated by its surface tension. It is t
tension-dominated regime where the approximations lead
to Eqs.~28! and ~29! and other simplifications made in th
remainder of this paper are valid; this is also the regime
most practical interest, since values forhSq characterizing
rough surfaces in experiments are typically quite small@34#.

3. Necessary condition for thick films

An additional necessary condition for wetting
P̄* ( l ).0, valid for average film thicknesses approximate
larger than the corrugation amplitude,l*hS . This condition
can be obtained in the following way. Suppose we have a

FIG. 3. Simplified geometry in the singleq-mode approxima-
tion, with the substrate surface parameterized byzS(r1) and the
liquid interface parametrized byzL(r1), shown along the direction
parallel to the wave vector of the sinusoidal profile. The mean se
ration l corresponds to the distance between the mean position
the interfaces, denoted by broken lines.
y

h-

id
t-

e
g

f

at

liquid interface, i.e.,aL51. Then the first term in Eq.~18!
vanishes, and in order for the minimized free-energy diff
ence DF* ( l ) to be positive we have to require tha
P̄* ( l ).0. Clearly, a flat liquid interface is possible only fo
a liquid layer thickness that is larger than the amplitude
the solid roughness, otherwise the two interfaces steric
interact. Figure 4 schematically depicts the limiting ca
l'hS with the flat liquid interface just touching the soli
substrate at the largest height fluctuation characterized by
amplitudehS . For sinusoidal interfaces described by Eq
~25! and~26! and using the noncrossing constraint~27!, one
obtains the inequality

P̄* ~ l !.0 for hS, l,`. ~31!

For smaller distances, the interactionP̄* ( l ) can actually be-
come negative withDF* ( l ) still being strictly positive, be-
cause then the free energy expression~18! always has a
positive-energy contribution from the interfacial tension
the liquid interface.

This result has consequences for the important clas
wetting potentials with a single minimum at finite but rath
large wetting film thickness, which describe continuous w
ting transitions as the minimum moves outward to infinity.
the minimum occurs at distances larger than the roughn
amplitude, it follows from Eq.~31! that the substrate rough
ness will not induce the wetting of the substrate.

From the above considerations we see that the interac
P̄* ( l ) has to have rather complex behavior; at zerol or
vanishing liquid film it is negative, sinceP̄* (0)'aSS, and
we start with the assumption of a nonwetting behavior~i.e.,
S,0) for the flat solid surface. Considering only thel50
situation, we see that there is a threshold value of the s
roughness in order to make the vanishing film limit energe
cally unfavorable compared to the infinite film limit; see E
~24!. For a film thickness larger than the amplitude of t
solid roughness, the interactionP̄* ( l ) has to be repulsive in
order to make roughness-induced wetting possible; see
~31!. The question that arises naturally is whether suc
behavior is actually possible and what the conditions on
molecular interactionw(r ) are.

C. Sufficient condition for roughness-induced wetting

In this section, we want to show for general film thic
nesses under which conditions roughness-induced wettin
defined by Eq.~22!, occurs. In order to do so, we need
minimize the free energy with respect to the fluid interfa
profile zL(r) for each average film thicknessl and for a

a-
of

FIG. 4. Minimal mean film thicknessl for which a flat liquid
interface is still possible. The liquid interface touches the subst
surface at isolated points and the film thicknessl corresponds to the
characteristic corrugation amplitudehS .
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692 55ROLAND R. NETZ AND DAVID ANDELMAN
given molecular interactionw(r,z) and interfacial tensions
according to Eq.~16! @with zL(r) entering the expression
~8! and ~9!#. We then have to check whetherDF* ( l ).0
holds for eachl . If it turns out thatDF* ( l ),0 for a given
l , we know that the system will prefer to have a stable film
this thickness and wetting will not occur.

For the present purpose, we turn this procedure somew
around. We will try to determine the interaction for whic
roughness-induced wetting, for given values of the inter
cial tensions and the substrate roughness, does occur.
thermore, in many situations the molecular interact
w(r,z) is not easily available, and usually the wetting pote
tial for two flat interfacesP0( l ), as defined by Eq.~2!, is
readily measured and calculated. We will therefore us
relation between the planar interactionP0( l ) and the wetting
potential between two sinusoidally modulated interfac
P(r1 ,l ,hL), which is derived in the Appendix. Using thi
relation, we express the condition for roughness-indu
wetting in terms of a lower bound on the planar interact
P0( l ). The analysis will be presented in the next two subs
tions. These parts are somewhat technical, and the unm
vated reader can easily skip these sections and move o
the results in Sec. III C 3.

1. Construction of lower bound on P0(l)

To proceed, consider first the rangel,hS . In the tension-
dominated regime, defined byhSq!1, it follows that
lq!1 also holds. In this limit, the wetting potential, define
by Eq. ~9!, can, for the special case of two sinusoidal int
faces~see Sec. III B 2!, be expressed in terms of the plan
interactionP0( l ). Neglecting curvaturelike terms that tur
out to scale likehShLq

4, this relation is given by~see the
Appendix!

P~r1 ,l ,hL!.~11hShLq
2cos2@qr1# !1/2

3P0S l1~hS2hL!sin@qr1#

~11hShLq
2cos2@qr1# !1/2D . ~32!

Clearly, the above form has the following desired proper
for l50 one hashL5hS and one thus obtains for the sp
tially averaged potentialP̄( l50,hL).aSP

0( l50), as antici-
pated on intuitive grounds in the paragraph preceding Eq.
For eitherhS50 or hL50 the formula~32! simplifies to
P(r1 ,l ,hL)5P0

„l1(hS2hL)sin@qr1# …, which is exact.
Still, the formula~32! is rather complicated and calcula

ing the spatially averaged potential P̄( l ,hL)
[^P(r1 ,l ,hL)&r1

is by no means trivial. The following ob

servation is crucial. For a given value ofl , the argument of
P0 in Eq. ~32! is strictly smaller than 2l ~since
2hSlq

2,1). We can therefore choose a linear trial functi
of the form

PT
0~ t !5S1c~ l !t. ~33!

For a given value ofl , we require the trialPT
0(t) to be a

lower bound of the flat-interface potentialP0(t), i.e.,
PT
0(t),P0(t), in the finite range 0<t<2l , which puts cer-

tain bounds on the slopec( l ). It trivially follows that
f

at

-
ur-
n
-
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s

d

-
ti-
to

-

:

8.

P(r1 ,l ,hL) as given by Eq.~32! and evaluated withPT
0 is

always lower thanP(r1 ,l ,hL) evaluated withP0 instead.
The strategy will be as follows. If we can show that for

film with a given average thicknessl and using the linear
trial function PT

0 the resulting free energy differenc
DF* ( l ) is positive, we know that the wetting film for thi
particular mean thickness is unstable. This follows since
ing P0 instead ofPT

0 we will necessarily increaseP̄* ( l ) and
thus also increaseDF* ( l ). If we succeed in showing the
same for all values ofl ~including l50), it follows that
P0( l ) ~which is by construction strictly larger than all th
linear trial functions! is an interaction that shows roughnes
induced wetting. In the subsequent calculations we actu
reverse this procedure and start with the linear trial functio
enforcing instability of the wetting film for each value ofl
separately@leading to restrictions on thel -dependent slopes
c( l )#, and construct the functionP0( l ) from a superposition
of all piecewise linear functions. Choosing a linear trial fun
tion of the form~33!, does not restrict the generality of ou
results, since one can express any function as the supre
of a set of suitable piecewise linear functions.

Using the trial function~33!, the averaging over the coor
dinater1 can be easily done and, with Eqs.~18! and~32!, the
resultant trial free energy is given by

DFT~ l ,hL!5 1
4ghL

2q21S~11 1
4hShLq

2!1c~ l !l1O~q4!.
~34!

Minimizing this free-energy expression with respect tohL ,
one obtains the amplitude

hL*52
S

2g
hS , ~35!

which characterizes the minimizing liquid interface profi
zL* . The liquid interface corrugation is in phase with th
substrate configuration, sinceS,0. Since the two interfaces
have to satisfy the noncrossing constraint~27!, the minimiz-
ing amplitudehL* can be realized only for a thickness larg
than some characteristic lengthl> l 8. For l5 l 8, the liquid
interface has an amplitude given by Eq.~35! and touches the
substrate surface; this situation is depicted in Fig. 5. T
defines the lengthl 8, which is, combining Eqs.~27! and~35!,
given by

l 85hSS 11
S

2g D . ~36!

FIG. 5. Liquid film with a thicknessl 8, for which the liquid
interface with a corrugation amplitudehL* as given by Eq.~35! just
touches the substrate. Since the two interfaces cannot cross, i
single q-mode approximation the amplitudehL increases for
smaller values ofl until one finally obtainshL5hS in the limit
l→0. In a more realistic model, one might obtain a ruptured int
face for small layer thicknesses, corresponding to separate drop
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55 693ROUGHNESS-INDUCED WETTING
For smaller film thicknessesl , the amplitudehL necessarily
deviates from the valuehL* and finally equalshS for l50.
Note that the length l 8 is always bounded by
hS/2, l 8,hS , as follows from the fact thatg.2S; see Eq.
~23!.

2. Calculation for Seff50

In this section we assume thatSeff50, which means the
substrate roughness just suffices to make the nonwe
state (l50) energetically unfavorable compared to the co
pletely wet state (l5`) at coexistence (m50). This is ob-
viously not necessary, but renders the resultant express
in a simpler form and is sufficient form50. The extension to
generalSeff will be done in Sec. III C 4. From Eq.~30! the
excess substrate surface areaq2hS

2/4 is given by

q2hS
2

4
52

S

S1g
.

For l, l 8, the amplitude that minimizes the free energy a
is in accord with the noncrossing constraint is given
hL5hS2 l , that is, the interfaces just touch. Inserting th
amplitude into the trial free-energy expression~34!, one ob-
tains the minimal value~denoted by an asterisk!

DFT* ~ l !5c~ l !l2
l 2

hS
2 S gS

S1g D1
Sl

hS
SS12g

S1g D for l, l 8.

~37!

Thus the sufficient condition for the free-energy difference
be positive is

c~ l !>2
S

hS
SS12g

S1g D1
l

hS
2 S gS

S1g D for l, l 8, ~38!

with the special values

c~0!>2
S

hS
SS12g

S1g D ~39!

and

c~ l 8!>2
S

2hS
SS12g

S1g D . ~40!

For l. l 8, one inserts the expression~35! found for hL* into
the free energy~34! and obtains

DFT* ~ l !5c~ l !l1S2
hS
2S2q2

16g
for l. l 8. ~41!

Using thatSeff50, it follows that

DFT* ~ l !5c~ l !l1S1
S3

4g~S1g!
for l. l 8. ~42!

In this case, requiring the free energy to be positive lead
the condition

c~ l !>2
S

4g l

~S12g!2

S1g
for l. l 8. ~43!
ng
-

ns

d

o

to

with the limiting value~40! for l5 l 8.
Thus far, we have calculated a lower bound of the pla

potentialP0(t) for a given value of the average film thick
nessl , which consists of a linear function of finite exten
~between 0 and 2l ) and l -dependent slope. In order to con
struct a lower bound onP0(t) that is valid for any film
thickness, we have to calculate the upper envelope of th
linear functions. This function we denote byPlow

0 ( l ). The
sufficient condition for wetting, corresponding to the defin
tion ~22!, can then be written as

P0~ l !.Plow
0 ~ l !, ~44!

with Plow
0 ( l ) being defined as

Plow
0 ~ l ![maxt> l /2$S1c~ t !l %. ~45!

The value ofc(t) is given by Eqs.~38! and~43! for t, l 8 and
t. l 8, respectively. Sincec(t1).c(t2) holds for anyt1,t2,
it is easy to see that the functionPlow

0 ( l ) can be expressed in
closed form as

Plow
0 ~ l !5S1c~ l /2!l . ~46!

Using the expressions~38! and ~43!, the functionPlow
0 ( l ) is

explicitly given by

Plow
0 ~ l !

55
SS 12

l

hS

S12g

S1g
1

l 2

hS
2

g/2

S1g D for l<2l 8

SS 12
~S12g!2

2g~S1g! D for 2l 8< l< lmax

0 for l. lmax.

~47!

3. Results for Seff50

Figure 6 shows the rescaled lower bound2Plow
0 /S as a

function of the rescaled variablel /hS for 2S/g51/2. This
function starts out at21 for l /hS50 by definition of the

FIG. 6. Plot of the lower bound for wetting potentia
2Plow

0 /S as a function of the rescaled film thicknessl /hS , for
2S/g51/2 andSeff50. In the interval 0, l,2l 8, Plow

0 ( l ) is a
monotonically increasing function. In the interval 2l 8, l, lmax,
Plow
0 ( l ) is constant. Forl. lmax one findsPlow

0 ( l )50. The value
l * is defined byPlow

0 ( l * )50.
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694 55ROLAND R. NETZ AND DAVID ANDELMAN
spreading coefficientS. The slope at the origin is finite an
the function increases until it reaches its maximum
l52l 8. We obtain a plateau in the interval 2l 8, l, lmax; for
l. lmax the lower bound is given by2Plow

0 ( l )/S50. In our
estimate for the value oflmax we setlmax5 l *12hS , where
l * is defined byPlow

0 ( l * )50 ~see Fig. 6!. This is based on
the observation that forl. lmax the interaction as given by
Eq. ~32! is strictly positive as long asuhLu,hS , since in this
case the arguments ofP0 in Eq. ~32! are always larger than
l * ; consequently, the free-energy difference~18! will be al-
ways positive. If, on the other hand,uhLu.hS holds, the free
energy difference~18! will also be positive since then
aL( l ,hL).aL(0) andP̄* ( l ). P̄* (0) holds for anyl.0.

The value forl * as obtained from Eq.~47! is given by

l *

hS
5
S12g

g
2ASS12g

g D 22 2~S1g!

g
~48!

and reduces to the valuel * /hS'22A2'0.59 in the tension-
dominated regimeg@2S and approaches zero in the inte
action dominated regimeg*2S. The largest possible valu
for lmax/hS is thus lmax/hS542A2'2.59. In the tension-
dominated regimeg@2S, the assumption we started wit
lq!1 thus holds for the whole range of thicknesses con
ered because the substrate roughness necessary to ac
roughness-induced wetting is smallhSq!1. In the same
limit, the general expression~47! takes the values

Plow
0 ~ l !'5

SS 122
l

hS
1
1

2

l 2

hS
2D for l /hS<2

2S for 2< l /hS<42A2
0 for l /hS.42A2.

~49!

In the interaction dominated regime, forg*2S, the
maximum ofPlow

0 ( l ) for 2l 8< l< lmax actually diverges as
g→2S, with 2l 8/hS→1 and lmax/hS→2. Note that in this
regime, also the substrate roughness necessary to induce
ting goes to infinity; see Eq.~24!. It follows that it is the
tension-dominated regime where roughness-induced is m
likely to be observed experimentally.

The functionPlow
0 ( l ) as given by Eq.~47! is plotted in

Fig. 7 for 2S/g50, 1/2, and2/3, from bottom to top. As
this ratio becomes larger, as one moves from the tens
dominated regime into the interaction-dominated regime,
maximum of2Plow

0 ( l )/S increases, until it finally reache
infinity for 2g/S51.

The interpretation of the results in Fig. 7 is the followin
For a given ratio of the spreading coefficientS and the liquid
interfacial tensiong, which are determined by the interfaci
tensions of the problem alone and conspire to giveSeff50,
one rescales the amplitude of the wetting potentialP0( l )
~which can be measured or calculated theoretically! by the
spreading coefficient and the distancel by the roughness
amplitude hS . If the rescaled potential2P0( l /hS)/S is
t

-
ieve

et-

st

n-
e

larger than2Plow
0 ( l /hS)/S for all arguments, i.e., if the suf

ficient condition~44! is fulfilled, a complete wetting situation
will result.

An interesting feature of our results comes from the f
that we obtain universal lower bounds as a function of
film thickness l rescaled by the roughness amplitudehS .
This suggests that there exists for a given substrate ex
surface area;hS

2q2/4 an optimal value of the roughness am
plitudehS for roughness-induced wetting to occur. Since t
maximum of the lower bound2Plow

0 ( l /hS)/S is located at
l /hS'1, this optimal value ofhS happens to coincide with
the approximate location of the maximum ofP0( l ), the wet-
ting potential. Assume that the sufficient condition~45! is in
fact satisfied for this optimal value ofhS . For roughness
amplitudes much smaller than this optimal value~the func-
tion P0 will be pushed to the right in the scaling plot Fig. 7!
the sufficient condition cannot be satisfied for very small fi
thicknesses due to the finite slope of the wetting potent
suggesting an infinitesimally thin stable film~no wetting!.
For roughness amplitudes much larger than the optimal va
~the functionP0 will be squeezed to the left in Fig. 7! the
sufficient condition is not satisfied for average film thic
nesses larger than some value at the order of the rough
amplitude, suggesting the formation of a very thin liquid fil
occupying preferentially the valleys of the substrate surf
fluctuations~partial prewetting!.

4. Results for general Seff

Here we treat the general case withSeff.0, now including
the cases where the substrate roughnessaS is larger than the
necessary value obtained by settingSeff50 in Eq. ~21!. In
addition, we will require the free-energy difference~18! to be
larger than a constant denoted byF0, as will turn out to be
important if one looks at stable wetting layers in the prese
of a chemical potential~see Sec. III D!. Using a trial function
of the form ~33!, the following bounds for the slopec( l )
follow

FIG. 7. Plot of the lower bound for wetting potentia
2Plow

0 /S as a function of the rescaled film thicknessl /hS , in the
limit g@2S, for 2S/g51/2 and for2S/g52/3 ~from bottom to
top!. The curves shown correspond to the special caseSeff50, i.e.,
the relative area of the substrate is just sufficient to make the
energy of the dry state (l50) higher than the completely wet sta
( l5`). The area ratios are given byaS51, 2, and 3, from bottom
to top.
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c~ l !>
1

hSH ~S12g!~Seff2S!

S1g
2

l

hS
2

g~Seff2S!

S1g
1
F02Seff

l
for l, l 8

F0
l

1
S2Seff2S~S12g!2

4g l ~S1g!
for l. l 8.

~50!

~51!

Sincec( l ) for l, l 8 now is nonmonotonic and has a maximum atl̄ given by

l̄5hSA~S1g!~Seff2F0!
g~Seff2S!

, ~52!

the global lower boundPlow
0 ( l ) can be calculated according to Eq.~46! only in the restricted range of 2l̄, l,2l 8. For

l,2l̄ , the functionPlow
0 ( l ) as defined by Eq.~45! has a constant slope ofc( l̄ ) given by Eq.~50! sincel̄, l 8 strictly holds. The

global lower bound is thus given by

Plow
0 ~ l !55

S1
l

hS~S1g!
@~Seff2S!~S12g!22Ag~Seff2F0!~Seff2S!~S1g!# for l<2l̄

S12~F02Seff!1
l

hS

~S12g!~Seff2S!

S1g
2

l 2

hS
2

g~Seff2S!

2~S1g!
for 2l̄< l<2l 8

S12F01
SeffS

22S~S12g!2

2g~S1g!
for 2l 8< l< lmax

F0 for l. lmax

~53!
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In Fig. 8 we plotPlow
0 ( l ) for the fixed value2S/g51/2 and

the valuesSeff50, Seff /S521, andSeff /S522 ~from bot-
tom to top in the right portion in the graphs!. The interesting
feature is that the plateau ofPlow

0 ( l ) for l.2l 8 increases with
increasingSeff . This indicates that for a given wetting pote
tial P0( l ) and a given roughness amplitudehS the roughness-
induced wetting transition might disappear for wave numb
much larger than the threshold value determined by Eq.~30!.

D. Stable films in the presence of a chemical potential

So far, we have calculated a lower bound for the inter
tion, denoted byPlow

0 ( l ), so that the free-energy differenc
DF* ( l ) is positive@Eq. ~37!# or larger than a positive con
stantF0 @Eq. ~43!# for all values of l . If P0( l )>Plow

0 ( l )
holds and the chemical potential vanishes, i.e., at coex
ence, the substrate will be covered with an infinitely thi
liquid layer. For nonzero chemical potential, however, t
substrate will always be covered with a film offinite thick-
ness. For the sake of clarity, let us assume the pote
P0( l ) to have a single maximum at finite separation, dec
for large separations likeP0( l );al2s @wheres5m24 if
the molecular interaction is given by Eq.~A7!#, and be nega-
tive for zero separation, corresponding to the nonwett
situation for a flat substrate. One notes thats52 for nonre-
tarded van der Waals interactions.

For finite chemical potential, the free energy then ha
minimum at a finite separationlmin . Assuming that
lmin@q21, one can use Eq.~A21! and finds the leading term
of the free energy according to Eq.~18!,
s

-

t-

e

ial
y

g

a

DF~ l ,hL!5
g

4
hL
2q21P0~ l !1

1

4
~hS

21hL
2!PII~ l !1m l ,

~54!

where the chemical potential term has been added. F
potential of the asymptotic form;al2s this free energy is
minimized byhL50 and the film thickness that is stable wi
respect to variations inl is asymptotically given by

lmin;~as/m!1/~11s!. ~55!

Choosing the constantF0 in Eq. ~53! to be F0
5DF* ( lmin)5DF( lmin ,hL50) and demanding P0( l )

FIG. 8. Plot of the lower bound for wetting potentia
2Plow

0 /S as a function of the rescaled film thicknessl /hS , for the
fixed value2S/g51/2 and forSeff50, 2S, and 522S ~from
bottom to top for the right portion of the plots!. The relative area
increase of the rough substrate is given byaS52, 3, and 4, from
bottom to top.
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696 55ROLAND R. NETZ AND DAVID ANDELMAN
.Plow
0 ( l ) as given by Eq.~53!, the minimum atlmin is indeed

the global minimum and we have a stable wetting film
finite thickness. We will now do a local stability analysis f
this free-energy minimum. The linearized Euler equation,
termining the stable liquid interface profile, can be obtain
from the free energy expression~8! by requiring local force
equilibrium ]F(r,@zL#)/]zL(r)50 and is given by

gnzL~r!1P0~ l !2E d2r8$zL~r!2zS~r1r8!2 l %w~r8,l !

5m, ~56!

whereP0( l )[2dP0( l )/dl is the disjoining pressure for fla
interfaces. Assuming the wetting layer to have a thickn
corresponding to the global minimum as given by Eq.~55!,
which is equivalent to settingP0( lmin)5m and approximat-
ing the interfacial profiles again by sinusoidal waves@Eqs.
~25! and ~26!#, the locally stable liquid interface amplitud
turns out to be@5#

hL5
hS*d

2r cos~qr1!w~r,l !

gq21*d2r w~r,l !
. ~57!

Using formulas ~A9! and ~A25!, this amplitude scales
like hL;hSexp(2ql)l1/22m/2qm/227/2 in the limit ql@1; for
van der Waals forces (m56) one obtains
hL;hSexp(2ql)l25/2q21/2. In contrast to the global stability
analysis leading to Eq.~55!, where we averaged over th
spatial coordinater, the local equilibrium analysis now ac
tually gives a nonvanishing amplitudehL . Inserting this am-
plitude back into the free-energy expression~54!, the stable
film thickness is increased. However, the correction turns
to be less singular for the case of van der Waals forces
thus does not affect the asymptotic behavior oflmin as given
by Eq. ~55!.

IV. DISCUSSION

Some necessary conditions for roughness-induced we
have been obtained on very general grounds. First, the
sion of the liquid interface has to be larger than the nega
spreading coefficient or, equivalently, the tension of
substrate-vapor interface has to be larger than the tensio
the substrate-liquid interface. Second, the roughness of
substrate, measured by the excess area as compared
flat substrate, has to exceed a certain threshold; see Eq.~24!.
Using an approach that is equivalent to a linear-respo
analysis, we obtain a formula relating the molecular inter
tion between two rough interfaces to the interaction of t
flat interfaces; the latter is the so-called wetting potent
Using this formula, a lower bound for wetting potentials
order to obtain this type of wetting transition is derived. Th
lower bound constitutes a sufficient condition. More spec
cally, this lower bound has the following properties:~i! for
vanishing liquid film, or for zero separation between the t
interfaces bounding the liquid layer, the interaction~which
for this limit is the so-called spreading coefficient! is nega-
tive, corresponding to a nonwetting situation in the case
flat interfaces;~ii ! the lower bound has a pronounced ma
mum with a height of at least the negative spreading coe
cient at a separation of about the roughness amplitude.
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height depends on the ratio between the liquid-interface
siong and the spreading coefficientS.

These results concerning the possibility of a roughne
induced wetting transition agree with the very recent exp
mental observation of premelting induced by substr
roughness at the glass-ice interface@25#, where glass sur-
faces showing a roughness with typical amplitudes of;1
nm induced a complete interfacial premelting. Indepe
dently, the calculation of the dispersion interaction betwe
half spaces of glass and ice separated by a liquid water l
show a pronounced maximum at about the same dista
;1 nm @35#, consistent with our prediction for the lowe
bound of the wetting potential. We find the asymptotic b
havior of the film thickness as a function of the chemic
potential to be characterized by the standard van der W
exponent, as shown in Sec. III D. This is in disagreem
with the experimentally measured exponent.2 @25#, which
is to be contrasted with the exponent 1/3 as expected
nonretarded van der Waals interactions in the absence of
other interactions. Finally, we note that the interfacial en
gies for the case of interfacial premelting are influenced
grain-boundary energies in the disordered polycrystall
layers adjacent to the microscopically irregular substr
wall. In fact, it was argued@36# that this effect could inde-
pendently lead to a roughness-induced premelting transit
Such a mechanism could be described within our framew
by assuming an interfacial energyg that depends explicitly
on the roughness magnitude of the liquid interface. A furth
interesting effect might appear for the case of surface trip
point premelting: Here a roughness-induced complete
face melting could be triggered by a roughening transition
the solid surface@37#. Another interesting consequence
our results is that a discontinuous wetting transition might
converted into a continuous transition by a change of
effective wetting potential at small distances.

Our calculations are most valid for small substrate rou
ness, as defined byhSq,1; this also seems to be the expe
mentally most relevant limit, since rough surfaces produc
by etching usually show modest corrugation amplitudes@34#.
The closed-form expressions for the interaction of two c
rugated interfaces obtained in the Appendix are, to the b
of our knowledge, novel and applicable to a wide range
phenomena, including dewetting phenomena~where the
whole argument has to be inverted, leading to roughne
induced dewetting!. We also derive an expression for th
curvature contribution to the free energy, which might play
role in the adsorption of membranes or vesicles on rou
substrates.
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APPENDIX:
DERIVATION OF THE EFFECTIVE POTENTIAL

The total interaction per unit~projected! area between the
liquid interface at lateral positionr located atzL(r) and a
corrugated solid surface, parametrized byzS(r) ~see Fig. 3!,
can be written as

P~r,@zL# !5E
zL~r!

`

dzE d2r8E
2`

zS~r1r8!
dz8w~r8,z2z8!.

~A1!

This expression is hard to deal with due to the nonlo
dependence on the shape of the solid surface, which ente
the integration boundary. Progress can be made by form
expandingzS(r1r8) aroundzL(r)2 l . The average separa
tion between the two interfacesl is given by
l[^zL(r)2zS(r)&, where the angular brackets denote a s
tial average overr.

Keeping terms up to fourth order, one obtains

P~r,@zL# !5P0~ l !1E
l

`

dzE d2r8@zS~r1r8!

2zL~r!1 l #w~r8,z!1
1

2E d2r8@zS~r1r8!

2zL~r!1 l #2w~r8,l !1
1

6E d2r8@zS~r1r8!

2zL~r!1 l #3
]

]z
w~r8,z!uz5 l

1
1

24E d2r8@zS~r1r8!2zL~r!1 l #4

3
]2

]z2
w~r8,z!uz5 l , ~A2!

where the expression for the interaction of two planar s
faces introduced in Eq.~2!,

P0~ l ![E
l

`

dzE d2rE
2`

0

dz8w~r,z2z8!, ~A3!

has been used. At this point it is useful to specify the int
facial profiles; we choose one-dimensional sinusoidal p
files for the liquid and the solid surfaces, as depicted in F
3, as is sufficient and appropriate for a linear analysis,

zS~r![zS~r1!5hSsin@q~r1!#, ~A4!

zL~r![zL~r1!5hLsin@qr1#1 l . ~A5!
.

d

l
in
lly

-

r-

-
-
.

Now the expression~A2! can be averaged over th
r-coordinates, thus yielding the mean interacti
P̄( l ,@zL#)[^P(r,@zL#)&r , which for sinusoidal interfacial
profiles reads

P̄~ l ,hL!5P0~ l !1
1

4E d2r~hS
21hL

222hShLcos@qr1# !w~r,l !

1
1

64E d2r$hS
41hL

414hS
2hL

2

24hShL~hS
21hL

2!cos@qr1#

12hS
2hL

2cos@2qr1#%
]2

]z2
w~r,z!uz5 l ~A6!

and is an expansion up to fourth order in the interface mo
lation amplitudeshS andhL .

To proceed further, it is appropriate to specify the m
lecular interactionw(r,z). In all that follows, an inverse
power law defined by

w~r,z![A~r21z2!2m/2 ~A7!

will be used. Accordingly, nonretarded van der Waals int
actions correspond tom56 with A being the Hamaker con
stant. The interaction between planar surfaces is given b

P0~ l !5
2pA

~m22!~m23!~m24!
l 42m. ~A8!

In addition, the following relations involving derivatives o
P0( l ) turn out to be useful:

P~ II !~ l !5
2pA

m22
l 22m5AE d2r~r21 l 2!2m/2, ~A9!

P~ IV !~ l !52pA~m21!l2m, ~A10!

P~2II !~ l !5
2pA

~m22!~m23!~m24!~m25!~m26!
l 62m,

~A11!

whered2P(-II) ( l )/dl25P0( l ). Note thatP(2II )( l ) is not de-
fined for van der Waals interactions withm56; this impor-
tant case will be considered separately.

The terms in Eq.~A6! involving a cosine can now be
evaluated analytically; for the first term, and using the int
action defined in Eq.~A7!, we obtain

AE
2`

`

dr1E
2`

`

dr2
cos@qr1#

~r1
21r2

21 l 2!m/2

5

AApGSm21

2 D
GSm2 D E

2`

`

dr1
cos@qr1#

~r1
21 l 2!~m21!/2 .

5
2pA

GSm2 D Km/221~ql !~ql !
m/221l 22m212m/2. ~A12!

In Eq. ~A12! Kn(z) denotes the modified Bessel function
standard notation.
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1. Small separations

Let us first concentrate on separationsl much smaller than
the typical wavelengthq21 of the surface corrugation, i.e
l!q21. For small values of the argumentz, the product
Kn(z)z

n can be expanded as a power series

Kn~z!zn5a01a2z
21a4z

41•••, ~A13!

with n5m/221 and the coefficients given by

a052n21G~n! for n.0, ~A14!

a2522n23G~n21! for n.1, ~A15!

a452n26G~n22! for n.2. ~A16!

Note that for van der Waals forces, characterized byn52,
the coefficienta4 is given by

a45~3/222g12ln222lnz!/16. ~A17!

with g being the Euler constant defined byg50.577 21. Us-
ing this expansion and the definitions~A8!–~A11!, the cosine
term in Eq.~A6! can be written as

AE
2`

`

dr1E
2`

`

dr2
cos@qr1#

~r1
21r2

21 l 2!m/2

5P~ II !~ l !2
m23

2
q2P0~ l !1

~m23!~m25!

8

3q4P~2II !~ l !1O~q6!. ~A18!

For the case of van der Waals interactionsm56, one analo-
gously obtains

AE
2`

`

dr1E
2`

`

dr2
cos@qr1#

~r1
21r2

21 l 2!3

5
2p

4 S 1l 4 2
q2

4l 2
1
324g14ln224ln~ql !

64
q4D

1O~q6!, ~A19!

which includes a logarithmic singularity for small separ
tions.

For the other term in Eq.~A6! involving a cosine one can
interchange the differentiation and integration~for m.6);
the additional integral needed involves cos@2qr1# and is
given by

AE
2`

`

dr1E
2`

`

dr2
cos@2qr1#

~r1
21r2

21 l 2!m/2

5P~ II !~ l !22~m23!q2P0~ l !

12~m23!~m25!q4P~-II !~ l !. ~A20!

Using the formulas~A18! and ~A20!, and the definitions
~A8c! and ~A11!, one obtains the following expansion fo
Eq. ~A6!:
-

P̄~ l ,hL!5P0~ l !F11
m23

4
hShLq

2

2
~m23!~m25!

128
hShL~hS2hL!2q4

1
3~m23!~m25!

64
hS
2hL

2q4G
1P~ II !~ l !F14 ~hS2hL!21

m23

32
hShL~hS2hL!2q2G

1P~ IV !~ l !
1

64
~hS2hL!42d P̄~ l ,hL!

1O~h6,q6!, ~A21!

which is valid for ql!1 andm.4 ~for m54 additional
logarithmic singularities appear in terms proportional
q2). The terms up toO(h2,q2) have been obtained prev
ously in the context of the dynamics of thin wetting laye
@38#. The correction termd P̄ corresponds to a curvature con
tribution and is given up toO(h4,q4) by

d P̄~ l ,hL!5
~m23!~m25!

16
P~2II !~ l !hShLq

4. ~A22!

This curvature contribution has additional nonanalytic ter
for the case of nonretarded van der Waals interacti
m56; for this case, one obtains

d P̄~ l ,hL!5
p

256

324g14ln224ln~ql !

64
hShLq

4.

~A23!

The same singularity;q4lnq has been found for a free in
terface in the presence of van der Waals forces@26#.

2. Large separations

In the other limit, forql@1, the productKn(z)z
n is given

by

Kn~z!zn5Ap/2zn21/2e2z@11~4n221!/8z1•••#.
~A24!

In this case, the expression~A12! is asymptotically given by

AE
2`

`

dr1E
2`

`

dr2
cos@qr1#

~r1
21r2

21 l 2!m/2

5
23/22m/2p3/2A

GSm2 D qm/223/2l 1/22m/2e2ql ~A25!

From Eq.~A6! one immediately obtains
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P̄~ l ,hL!5P0~ l !1
1

4
P~ II !~ l !~hS

21hL
2!

1
1

64
P~ IV !~ l !~hS

41hL
414hS

2hL
2!

1O~e2ql!, ~A26!

which is valid forql@1.

3. Closed-form expressions for the effective potential

In the following, formulas are presented, which expre
the series for the effective interaction between the two ro
interfaces ~A21! and ~A26! in terms of the interaction
P0( l ) between two flat interfaces. For the caseql!1, this
expression is given by

P~r1 ,l ,hL!5~11hShLq
2cos2@qr1# !1/2P0

3S l1~hS2hL!sin@qr1#

~11hShLq
2cos2@qr1# !1/2D2dP~r1 ,l ,hL!.

~A27!
sio
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For the caseql@1, the corresponding expression is given

P~r1 ,l ,hL!5^P0~ l1hLsin@qr1#1hSsin@qt1# !&t1

1O~e2ql!, ~A28!

wheret1 is the local lateral coordinate on the liquid interfa
and is averaged over, leaving only the dependence on
coordinater1 in the substrate interface. Expressions~A27!
and~A28! depend explicitly on the spatial coordinater1; that
they indeed reproduce term by term the series~A21! and
~A26! can be checked by expansion and averaging overr1.
The validity of the closed-form expression is thus proven
power laws with arbitrarym; we were not able to extend thi
proof to interactions that include a cutoff at small sepa
tions. However, it is likely that the formulas~A27! and
~A28! are also accurate for potentialsP0( l ) that do not di-
verge asl→0. This is supported by the fact that forl50 the
formula ~A27! exactly describes the surfacelike energy co
tributions.
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