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Roughness-induced wetting
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We investigate theoretically the possibility of a wetting transition induced by geometric roughness of a solid
substrate for the case where the flat substrate does not show a wetting layer. Our approach makes use of a
closed-form expression that relates the interaction between two sinusoidally modulated interfaces to the inter-
action between two flat interfaces. Within the harmonic approximation, we find that roughness-induced wetting
is indeed possible if the substrate roughness, quantified by the substrate surface area, exceeds a certain
threshold. In addition, the molecular interactions between the substrate and the wetting substance have to
satisfy several conditions. These results are expressed in terms of a lower bound on the wetting potential for a
flat substrate in order for roughness-induced wetting to occur. This lower bound has the following properties.

A minimum is present at zero or very small separation between the two interfaces, as characteristic for the

nonwetting situation in the flat case. Most importantly, the wetting potential needs to have a pronounced

maximum at a separation comparable to the amplitude of the substrate roughness. These findings are in
agreement with the experimental observation of roughness-induced surface premelting at a glass-ice interface
as well as the calculation of the dispersion interaction for the corresponding glass-water-ice system.
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PACS numbeps): 68.45.Gd, 68.15:¢e, 68.35-p

I. INTRODUCTION wetting situation, and one finds the analogous phenomena
corresponding to partial and complete wetting.

The phenomenon of wetting has been the subject of in- In early theoretical studies, the solid substrate was as-
tense attention and a fairly good understanding of the basisumed to be flat and homogeneous. However, in most experi-
concepts and mechanisms has emefded]. In the simplest mental and technological situations the substrate is both
case, a solid inert surface is put in contact with an undersatuough and inhomogeneous. For complete wetting upon ap-
rated vapor of a second substance. Typically, a molecularlproaching coexistence, where the liquid forms a thin and
thick liquidlike film will form on the substrate surface due to continuous film, the influence of substrate roughness and
favorable molecular interactions. The liquid film is in equi- chemical disorder has recently been investigated theoreti-
librium with its undersaturated vapor, thus giving rise to acally [5-9] and experimentallf10—-13 in great detail. It
second interfacdthe emerging liquid-vapor interfagere-  was found that heterogeneity and roughness of the solid sub-
ferred to hereafter as the liquid interface. Depending on thatrate in conjunction with long-range van der Waals interac-
detailed molecular interactions between all three phases anibns cause equilibrium undulations of the liquid film sur-
the resulting interfacial energies, the liquid film can eitherface. Surface tension, on the other hand, acts as a damping
grow to macroscopic thickness or remain finite as coexistmechanism that reduces the amplitude of undulations for
ence between the liquid and its vapor is approached. The firgshicker films. The theoretical resul{§,8] were verified re-
situation corresponds toomplete wettingvith a diverging cently in small-angle x-ray scattering1-13.
film thickness, the second case is caliecbmpleteor partial Yet another realization of the wetting phenomenon is ob-
wetting tained if anonvolatileliquid is spread on a solid surface; in

Two other, closely related situations are possitileThe  technological applications, the liquid might be a paint or a
liquid layer (e.g., watey on the inert substrate can be in lubricant. In this case, the liquid is neither in phase equilib-
equilibrium with its solid phaséice) at temperatures below rium with the solid substrate nor with the gaseous phase and
the melting point. In this case the vapor is replaced by a solidhe total amount of liquid on the substrate is a conserved
and the appearance of a thin liquid layer between the sulguantity [1]. In the complete wetting situation, the liquid
strate and the solid phase indicates interfacial premeltingiorms a continuous film on the substrate; in the partial or
Note that the third phasghe icg is entirely different from incomplete wetting case, the liquid forms droplets with the
the solid substratgii) The substrate itself can be a solid in contact angle being determined by the interfacial energies
equilibrium with its vapor phase. Here the formation of abetween the three phases meeting at the contact] lidg
thin liquid layer as three-phase coexistence is approacheloughness of the substrate has been shown to cause contact
corresponds to surface premeltifg]. The phenomenologi- angle hysteresis for advancing and receding contact lines
cal description of these scenarios does not differ from thé1,15].

Much work was specifically concerned with the interfa-
cial and surface premelting properties of ice, due to its atmo-
*Present address: Max-Planck-Institut fiolloid- und Gren-  spheric and environmental consequencEs]. Surface pre-
zflachenforschung, Kantstr.55, 14513 Teltow-Seehof, Germany. melting of ice has been observed by a variety of
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experimental techniqudd47-19 and it is now believed that
cogmlete surface pr?ameltir('ge., macroscopic growth of the TOp Phase
surface liquid layer as the melting temperature is ap-
proachedl occurs only for some orientations of the crystal
surface and only if the vapor phase is diluted with[2i0].
Interfacial premelting of ice, giving rise to the low sliding
friction of ice, has been deduced from wire regelation at low FIG. 1. Schematic view of a flat substrate: A liquid layer of
temperaturd21] and from viscosity measurements betweenthicknessl intrudes between the inert substrate and the top phase,
surfaces of ice and quarf22]; it also forms the basis for which can be either the vapor or the solid in chemical equilibrium
frost heave in frozen soi[®23]. Complete interfacial premelt- with the liquid, corresponding to wetting or interfacial premelting,
ing between ice crystals and a glass substrate was detecttg$pectively. The liquid-substrate and liquid-top phase interfacial
by ellipsometry[24,25. The geometric structure of the glass energies are denoted by, and y, respectively.
surface was shown to play a vital role in this premelting
phenomenon; in a series of experiments, the surface has betap phase. The top phase can be either a vapor or a solid in
roughened by exposition to fluoric acid for different amountsthermodynamic equilibrium with the liquid film. The solid
of time, leading to surfaces with varying characteristicsubstrate, on the other hand, is completely frozen and far
height-fluctuation amplitudes and wavelengf5]. For flat ~ from its melting point. In this section, we will review results
glass substrates the premelting was shown to be incomplettar an ideal solid substrate, namely, molecularly flat and ho-
while complete premelting was exhibited for glass substratesiogeneous. Using the convention of labeling all physical
with a threshold amount of microroughnd&5s)]. guantities with azero subscript for the flat case, the free
The latter experimental observation motivated us to exenergy per unit area can be written as
plore theoretically the possibility of @aoughness-induced
complete wetting or premelting transition. This describes the Fol)y=yg + y+PO>1)+ ul, (1)
situation in which thelat substrate, for a given temperature,

is not covered with a macroscopic liquid layer as coexistencg pare ys, denotes the solid-liquid interfacial tension apd

is approachedcorresponding to partial wettingbut, at the  janotes the interfacial tension between the liquid and the top

same temperature, is completely wet if the roughness of thease The parameter is the chemical potential difference
substrate exceeds a certain thresh@id what follows we  paiveen the liquid and top phases. Alternatively, it could

will use the wetting terminology both for the phenomena of 54 correspond to a Lagrange multiplier controlling the film
premelting and wetting In this paper we critically examine ihickness for nonvolatile liquids with conserved total vol-
the conditions under Wh'Ch such a Pher.‘ofne”"” can oCCUme The potentiaP®(l) represents the interaction per unit
As a result, roughness-induced wetting is indeed possible i o5 petween the two flat interfaces with a separatidreat

the involved materials have the following propertié$:The .o he viewed as a thickness-dependent correction to the

tension of the substrqte-yapor inter.flace has to be Iarggr th"’}ﬂterfa\cial energies, depending both on the short and long-
that of the substrate-liquid interfacgi,) the surface area in- ranged parts of the molecular interactidas]

crease of the solid substrate due to its roughness has to ex- In the simplest approach, assuming pairwise additive in-
ceed a certain threshold, which depends on the interfacigl 5 ions between molecules and uniform densities in all

tensions of all three phasg25], and(iii ) the effective inter- coexisting phase2°(l) can be expressed as
action between the two interfaces bounding the liquid layer '

for the flat case has to have a maximum for separations of . 0

about the amplitude of the substrate roughness. We also find p0(|)5f dzf dzpf dz'w(p,z—2'), 2)

that roughness-induced wetting is most likely to occur when [ —o

the substrate roughness just exceeds a certain threshold value

and will disappear for very large amplitudes of the rough-where w(p,z) corresponds to the local interaction energy
ness. difference per unit volume squared between the solid and the

The outline of this paper is as follows. In Sec. Il we third phase. Dropping some constant terms, it can be written
introduce the model and review some nomenclature for thgg

case of a flat substrate. In Sec. Ill we extend the analysis to
the case of a rough substrate. We first give necessary and
rather general conditions under which roughness-induced
wetting is possible. Using a formula that describes the van +nngUrr). ®)
der Waals interaction between two sinusoidal surfaces, we

then_ construct a sufficient condition for roughn_ess-mdyce%ereuij(r) are the pair interactions between molecules and
wetting in the forr_n of a Iower bound for the interaction then; are the particle number densities for each phase, where
bgtween two flat interfaces. Finally, Sec. IV contains thei and j are any of the relevant phases: solif) ( liquid
discussion. (L), and top ) [5]. In a more realistic approach, one cal-
culates Eq(2) directly using the Lifshitz continuum theory
of dispersion interactiong27].
In general,P%(1) is expected to vanish fdr—« as the
Consider the situation as illustrated in Fig. 1, where a thintwo interfaces become decoupled and approaches a finite
liquid film intrudes in between an inert solid surface and avalue forl —0 [29]. One therefore defines

0 mm 0 o - - .]..
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Il. FLAT SUBSTRATE
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0 for |-
Po(l)= S for 1—0, 4)

Top Phase

whereS is traditionally called thespreading coefficierdénd
is given by

S=vyst—vYsL™ 7. )
he above def leads t58°(0) Id Yot
The above definition leads 0)= vys7, just as one wou
expect: In the absence of any liquid, the total free energy is Substrate
given by the interfacial tension between the solid and the top
phase[30]. On the other hand, for an infinite layer of liquid
coexisting with the top phase, one fin@8(«) = yg + v for FIG. 2. Liquid film on a rough substrate: For thin mean film
u=0, i.e., the two interfaces bounding the liquid do notthicknessl, defined by the averaged local separation between the
interact and the total free energy is given by the sum of théwo interfaces, the liquid interface follows the substrate corruga-
two interfacial energies alone. One can notice that positivéions.
values ofS=P°(0)— P%(x) = F°(0)— F°() correspond to
a situation where an infinite liquid layer is energetically pre P(p[L])= L ( )dzJ d2p,f§s<p+p )d ,
L(p -

ferred over a vanishing liquid layer. Indeed, neglecting the Zw(p',z=7").

possibility of additional minima oP°(1) at intermediate val- (9)

ues ofl, positive and negative values & correspond to

wetting and nonwetting cases, respectively. On the otheNote that expressiori9) is a local function of the liquid

hand, in the case of a nonvanishing chemical poteptiaghe  profile £, (p), but a nonlocal functional of the rough solid

minimum of the free energy will always be at finite film surfaceg(p). For the discussion of wetting behavior it is

thickness, even for positive spreading coefficiSriB1]. useful to average over the in-plane coordinpteby which
In the following, we will be exclusively concerned with we obtain the effective wetting free energy

the nonwetting case, i.e$<0. It will be convenient to

modify the definition of the free energy slightly and to take j:(| LED=(FpLa D), (10)

the infinitely thick liquid layer as the reference state. The

free-energy difference, defined hyF°(1)=7°(1)—7°(*)  where we explicitly pulled out the dependence on the aver-
and in the case of vanishing chemical potengia+0, is  age film thickness

given by
1=(LL(P)={s(P))y- (11
A1) =P(1), (®) ’
This parameter measures the average distance between the
with the limiting values two interfaces. The effective free enerh0) can be written
as
0 for I—o _ _
APD={3 for 150, @ AltaD=asrstral ey ePULaD+wl.

Clearly, a wetting situation is realized X7%(1)>0 holds N analogy to Eq.(10), the effective wetting potential
for all | <oo. P(l,[£.]) is obtained from Eq(9) by averaging over the

in-plane coordinate

Ill. ROUGH SUBSTRATE P(l LED=(P(pLL]), (13

We introduce now the necessary framework to describe

wetting on geometrically rough solid82]. The free energy The parametersrs and «,(I,[{,]) measure the ratios be-
per unit projected area for a liquid film on a rough solid tween the actual and projected areas of the substrate surface

substratesee Fig. 2 can be written as and liquid interface, respectively, and are defined by
FpLL D) =VIF VP Pyst VI VL (P Py as=(NL+H VP, 14
+P(p.LELD +uliip)—is(p)]. 8 a (1L D) =(V1+[ViL(P1?),. (15)

The solid and liquid surfaces are parametrized’bip) and  On the mean-field level considered in this paper, one can
L. (p), respectively, wherp is a two-dimensional vector in a take the liquid interface to assume a fixed profifé p) so as
reference plane. The interaction tefip,[ £, ]) is a gener- to minimize the free-energy expressi®). By construction
alization of P°(1) [Eq. (2)] and is defined by of the functional(12), this amounts to a constrained minimi-
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zation of the free energy for a fixed average film thickness AF*(1)>0 (22)
|. This yields the minimized free energy, denotedBYy, as
a function ofl, hold for all finite film thicknessed<? The answer of
_ _ _ course imposes conditions both on the magnitude of sub-
F(H=min AL[&D=FILLD. (16 strate roughnesémeasured bys) and on the interactions
(4] between the coexisting phases, i.e., on the molecular interac-

) ] S tion w(p,z), which enters the calculation of the wetting po-
The area ratio of the optimal liquid interfacg has the tential in Eq.(9).

limiting values In Sec. Ill B we give two rather general necessary condi-
tions for roughness-induced wetting, which hold at very
as for 10 small wetting-layer thickness and rather large layer thickness
af (D= (,IED=) 1 for 1—w (17 (as compared to the substrate roughness amplituelspec-

tively. For the intermediate film thickness, we derive a suf-

. L . ficient condition in Sec. Il C.
since a very thin liquid layer follows the solid substrate

roughness completely, whereas a thick enough layer will be
essentially fla{neglecting thermal capillary roughnégsdust
as for the flat caseP* (I)=P(l,[{{]) is expected to vanish 1. Necessary condition for vanishing film thickness

for infinitely separated interfaces, i.€} () =0. The inter- The necessary condition for a roughness-induced wetting
action at contactfor | =0) is, to a first approximation, given transition that corresponds to E(R2) for vanishing film

by the interaction of the flat case times the surface area ratighickness [(— 0) follows from Eqgs.(19) and (20). It can be

of the rough solid surface, i.d?,*(0)~a3P0(0)=£zSS [33].  written asS.;>0, which, together with the nonwetting con-
Defining the free-energy difference byAF(l,[{ ])  dition for the flat case $<0), leads to the inequaliti25]
=F(,[£, ])— F* (), for which we setu=0 (the introduc-

tion of a nonzero chemical potential is straightforward and Ys1~ YsL<v<as(¥st— ¥sU- (23

will be treated separately in Sec. Il)Gone finds

B. Necessary conditions for roughness-induced wetting

These inequalities can only be satisfiedy> yg, holds,
AR I, _ I, — 1 v+ Pl , _ 18 sinceag=1 by definition. From. Eq(5) one t.hen also obtains
(LLaD={a(LlaD=1hy+PAL4D. (18 that y>— S has to hold. Equatiof23) also imposes a lower

The limiting values of the free energy7* (1) (obtained by ~Pound on the substrate surface ratig,

minimizing with respect to the liquid interface profife) are

given by !

as> W}l . (24)

_ ag(yst—vys)—vy for 1-0 »
AF()=1{ ¢ for 1w (19 Clearly, the condition§23) and(24), although necessary, are

not sufficient for wetting, since the free energy=* (l) can
develop a minimum at finite separatidn The conditions
It is instructive to define the effective spreading coefficient(23) and (24) simply correspond to a situation where the
Se=AF*(0), which can be written as | — o thick liquid layer has a lower interfacial energy than a
film of vanishing thicknes$—0.
Serr= as(yst— ¥sU) — y=(as—1) y+ asS. (20)
2. Harmonic approximation
From Eq.(2) it follows that the effective spreading coeffi-
cient is always larger than the bare spreading coeffic®nt iy aghere to in the remainder of this paper. Consider a
since y>0 andas>1. The substrate area ratio can be ex-cqrygated solid surface, chosen to have sinusoidal undula-
pressed in terms of the spreading coefficients and the liquig, g along one directiop, of the two-dimensional refer-

interfacial tension as ence plane g, ,p») with amplitudehs and wave numbeg,

We now introduce the harmonic approximation, which we

St L
as= Sf-fk 77_ (21) {s(p)=hssin(qpy). (25

The liquid profile is approximatelywithin linear-response
theory) characterized by the sangemode undulation with a

different amplitudeh, , vertically displaced by the film
With the definitions of the previous sections we are nowthicknesd,

able to clearly define the subject and purpose of the present

work. As already stated in the Introduction, we are con- L (p)=hgsin(gpq) +1. (26)
cerned with the case where the flat substrate is not wet, i.e.,

the free-energy differencé 7°(1) for the flat caséEq. (6)],  This geometry is depicted in Fig. 3. To linear order, there is
is negative for some finite value bf The central question is, also no phase shift between the two surfaces. In the follow-
under which conditions will the rough substrate be wet, i.e.jng, the amplitudéng is assumed to be positive, with no loss
under which conditions does of generality. The interfaces cannot penetrate each other,

A. Definition of roughness-induced wetting
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‘: Cs(py) | Substrate
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FIG. 4. Minimal mean film thicknesk for which a flat liquid
interface is still possible. The liquid interface touches the substrate
surface at isolated points and the film thicknessrresponds to the
characteristic corrugation amplitudhe .

FIG. 3. Simplified geometry in the singlg-mode approxima-
tion, with the substrate surface parameterized{bfp,) and the
liquid interface parametrized b§; (p;), shown along the direction
parallel to the wave vector of the sinusoidal profile. The mean sep
ration| corresponds to the distance between the mean positions
the interfaces, denoted by broken lines.

"’c\)i{quid interface, i.e.,¢. =1. Then the first term in Eq18)
vanishes, and in order for the minimized free-energy differ-
ence AF*(l) to be positive we have to require that

constituting thenoncrossing conditionwhich can be written  P*(1)>0. Clearly, a flat liquid interface is possible only for

as{,(p)={<(p), valid at any poinfp. This leads to the con- @ liquid layer thickness that is larger than the amplitude of
straints the solid roughness, otherwise the two interfaces sterically

interact. Figure 4 schematically depicts the limiting case
hs—I<h <I+hs. (27 I=hg with the flat liquid interface just touching the solid
substrate at the largest height fluctuation characterized by the
Expanding the expressions for the interfacial ratlesand  amplitudehg. For sinusoidal interfaces described by Egs.

a [Egs.(14) and (15)] and keeping only terms up to qua- (25) and(26) and using the noncrossing constraif), one
dratic order in the amplitudes, andhs leads to the follow-  optains the inequality

ing expressions for the area ratios: o
1 P*(1)>0 for hg<l<oo, (32
as=1+ 7hiq’+O((hsa)®), (28) —
4 For smaller distances, the interactibii (1) can actually be-
1 come negative withA 7* (1) still being strictly positive, be-
a =1+ zhig*+ O((ha)*), (29  cause then the free energy expressia8) always has a
4 positive-energy contribution from the interfacial tension of

: . the liquid interface.
which are expected to be good approximations for weakly' Thjs result has consequences for the important class of

corrugated interfacegas long ashsq<1 andh q<1). The | eting potentials with a single minimum at finite but rather
necessary condition for roughness-induced wetting at vanisha ge \etting film thickness, which describe continuous wet-
ing film thickness(24) becomes ting transitions as the minimum moves outward to infinity. If

the minimum occurs at distances larger than the roughness
) (30) amplitude, it follows from Eq(31) that the substrate rough-
1+S8ly ness will not induce the wetting of the substrate.

. . . . . From the above considerations we see that the interaction
We now identify two different physical regimes. For —;

y= — S, defining theinteraction-dominated regiméhe nec- P (_I) _has _to _haYe rat_her corr_1p|ex_beﬁ';1vior; at zeror
essary condition for wetting leads kag>1 and the expan- Vanishing liquid film it is negative, since*(0)~asS, and
sion in terms ofhqg breaks down. Here the solid roughnessWe start with the assumption of a nonwetting behavier.,

has to be quite pronounced and the behavior of the liqui=0) for the flat solid surface. Considering only the0
interface turns out to be mostly dominated by the shortSituation, we see that there is a threshold value of the solid

ranged part of the molecular interaction. Fpr — S, defin- roughness in order to make the var_1is_hi_ng f_iIm I_imjt energeti-
ing thetension-dominated regimeondition(30) can be ful- cally unfavor_able c_:ompared to the infinite film Ilmlt; see Eq.
filled even for small solid roughnesshdg<1); here the (24_)' For a film th|ckpess Ia.rggr than the amplltudg of.the
liquid interface is dominated by its surface tension. It is theSolid roughness, the interactié?f (1) has to be repulsive in
tension-dominated regime where the approximations leading'der to make roughness-induced wetting possible; see Eqg.
to Egs.(28) and (29) and other simplifications made in the (31). The question that arises naturally is whether such a
remainder of this paper are valid; this is also the regime of€havior is actually possible and what the conditions on the
most practical interest, since values fogq characterizing Molecular interactiow(r) are.

rough surfaces in experiments are typically quite sri&l.

1

C. Sufficient condition for roughness-induced wetting

.N ition for thick fil . . . .
3. Necessary condition for thick films In this section, we want to show for general film thick-

__An additional necessary condition for wetting is nesses under which conditions roughness-induced wetting, as
P*(1)>0, valid for average film thicknesses approximatelydefined by Eq.22), occurs. In order to do so, we need to
larger than the corrugation amplitudes hg. This condition  minimize the free energy with respect to the fluid interface
can be obtained in the following way. Suppose we have a flgprofile { (p) for each average film thicknedsand for a
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given molecular interactiomw(p,z) and interfacial tensions, / .
according to Eq(16) [with {, (p) entering the expressions oy
(8) and (9)]. We then have to check whethar7*(1)>0
holds for eacH. If it turns out thatA 7 (1)<0 for a given

I, we know that the system will prefer to have a stable film of
this thickness and wetting will not occur.

FIG. 5. Liquid film with a thicknesd’, for which the liquid

. interface with a corrugation amplitudg’ as given by Eq(35) just
For the present purpose, we turn this procedure SomeWh?guches the substrate. Since the two interfaces cannot cross, in the

arouEd. we \3"" trg to ggterrplne 'the Int?ractlo? tfhor W?'th single g-mode approximation the amplitudl, increases for
roughness-induced wetting, Tor given values ol th€ Interlax 561 vajues of until one finally obtainsh, =hg in the limit
cial tensions and the substrate roughness, does occur. I:LI'rQO. In a more realistic model, one might obtain a ruptured inter-

thermore, in many situations the molecular interaction,ce for small layer thicknesses, corresponding to separate droplets.
w(p,z) is not easily available, and usually the wetting poten-

tial for two flat interfacesP®(l), as defined by Eq(2), is
readily measured and calculated. We will therefore use
relation between the planar interactiBA(l) and the wetting
potential between two sinusoidally modulated interfacesﬁl
P(p1,l,hy), which is derived in the Appendix. Using this

relation, we express the condition for roughness-induced — . . ) . .
P g F*(I) is positive, we know that the wetting film for this

wetting in terms of a lower bound on the planar interaction™ " . . : . .
PO(1). The analysis will be presented in the next two subsecParticular mean thickness is unstable. This follows since us-

0 . o . . .
tions. These parts are somewhat technical, and the unmotf9 P mstgad ofPt we will necessarily mcrgaslé*(l_) and
vated reader can easily skip these sections and move on taus also increasa 7*(1). If we succeed in showing the

P(p1.l,h.) as given by Eq(32) and evaluated wittP? is
aotlways lower tharP(p4,l,h,) evaluated withP® instead.

The strategy will be as follows. If we can show that for a
m with a given average thicknedsand using the linear
ial function P? the resulting free energy difference

the results in Sec. Il C 3. same for all values of (including | =0), it follows that
PO(1) (which is by construction strictly larger than all the
1. Construction of lower bound on l) linear trial function$ is an interaction that shows roughness-

induced wetting. In the subsequent calculations we actually
reverse this procedure and start with the linear trial functions,
enforcing instability of the wetting film for each value bf
separatelyfleading to restrictions on thiedependent slopes
c(1)], and construct the functioR%(l) from a superposition
of all piecewise linear functions. Choosing a linear trial func-
tion of the form(33), does not restrict the generality of our
results, since one can express any function as the supremum
of a set of suitable piecewise linear functions.

Using the trial function33), the averaging over the coor-
P(p1.l.h)=(1+hsh g’cosTap, 1) dinatep, can be easily done and, with Eq&8) and(32), the
|+ (hs—h,)sin gp;] resultant trial free energy is given by

(T+heh Pcoap ™ 2

To proceed, consider first the ranigehs. In the tension-
dominated regime, defined bhgg<1, it follows that
Ig<<1 also holds. In this limit, the wetting potential, defined
by Eg.(9), can, for the special case of two sinusoidal inter-
faces(see Sec. Il B 2 be expressed in terms of the planar
interaction P°(1). Neglecting curvaturelike terms that turn
out to scale likehgh, g*, this relation is given bysee the
Appendiy

0

AFr(1,h)=Fyhia?+ S(1+ thsh ) +c(D)l+O(g).
34

Clearly, the above form has the following desired property: 34

for =0 one hash, =hs and one thus obtains for the spa- \inimizing this free-energy expression with respecthio,

tially averaged potenti@(1=0h,)=agP°(I=0), as antici-  gne obtains the amplitude

pated on intuitive grounds in the paragraph preceding Eq. 18.

For eitherhg=0 or hy =0 the formula(32) simplifies to S

P(py.l,h)=P°(+ (hs—h,)singp;]), which is exact. hf=— 2 Ns) (39
Still, the formula(32) is rather complicated and calculat- Y

ing the spa_tlally averaged_ . potential P(_I'hL) which characterizes the minimizing liquid interface profile

=(P(p1.1.h)),, is by no means trivial. The following 0b- .+ “The jiquid interface corrugation is in phase with the

servation Is crucial. For a given value lofthe argument of  gypstrate configuration, sin@<0. Since the two interfaces

P® in Eq. (32) is strictly smaller than B (since paye to satisfy the noncrossing constra®i), the minimiz-

2hglg2<1). We can therefore choose a linear trial functioning amplitudeh? can be realized only for a thickness larger

of the form than some characteristic lengkk|’. For I=1", the liquid
interface has an amplitude given by Eg5) and touches the

PY(t)=S+c(t. (33)  substrate surface; this situation is depicted in Fig. 5. This

defines the length’, which is, combining Eq927) and(35),

For a given value of, we require the trialP%(t) to be a  given by

lower bound of the flat-interface potentid®(t), i.e.,

PI(t)<PO(t), in the finite range &t<2l, which puts cer-

tain bounds on the slope(l). It trivially follows that (36)

I"=hg| 1 >
— Hg +Z/
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For smaller film thicknesses the amplitudeh, necessarily

deviates from the valug] and finally equalshg for [=0. _PI%W/S
Note that the lengthl’ is always bounded by
hg/2<1’'<hg, as follows from the fact thay> —S; see Eq. L5
(23. 1
2. Calculation for S;=0 0.5
In this section we assume th&fs=0, which means the f/h
. : ; 1 2 S
substrate roughness just suffices to make the nonwetting
state (=0) energetically unfavorable compared to the com- 050 /€ /hs 20 [hs Cmax/hs
pletely wet statel(=) at coexistenceg=0). This is ob-
viously not necessary, but renders the resultant expressions
in a simpler form and is sufficient fq=0. The extension to FIG. 6. Plot of the lower bound for wetting potentials
generalSy; will be done in SeCZ- Il C 4. From Eq30) the  —pO /s as a function of the rescaled film thicknes#s, for
excess substrate surface agghg/4 is given by —S/ly=1/2 andS;=0. In the interval 6&1<2l’, PP (1) is a
52 monotonically increasing function. In the interval "2 <l .
q hs_ B S Pﬂ,w(l) is constant. Fot>1,,, one findsPﬂ,W(I)=O. The value
4 Sty I* is defined byP,(1*)=0.

For I<l’, the amplitude that minimizes the free energy andwith the limiting value(40) for I=1".

is in accord with the noncrossing constraint is given by Thus far, we have calculated a lower bound of the planar
h.=hg—1, that is, the interfaces just touch. Inserting this potential P°(t) for a given value of the average film thick-
amplitude into the trial free-energy expressi@4), one ob- nessl, which consists of a linear function of finite extent
tains the minimal valué¢denoted by an asterisk (between 0 and I3 andl|-dependent slope. In order to con-
struct a lower bound orP?(t) that is valid forany film
thickness, we have to calculate the upper envelope of these
linear functions. This function we denote B, (1). The

(37 sufficient condition for wetting, corresponding to the defini-

- . . tion (22), can then be written as
Thus the sufficient condition for the free-energy difference to

| 2

hs

vS
S+vy

Si

S+2
il Y
hs

<l'.
Sty for 1<l

AFE()=c(h)l —

be positive is PO(I)>P|%W(I)7 (44)
S(St2y) [ S with P2 (1) being defi
=_> o / | g defined as
c(l)= he S+7)+h§ Sty for I<l’, (38 ow
| , Plw(l)=max=2{S+c(D)l}. (45)
with the special values
The value ofc(t) is given by Eqs(38) and(43) for t<I’ and
c(0)=— S [St2y (39) t>1", respectively. Since(t;)>c(t,) holds for anyt;<t,,
" hgl| Sty it is easy to see that the functicﬂﬂw(l) can be expressed in
closed form as
and
PRu(D=S+c(1/2)l. 46
. S (S+2y " ow(!) (112) (46)
c(I”)= 2hs\ S+y ) (40 Using the expression@8) and (43), the functionPy (1) is

explicitly given by
For1>1’, one inserts the expressi¢85) found for h} into

the free energy34) and obtains PR
— h2s%q? | S+2y 12 42
— _ ' - +— for I=<2l'
AFF(H=c(HI+S 16, for I>1". (41 hs Sty  h2Sty
= S+27v)?

Using thatSe¢=0, it follows that ( - % for 2l'<sI<l

- s? 0 for |>|

AFED)=c(H+S+——=— for I>I". 42 max:

In this case, requiring the free energy to be positive leads to

the condition 3. Results for ;=0

0 /S as a

5 Figure 6 shows the rescaled lower bound,,
S (S+2y) function of the rescaled variabléhg for —S/y=1/2. This

C(I)>_4_yl S+ for 1=1". 43 function starts out at-1 for I/hs=0 by definition of the
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spreading coefficiens. The slope at the origin is finite and

the function increases until it reaches its maximum at _Pl

[=21". We obtain a plateau in the interval 2| <l ,,,; for

| >1 . the lower bound is given by- P2 (1)/S=0. In our
estimate for the value df,.x we setl,,=1* +2hg, where
I* is defined byP,(I*)=0 (see Fig. 6. This is based on
the observation that for>1,,, the interaction as given by
Eq. (32) is strictly positive as long a$, |<hg, since in this
case the arguments &° in Eq. (32) are always larger than
[*; consequently, the free-energy differend®) will be al-
ways positive. If, on the other handh, |>hg holds, the free
energy difference(18) will also be positive since then
a (I,h)>a (0) andP*(1)>P*(0) holds for anyl>0.

The value forl* as obtained from Eq47) is given by

\/

and reduces to the valli&/hg~2— \/2~0.59 in the tension-
dominated regimey> — S and approaches zero in the inter-
action dominated regimg= — S. The largest possible value
for | nax/hs is thus| ./hs=4—2~2.59. In the tension-

S+2y
Y

[* _S+2y_

2 2(S+vy)
hs Y

(48)
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FIG. 7. Plot of the lower bound for wetting potentials
—PY,/S as a function of the rescaled film thickndg¢hg, in the
limit y>—S, for —S/y=1/2 and for—S/y=2/3 (from bottom to
top). The curves shown correspond to the special &ge0, i.e.,
the relative area of the substrate is just sufficient to make the free
energy of the dry statd €0) higher than the completely wet state
(I=x). The area ratios are given =1, 2, and 3, from bottom
to top.

larger than— P,%W(I/hs)/S for all arguments, i.e., if the suf-
ficient condition(44) is fulfilled, a complete wetting situation

dominated regimey> —S, the assumption we started with will result.
Ig<1 thus holds for the whole range of thicknesses consid- An interesting feature of our results comes from the fact
ered because the substrate roughness necessary to achigwat we obtain universal lower bounds as a function of the

roughness-induced wetting is smdlkg<1. In the same
limit, the general expressio@7) takes the values

| 112
S 1_2h—+§F for |/hs$2
S S
Plow(D~{ —s for 2<I/hs<4—+2
0 for 1/hg>4— 2.

(49

In the interaction dominated regime, foy=-—S, the

maximum of PE)W(I) for 21’ <I=<l, actually diverges as

vy——S, with 2I"/hg—1 andl,/hs— 2. Note that in this

regime, also the substrate roughness necessary to induce w

ting goes to infinity; see Eq224). It follows that it is the

tension-dominated regime where roughness-induced is mo

likely to be observed experimentally.

The function P%W(I) as given by Eq(47) is plotted in

Fig. 7 for —S/y=0, 1/2, and2/3, from bottom to top. As

film thickness| rescaled by the roughness amplitude.

This suggests that there exists for a given substrate excess
surface area- h§q2/4 an optimal value of the roughness am-
plitude hg for roughness-induced wetting to occur. Since the
maximum of the lower bound- Pﬁ,w(llhs)/S is located at
I/hg=~1, this optimal value ohg happens to coincide with
the approximate location of the maximum®¥(1), the wet-

ting potential. Assume that the sufficient conditi@¥b) is in

fact satisfied for this optimal value dfs. For roughness
amplitudes much smaller than this optimal valiee func-

tion P° will be pushed to the right in the scaling plot Fig. 7
the sufficient condition cannot be satisfied for very small film
thicknesses due to the finite slope of the wetting potential,
suggesting an infinitesimally thin stable filimo wetting.

For roughness amplitudes much larger than the optimal value
&He functionP® will be squeezed to the left in Fig.) The
sufficient condition is not satisfied for average film thick-
Resses larger than some value at the order of the roughness
amplitude, suggesting the formation of a very thin liquid film
occupying preferentially the valleys of the substrate surface
fluctuations(partial prewetting

this ratio becomes larger, as one moves from the tension-
dominated regime into the interaction-dominated regime, the

maximum of—P%W(I)/S increases, until it finally reaches

infinity for —y/S=1.

The interpretation of the results in Fig. 7 is the following.
For a given ratio of the spreading coefficiéhand the liquid
interfacial tensiony, which are determined by the interfacial
tensions of the problem alone and conspire to gwg=0,
one rescales the amplitude of the wetting potenB&(l)
(which can be measured or calculated theoretigdlly the
spreading coefficient and the distancéy the roughness
amplitude hg. If the rescaled potentiak- P°(I/hg)/S is

4. Results for general g

Here we treat the general case Wafx> 0, now including
the cases where the substrate roughresss larger than the
necessary value obtained by settifg;=0 in Eq. (21). In
addition, we will require the free-energy differends) to be
larger than a constant denoted By, as will turn out to be
important if one looks at stable wetting layers in the presence
of a chemical potentiakee Sec. Il . Using a trial function
of the form (33), the following bounds for the slope(l)
follow
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S+2y)(Se— S I Sei—S)  Fo—S
( V) (Ser— S) Y(Seft )+ 07 eff for 1<’

1 S+y Hg S+y I

c(hy=— 50
Q) hs| Fo S?Se—S(S+27v)2 S 50

|—+ 47|(S+ y) or 1>1".
(51)

Sincec(l) for I<l’ now is nonmonotonic and has a maximum_zgiven by

— S+ ¥)(Seri— F
IIhS\/( V) (Sett 0), 52
Y(Seri—S)

the global lower bound®p, (1) can be calculated according to E@6) only in the restricted range oflZ1<2l". For

I<2l, the functionP%W(I) as defined by Eq45) has a constant slope ofl) given by Eq.(50) sincel <I|’ strictly holds. The
global lower bound is thus given by

( [ _
S+ m[(seﬁ_ S)(S+27) — 2V ¥(Seri— Fo) (Seri— S)(S+y)]  for =<2l
| (S+29)(Ser—S) 12 ¥(Serr—S) —
S+2(]:0_Seff)+_ - for 2lsi=s2l’
h S+ hs 2(S+
PO s msia s 25y 53
effS — +2v
for 2I'sl=lI
S+2F,+ 27(St 7) max
Fo for 1>
\
|
In Fig. 8 we pIotP,%W(I) for the fixed value—S/y=1/2 and — v 1
the valuesS,s=0, Se/S=— 1, andS,;/S=—2 (from bot- AF(lh)= thq2+ PO(1) + Z(héJr h)P' (1) + ul,
tom to top in the right portion in the graphg he interesting (54)

feature is that the plateau Bf, (1) for |>2I" increases with . ]

increasingSy;. This indicates that for a given wetting poten- Where the chemical potential termﬁ(rrlas.been added. For a
tial P°(1) and a given roughness amplitudgthe roughness- Potential of the asymptotic form-al ~“ this free energy is
induced wetting transition might disappear for wave number§nlnlmlzed byh.L:. 0 ar.1d.the film thlc.kness t.hat is stable with
much larger than the threshold value determined by(8g. ~ '©SPect to variations ihis asymptotically given by

IminN(ao'//-L)l/(lJr(r)- (55

D. Stable films in the presence of a chemical potential Choosing the constantF, in Eq. (53) to be F

=AF* (I i) =AF( in,h,=0) and demanding PY(l
So far, we have calculated a lower bound for the interac- (i) (min. 1 =0) g P()

tion, denoted b)Pﬁ)W(I), so that the free-energy difference

AF* (1) is positive[Eq. (37)] or larger than a positive con- _PIO /S
stant 7, [Eq. (43)] for all values ofl. If P°(1)=P2 (1) ow
holds and the chemical potential vanishes, i.e., at coexist- 1.5

ence, the substrate will be covered with an infinitely thick
liquid layer. For nonzero chemical potential, however, the
substrate will always be covered with a film fifite thick- 0.5
ness. For the sake of clarity, let us assume the potential

P(1) to have a single maximum at finite separation, decay / 1 15 2 25 e/hS

for large separations lik€°(1)~al~“ [where c=m—4 if 0.5
the molecular interaction is given by E@\7)], and be nega-
tive for zero separation, corresponding to the nonwetting
situation for a flat substrate. One notes that2 for nonre- FIG. 8. Plot of the lower bound for wetting potentials
tarded van der Waals interactions. —P2,/S as a function of the rescaled film thickndghg, for the
For finite chemical potential, the free energy then has aixed value —S/y=1/2 and forS=0, —S, and = —2S (from
minimum at a finite separatiorl;,. Assuming that pottom to top for the right portion of the plotsThe relative area
| min=>0q 1, one can use EqA21) and finds the leading terms increase of the rough substrate is givenday=2, 3, and 4, from
of the free energy according to E{.8), bottom to top.

-1
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> p%w(|) as given by Eq(53), the minimum at ,,,, is indeed  height depends on the ratio between the liquid-interface ten-

the global minimum and we have a stable wetting film ofsion y and the spreading coefficie8t

finite thickness. We will now do a local stability analysis for ~ These results concerning the possibility of a roughness-
this free-energy minimum. The linearized Euler equation, delinduced wetting transition agree with the very recent experi-
termining the stable liquid interface profile, can be obtainednental observation of premelting induced by substrate
from the free energy expressi@8) by requiring local force ~roughness at the glass-ice interfd@s], where glass sur-

equilibrium .F(p,[ £, 1)/ 3¢ (p)=0 and is given by faces showing a roughness with typical amplitudes~df
nm induced a complete interfacial premelting. Indepen-

0 >, , , dently, the calculation of the dispersion interaction between
yAL(p) 11 (I)_f d°p'{LL(p) —Ls(p+p’) —1iw(p',1) half spaces of glass and ice separated by a liquid water layer
show a pronounced maximum at about the same distance
=K, (56)  ~1 nm[35], consistent with our prediction for the lower
bound of the wetting potential. We find the asymptotic be-
havior of the film thickness as a function of the chemical
Sfbotential to be characterized by the standard van der Waals
exponent, as shown in Sec. Il D. This is in disagreement
with the experimentally measured expones [25], which
is to be contrasted with the exponent 1/3 as expected for
nonretarded van der Waals interactions in the absence of any
other interactions. Finally, we note that the interfacial ener-

whereII°(1)=—dPO(l)/dl is the disjoining pressure for flat
interfaces. Assuming the wetting layer to have a thickne
corresponding to the global minimum as given by Egp),
which is equivalent to settinBl°(l,,i,) =« and approximat-
ing the interfacial profiles again by sinusoidal wayé&ss.
(25 and (26)], the locally stable liquid interface amplitude
turns out to bg5]

he(d? | gies for the case of interfacial premelting are influenced by
h = o/ 2p COZ(Qpl)W(p, ), (570  grain-boundary energies in the disordered polycrystalline
Yq~+Jd% wip.l) layers adjacent to the microscopically irregular substrate

wall. In fact, it was argued36] that this effect could inde-
pendently lead to a roughness-induced premelting transition.
Such a mechanism could be described within our framework
by assuming an interfacial energythat depends explicitly
on the roughness magnitude of the liquid interface. A further
spatial coordinatg, the local equilibrium analysis now ac- intgresting eff_ect might appear for the_ case of surface triple-
tually gives a nonv’anishing amplitudhg . Inserting this am- point premeltlng: Here.a roughness-lnduceq comple_tg sur
litude back into the free-enerqy ex réss(ﬁn) the stable face melting could be triggered by a roughening transition of
b gy exp ' éhe solid surfacd37]. Another interesting consequence of

Using formulas (A9) and (A25), this amplitude scales
like h ~hgexp(qgh)I¥2-™2qm2=7/2 in the limit ql>1; for
van der Waals forces nf{=6) one obtains
h,. ~hsexp(—ql)l ~2q~ 2. In contrast to the global stability
analysis leading to Eq55), where we averaged over the

film thickness is increased. However, the correction turns ou ur results is that a discontinuous wetting transition might be

:ﬁut;e dl(?eszi ﬁg][g;flfzrcﬁa;hgscﬁf‘igcvgghi?/rio\:vaagssfoir\(l:gr? aNfnverted into a continuous transition by a change of the
ymp #h as g effective wetting potential at small distances.

by Eq. (5. Our calculations are most valid for small substrate rough-
ness, as defined Hysq<1; this also seems to be the experi-
IV. DISCUSSION mentally most relevant limit, since rough surfaces produced

Some necessary conditions for roughness-induced wettin’?y etching usually show modest corrugation amplitu{8e8.
have been obtained on very general grounds. First, the te “he clos'ed-form expressions for the mtera@cﬂon of two cor-
sion of the liquid interface has to be larger than the negativugated interfaces obtained in the Appendix are, to the best
spreading coefficient or, equivalently, the tension of theof our knowledge, novel and applicable to a wide range of
substrate-vapor interface has to be larger than the tension Bf€nomena, including dewetting phenomefwhere the
the substrate-liquid interface. Second, the roughness of tH¥hole argument has to be inverted, leading to roughness-
substrate, measured by the excess area as compared to fduced dewetting We also derive an expression for the
flat substrate, has to exceed a certain threshold; se@Bq.  CUrvature contribution to the free energy, which might play a
Using an approach that is equivalent to a Iinear-respons'é)le in the adsorption of membranes or vesicles on rough
analysis, we obtain a formula relating the molecular interacSuPstrates.
tion between two rough interfaces to the interaction of two
flat. interfaces; the latter is the so-called \{vetting po;enti_al. ACKNOWLEDGMENTS
Using this formula, a lower bound for wetting potentials in
order to obtain this type of wetting transition is derived. This  This project initiated when one of u®.A.) visited the
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tional Science Foundation under Grant No. DMR-9220733Now the expression(A2) can be averaged over the
We would like to thank G. Dash, S. Dietrich, M. Elbaum, F. p-coordinates, thus vyielding the mean interaction
Joanny, S. Safran, M. Schick, U. Steiner, J. Wettlaufer, and(l,[ £, 1)=(P(p,[{.])),, Which for sinusoidal interfacial

L. Wilen for helpful discussions. profiles reads
— 1
APPENDIX PUL I =PO(1) 45 [ dp(hE~2hdh, cogap hwip)
DERIVATION OF THE EFFECTIVE POTENTIAL
1
The total interaction per uniprojected area between the +§J d?p{h3+hi +4hZh?

liquid interface at lateral positiop located at{, (p) and a
corrugated solid surface, parametrizeddayp) (see Fig. 3, —4hsh|_(h§+ hf)cog{qpl]

can be written as )

d
+2hghicog 20p1 ]} W(p.2)|,- (A6)

Pptc )= azf i [ azwip z-2). | | o
{Lp) —o and is an expansion up to fourth order in the interface modu-
(Al)  Jation amplitudeshs andh, .

To proceed further, it is appropriate to specify the mo-
This expression is hard to deal with due to the nonlocalecular interactionw(p,z). In all that follows, an inverse
dependence on the shape of the solid surface, which enters frower law defined by
the integration boundary. Progress can be made by formally _ _
expandingls(p+p’) around{ (p)—1. The average separa- W(p,2)=A(p*+2%) "™ (A7)
tion between the two interfacesl is given by  will be used. Accordingly, nonretarded van der Waals inter-
1=({L(p) — {s(p)), where the angular brackets denote a spaactions correspond tm=6 with A being the Hamaker con-

tial average ovep. stant. The interaction between planar surfaces is given by
Keeping terms up to fourth order, one obtains
2m7A

P°(|)=(m_2)(m_3)(m_4)|4*m. (A8)

P(p[{LD=P()+ flmdzf d’p'[¢s(ptp))

In addition, the following relations involving derivatives of
PO(1) turn out to be useful:

1
—L(p)+1wW(p'2)+5 | d*p'[Ls(p+p’) 27A
L ZJ S p(ll)(|):m712|27m:Af d2p(p2+|2)7m/2, (A9)
1
—§|_(p)+|]2W(p',|)+gf dzp,[é’s(P"'Pl) P(IV)(|)=27TA(m—l)|7m, (A10)
B 31 , =1y — 27A 6—m
L(p) + 1T W(p 2] P = e O,
1 (A11)
+ZJ d?p'[Ls(p+p')—Li(p)+1T° whered?P™" (1)/d12=P°(1). Note thatP(~'"(1) is not de-

fined for van der Waals interactions with=6; this impor-

, tant case will be considered separately.

X——W(p 2=t (A2) The terms in Eq(A6) involving a cosine can now be
evaluated analytically; for the first term, and using the inter-

where the expression for the interaction of two planar sur-aCtlon defined in Eq(A7), we obtain

2

faces introduced in Eq2), o0 o coggp4]
A J dpy f dp2 > 2z
o —oo —oo (p1tp3+I19)
P°(I)EJ dzf dzpf dzZw(p,z—z7'), (A3) = (m—l)
| — A 7TF

_ 2 f ., _codap]
- L5 -

has been used. At this point it is useful to specify the inter- F(T) - (F’%Hz)(m Hrz

facial profiles; we choose one-dimensional sinusoidal pro- 2

files for the liquid and the solid surfaces, as depicted in Fig.

3, as is sufficient and appropriate for a linear analysis, _ 2mA

_mKmlzil(q|)(q|)m/2—l|2—m21—m/2_ (A12)
Tl =
{s(p)={s(p1)=hssind(p1)], (A4) ( 2)

In Eqg. (A12) K,(z) denotes the modified Bessel function in
LU(p)=L(p)=h sinqgp.]+]. (A5) standard notation.
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1. Small separations

— m_
_po 2
Let us first concentrate on separatidmsuch smaller than P(Lh)=P7(1) 1+ 4 hsh.q
the typical wavelengtly ™! of the surface corrugation, i.e.,
l<q 1. For small values of the argumes the product _ (m—3)(m—5)h h.(hs—h,)2q*
K,(2)z" can be expanded as a power series 128 s st
K (2)2"=ag+a,z?+a,z*+- - -, (A13) 3(m—3)(m-5) 212
g e’
with v=m/2—1 and the coefficients given by 3
(mn 24
a0:21/711-*(v) for >0, (A14) +P (I)[ (hS hL) ShL(hS hL) q
—_ov— 1 —
—2"3(v—1) for v>1, (Al15) +P(IV)(|)a(hs_hL)4_ SP(I,hy)
a,=2""°T(v—2) for v>2. (A16) +0(h®, ) (A21)
Note that for van der Waals forces, characterizedvby?,
the coefficienta, is given by which is valid for gl<1 andm>4 (for m=4 additional
logarithmic singularities appear in terms proportional to
a,=(3/2—2y+2In2—2Inz)/16. (A17)  g°). The terms up ta(h?,g?) have been obtained previ-

ously in the context of the dynamics of thin wetting layers
with y being the Euler constant defined lpy=0.577 21. Us-  [38]. The correction ternéP corresponds to a curvature con-
ing this expansion and the definitios8)—(A11), the cosine tribution and is given up t®(h* g% by
term in Eqg.(A6) can be written as

f dpf dp, —otar] 5P—(I,hL)=%P<-”>(|)hsth4. (A22)
' 2(pftp5+12)™

(m—3)(m-5) This curvature contribution has additional nonanalytic terms
8 for the case of nonretarded van der Waals interactions
m=6; for this case, one obtains

—pn(ty -2 qzpo ) +

xg*P (1) +0(qP). (A18)
For the case of van der Waals interactions 6, one analo- 7 3—4y+4In2—4In(ql) 4
gously obtains 8P(1,hy) = 256 64 shq

(A23)

cogqp;]
dpl Pz( 2 2 12)3 . . ,
P1 The same singularity- q*Ing has been found for a free in-
277( 1 o 3—4y+4in2—4in(ql) , terface in the presence of van der Waals for@&&.

2\ 64

5 2. Large separations

+0(a°), (A19) . o

In the other limit, forql>1, the producK ,(z)z" is given

which includes a logarithmic singularity for small separa—by
tions.

v_ [ v—1/2,— 2 2_ .
For the other term in Eq/A6) involving a cosine one can K(2)2"=yml2z" e 1+ (4v"—1)/Bz+ - --].

interchange the differentiation and integratir m>6); (A24)
the additional integral needed involves [@up,] and is
given by In this case, the expressioAl2) is asymptotically given by
cog?2
f dplf ZjZ?j;gm’Z AF dplf o|pzM
e ) T (pT p3 7)™
=P(1)~2(m-3)g*P%(I) 0312-m/2,_3I27
A (-l — —qm/2—3/2| 1/2— m/2e—ql (A25)
+2(m—3)(m—5)q*P"(1). (A20) (m)
I —
2

Using the formulas(A18) and (A20), and the definitions
(A8c) and (A11), one obtains the following expansion for
Eq. (A6): From Eg.(A6) one immediately obtains
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— o 1. - For the casel>1, the corresponding expression is given by
P(l,hy)=P7(1)+ ZP( '((hg+hp)

+ ép(lv)“)(hé'f' hﬁ+4hghﬁ) P(p1,| th):<PO(I + hLSiI'{C]pl]"r‘ hSSir[qu])>Tl

+0(e ), (A28)
+0(e™ ), (A26)
which is valid forgl>1. wherer, is the local lateral coordinate on the liquid interface
) ) _ and is averaged over, leaving only the dependence on the
3. Closed-form expressions for the effective potential coordinatep; in the substrate interface. Expressiqde7)

In the following, formulas are presented, which expressand(A28) depend explicitly on the spatial coordinatg that
the series for the effective interaction between the two rouglthey indeed reproduce term by term the seiiagl) and
interfaces (A21) and (A26) in terms of the interaction (A26) can be checked by expansion and averaging pyer
PO(l) between two flat interfaces. For the cagle<1, this  The validity of the closed-form expression is thus proven for

expression is given by power laws with arbitraryn; we were not able to extend this
proof to interactions that include a cutoff at small separa-
P(p1.1,h0)=(1+hsh g’cosqp,]) ¥*P° tions. However, it is likely that the formulaéA27) and
|+ (hs—h,)siM gp;] (A28) are also accurate for potentia®(l) that do not di-
(1+heh, q2coZ[qps]) 72 — 6P (pq,l,hy). verge ad —0. This is supported by the fact that fior O the
s 91 formula (A27) exactly describes the surfacelike energy con-

(A27) tributions.
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