There has been much experimental data and theory in relation to amphiphilic aggregates presented recently. The outstanding topics deserving further investigation are the stability of single-component vesicles and size growth of mixed vesicles induced by micelle-forming surfactants.

Introduction

An amphiphilic molecule consists of two moieties with opposing properties: a hydrophilic polar head and a hydrophobic hydrocarbon tail. The hydrophilic–hydrophobic nature of amphiphiles determines their self-assembly and fascinating physical properties. Numerous investigations have involved the structure and phase behavior of amphiphiles in aqueous solutions [1-3,4,5,7]. The interest in these topics is partially motivated by the significant role played by amphiphiles in biophysics, biotechnology and pharmacology [2,3]. Indeed, an important class of amphiphiles, called phospholipids, forms the basis of cell membranes, and various surfactants such as octyl glucoside (OG) and bile salts are used for extraction of proteins from cell membranes (membrane solubilization) and for preparation of artificial phospholipid membranes containing specific proteins (membrane reconstitution).

Despite the large variation in amphiphile type, their self-assembly in water has many features in common. First, as the amphiphile concentration in solution increases above a certain critical value, the amphiphilic molecules assemble into monomolecular layers (monolayers), which are about \(\delta = 1.5 \text{ nm} \) thick (where \(\delta \) is the monolayer thickness) and have one surface consisting of the hydrophilic heads and the second formed by the hydrophobic tails. These monolayers then self-organize into structures in which all the hydrophobic surfaces are shielded from contact with water by the hydrophilic ones.

Different amphiphiles form monolayers of differing shape [1,4,5,7]. We generally describe the shape of a monolayer by its characteristic curvature \(c \) or radius of curvature \(R = 1/c \). A more exact definition will be given below. The monolayers of many common phospholipids, such as lecithin, have nearly flat geometries so that their radii of curvature are much larger than the monolayer thickness, \(R \gg \delta \). In water they form flat bilayers organized as multilamellae or unilamellar vesicles [2]. The latter (so-called liposomes for phospholipids) are small ‘bags’ made of amphiphilic bilayers of dimensions in the range of a few nanometers to several microns. Another type of amphiphile, called detergent (or micelle-forming surfactants), in many cases forms monolayers which are strongly curved away from the surrounding aqueous medium. These monolayers have a radius of curvature of the order of the monolayer thickness, \(R \approx \delta \). Due to their high curvature, such monolayers exist in water in the form of cylindrical or spherical micelles.

Besides flat bilayers and micelles, both of which are the main subject of this presentation, there are several other characteristic shapes observed for amphiphilic monolayers. One of them is also characterized by fairly high curvatures although these are opposite to the curvature of micelle-forming surfactants (i.e., directed away from the hydrophobic tails). Such amphiphiles (e.g., dioleoylphosphatidylethanolamine [DOPE]) form an inverted hexagonal phase (the so-called H11) in water at high enough concentrations [5,7]. Surfactants of another type (e.g., monoolein) tend to form monolayers of saddle-like shape resulting in bicontinuous cubic phases [6].

Although the shapes of monolayers formed by individual amphiphiles are known in many cases, they are less well understood in the case of monolayers consisting of mixtures of different amphiphiles. In particular, mixtures of bilayer-forming lipids and micelle-forming surfactants are of importance to membrane solubilization and reconstitution, as has been recently investigated by several groups. As detailed reviews of this phenomenology exist [4,8], we give here only a brief summary of the results.

The unilamellar liposomes in a single-component lipid (lecithin) retain their shape and size for long times following their preparation.

Upon addition of small amounts of micelle-forming surfactant to the lipid vesicles, the system stays in the form of stable mixed vesicles. The vesicle size changes as a function of concentration of the added surfactant,
When the amount of surfactant in the system reaches a critical surfactant/lipid ratio $R_{e_{SAT}}$, a first order phase transition from mixed liposomes to mixed micelles is observed.

The resulting micelles have, in most cases, a thread-like shape. Direct formation of spheroidal micelles (and lack of thread-like micelles) has been reported, however, for the so-called dimeric or gemini surfactants (e.g., alkanediyl-α,β-bis (dimethyldodecylammonium bromide) (D Danino, Y Talmon, R Zana, unpublished data). In studies of the solubilization of lecithin vesicles by the cationic surfactant (CTAC) a new structure intermediate between liposomes and thread-like micelles has been reported [9]. This intermediate structure consists of perforated bilayers, that is, liposomes with holes.

The transition of liposomes into micelles progresses with increase of surfactant/lipid ratio $R_{e_{SAT}}$. The transition occurs between the surfactant/lipid ratio $R_{e_{SAT}}$ mentioned earlier to a higher value called $R_{e_{SOL}}$. Inside this range the mixed liposomes seem to be in thermodynamical equilibrium with mixed micelles.

At $R_{e_{SOL}}$ only micelles are present in the aqueous solution. Further increase in the amount of surfactant results in the reduction in size of the thread-like micelles until they become spheroidal in shape.

The variety of shapes of amphiphilic monolayers and the transitions between them pose a challenge to theoreti­cians. Two theoretical approaches describing such systems should be mentioned. In one approach molecular structure and microscopic interactions are taken into account [10]. In this review we describe a different approach to surfactant systems in terms of elastic properties of monolayers and try to point out the questions deserving further analysis.

Models of membrane elasticity

We will mention several basic theoretical models describing amphiphilic systems. The first, formulated in 1973 by Helfrich [11], determines elastic behavior of lipid membranes whose shapes only slightly deviate from a flat surface. The local shape of the membrane surface can be characterized by its principal curvatures c_1 and c_2, and its elastic energy per unit area is written as:

$$ f = \frac{1}{2} \kappa (c_1 + c_2 - c_0)^2 + \kappa c_1 c_2 $$ \hspace{1cm} (1)$$

where the elastic properties of the flat membrane are determined by the bending modulus κ, the Gaussian curvature modulus κ and the spontaneous curvature c_0. While κ has a common meaning of rigidity with respect to changes in curvature, c_0 and κ have a more delicate physical origin. The spontaneous curvature c_0 accounts for non-vanishing stress in the flat membrane ($c_1 = c_2 = 0$). In qualitative terms c_0 reflects the tendency of the flat membrane to curve spontaneously in order to relax its internal stresses. The modulus of the Gaussian curvature κ has a physical meaning of the membrane stress related to the Gaussian curvature given by $c_1 - c_2$. The energy determined by κ depends, according to the Gauss–Bonnet theorem, only on the membrane topology and changes occurring due to processes such as fusion or fission of liposomes. The basic assumption in Equation 1 is that the radii of curvature are much bigger than the membrane thickness, $|c_1|, |c_2| \ll 1$, so that only contributions up to second order in these small parameters are retained.

The Helfrich model (Eq 1) was very useful for analyzing the elastic and thermodynamic properties of lipid vesicles. The description of micelles by Equation 1, however, is not straightforward because of the high curvatures existing in the micellar packing.

Another approach that describes the formation of amphiphilic aggregates in terms of molecular dimensions has been proposed by Israelachvili [12]. It makes use of the effective packing parameter, p, of an amphiphilic molecule; p combines the molecular volume v, the molecular area a, and the length of the hydrocarbon chain in its fully extended state l, such that $p = v/(al)$. In crude terms, formation of micelles is expected for $p < 1$, molecules having $p = 1$ are predicted to form flat monolayers (bilayers in water), whereas amphiphiles with $p > 1$ are predicted to form inverted cylinders of the H$_{11}$ phase. Although this model explains qualitatively shapes of amphiphilic aggregates, it does not enable one to calculate the free energies of monolayers or phase transitions between different structures.

An elastic model for strongly curved monolayers was formulated by Gruner [13] for the inverted monolayers of H$_{11}$ phases and was later extended to include monolayers of arbitrary shapes [14]. Formally, the Gruner model is similar to the Helfrich one, as it states that the energy per unit area of a cylindrical monolayer is related to its curvature by:

$$ f = \frac{1}{2} \kappa (c - c_{in})^2 $$ \hspace{1cm} (2)$$
where \(\kappa \) is the bending modulus. The parameter \(c_{in} \), called the intrinsic curvature, is formally analogous to the Helfrich spontaneous curvature \(c_0 \). It has a different physical meaning, however. Whereas \(c_0 \) accounts for the bending stress in the flat state of the monolayer, \(c_{in} \) determines the monolayer shape in a completely relaxed stress-free state. The model in Equation 2 contains the assumption that the curvature only slightly deviates from its intrinsic value so that \(|(c - c_{in})/c_{in}| << 1 \) and the bending energy is expanded up to quadratic order in this small value. On the other hand, and in contrast to the model in Equation 1, the curvature itself can be arbitrarily high.

The model in Equation 2, in its extended form [15*] has recently been used to explain experimental results concerning osmotic-stress deformations of the strongly curved cylindrical monolayers of HII phases, and phase transitions between these monolayers and the flat bilayers of lamellar phases. In [15*] it was assumed that the quadratic expression in Equation 2 is valid for strong bending deformations where \(|(c - c_{in})/c_{in}| = 1 \). In other words, it was assumed that the bending stress-strain relationships are linear in a wide range of deformations. The good agreement between the predictions of the model and the experimental results, indeed, supports this assumption. On the other hand, the physical consequences of this result have still to be understood in terms of microscopical structure of monolayers.

The elastic moduli \(\kappa, \tilde{\kappa} \) and the spontaneous curvature \(c_0 \) of monolayers introduced phenomenologically in the pioneering theory (Eq 1) have been computed in detail by a mean-field approach developed in a series of works and has been reviewed recently [16*]. The analysis of the parameters of the monolayer material, in terms of the hydrocarbon chain and polar head molecular structure, contributes greatly to our understanding of monolayer elasticity at a microscopic level.

Elastic parameters of mixed monolayers

The existing theoretical approaches describing monolayers composed of different kinds of amphiphilic molecules are based on the original theories (i.e. Eq 1,2), where the elastic moduli \(\kappa, \tilde{\kappa} \), the spontaneous curvature \(c_0 \) and the intrinsic curvature \(c_{in} \) are determined by the elastic parameters of the individual components. According to the thermodynamical analysis [17], the dependence of the elastic parameters of a monolayer on its composition can have a complicated character. In particular, it has been demonstrated for monolayers of mixtures of diblock copolymers consisting of molecules with different block lengths [18*]. In a simpler model the spontaneous and intrinsic curvatures are supposed to be averages of the characteristics of the components. For example, for a two-component monolayer consisting of amphiphiles with intrinsic curvatures \(c_{in}^1, c_{in}^2 \), the resulting intrinsic curvature is modeled as

\[
\begin{align*}
\text{cin} &= \theta c_{in}^1 + (1 - \theta)c_{in}^2
\end{align*}
\]

where \(\theta \) is the molar fraction of the first component in the mixed system (varying from 0 to 1).

Only recently [19] experimental studies enabled direct verification of this model. Measurements [19] of the structural parameters of HII phases composed of two phospholipids, DOPE and DOPC, indicate that the intrinsic curvature is a linear function of their relative composition. Further confirmation of the linear relation (Eq 3) over a wide range of compositions is found in another recent study [20*] of HII phases consisting of DOPE and DOG.

The situation is less clear for the bending modulus of mixed amphiphilic membranes. Models of monolayers of diblock copolymers predict complex non-linear dependence on the composition [18*]. Similar results follow from the mean-field approach [16*]. Furthermore, the experimental determination of the bending elasticity of monolayers composed of DOPE and DOG [20*] does not demonstrate any clear dependence of \(\kappa \) on the composition. Therefore, modeling of the bending elasticity of mixed membranes consisting of lipids and detergents still poses a challenge and more refined theories are needed.

Another related issue concerns the value of the Gaussian curvature modulus of mixed amphiphilic membranes and has been addressed only in a few studies. Mean-field theories [21] computed numerically the change of \(\tilde{\kappa} \) as a function of the ratio of two amphiphiles having different hydrophobic chain lengths. No analytical expression has been derived to describe this dependence in terms of material characteristics of individual components, however. Moreover, we do not know of any experimental investigations which have directly attempted to obtain \(\tilde{\kappa} \) of mixed membranes. This question remains open for both theoretical and experimental studies.

Theoretical models of mixed aggregates

Attempts have been made to interpret all types of aggregates observed in experiments on mixed amphiphiles. There are several specific subjects that have been addressed in these studies: first, the existence of stable single-component lipid vesicles characterized by a preferred size; second, the increase of vesicle sizes upon addition of small amounts of micelle-forming surfactants; third, the transition of mixed vesicles into mixed micelles at a critical lipid/surfactant ratio; finally, the preferred shapes of mixed micelles.

Thermodynamic stability of single-component lipid vesicles cannot be understood fully in terms of the model in Equation 1 [22,23]. Indeed, a symmetric lipid bilayer has a vanishing spontaneous curvature. Therefore, the bending
energy of a spherical vesicle is equal to \(F = 4\pi(2\kappa + R) \) (neglecting corrections of order \(\delta/R \), where \(\delta \) and \(R \) are the membrane thickness and vesicle radius, respectively) and does not depend on its radius. The bending modulus \(\kappa \) is positive but the Gaussian curvature modulus \(R \) can have negative values. Depending on the values of \(\kappa \) and \(R \) the vesicle energy \(F \) can be either positive or negative, and this sign determines whether vesicles in a suspension either increase or decrease in size. To understand the existence of a preferable radius for one-component vesicles, one has to account, in addition to the bending energy (Eq 1), for other factors such as the translational entropy of vesicles in a dilute water solution or the effects of interactions between vesicles in dense suspensions.

Stability of mixed vesicles can be understood by considering the possibility of a spontaneous curvature of bilayers resulting from asymmetric partitioning of different amphiphiles between the two membrane leaflets [22,23]. Analysis of the bending energy of such systems took into account the entropy of mixing in the membrane and an additional interaction between the differing amphiphiles in the bilayer. The model [22,23] provided an explanation of stable vesicles for mixtures of catanionic and anionic surfactants.

Nevertheless, the growth of vesicle size upon addition of micelle-forming surfactants is still not understood because simple models predict an opposite behavior, namely, a decrease in the vesicle size due to added surfactants. Indeed, the concentration of surfactant molecules should be higher in the outer leaflet (as compared with the inner one) of a spherical vesicle because the curvature there has the same sign as the spontaneous curvature of the micelle-forming surfactant. It results in an increase of the spontaneous curvature of the bilayer favoring formation of vesicles of smaller radii.

The addition of surfactant also affects the Gaussian curvature modulus of the bilayer \(\kappa \). Insertion of micelle-forming molecules in membrane monolayers is known [25] to change \(\kappa \) of the bilayer towards more negative values. It should also enhance the tendency of lipid vesicles to separate into smaller aggregates rather than to grow in size. These considerations may indicate a possible reason for the decrease of vesicle size as observed very recently in systems of dimeric amphiphiles mixed with surfactants (D Danino, Y Talmon, R Zana, unpublished data). On the other hand, the more common observation of the increase in the vesicle size remains unexplained.

Conclusions

Theoretical descriptions of the mixed liposome→mixed micelle transition have been formulated using the elastic model (Eq 2.3) [26⋆] and a more microscopic mean-field approach accounting for the amphipile chain packing [27⋆]. Besides the bending energy, the entropy of mixing of the two components has been shown to determine the phase behavior of the system. The predicted phase diagram of mixed amphiphiles has all the qualitative features of the experimental data. An assumption of the model, based on the experimental observations, was that the micelles have (in the coexistence region) the shape of infinitely long cylinders. Other aggregate and micellar forms, however, have been suggested in the literature. The spheroidal micelles (D Danino, Y Talmon, R Zana, unpublished data) and the perforated bilayers [9] have been directly observed, whereas the disc-like micelles remain a hypothesis used at earlier stages to explain the results of dynamic light scattering [28]. Analysis of the factors determining the shapes of amphiphilic aggregates resulting from solubilization of liposomes by micelle-forming surfactants is the subject of much current interest. Hopefully, further theory and experimentation in this area will resolve some of the outstanding issues.

Acknowledgements

We benefited from discussions with M Almgren, A Ben-Shaul, R Grancek, W Helfrich, S Leikin, A Parsegian, JL Rigaud, S Safian, Y Talmon and R Zana. We are most grateful to D Lichtenberg for introducing us to systems of mixed amphiphiles and for many valuable discussions. Support from the German–Israel Foundation (GIF) under grant No. 140197 and the US–Israel Binational Foundation (BSF) under grant No. 94-00291 is gratefully acknowledged.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

This is a review of the most recent experimental data on structural behavior of lipid–detergent systems with clear formulation of existing problems.

In this work membrane elasticity has been applied to analyzed experimental data on reentrant phase transitions between hexagonal and lamellar phases.

This review contains an extended overview of the mean-field chain packing approach used in describing membrane elasticity and related properties.

In this work analytical expressions are derived for spontaneous curvatures and elastic moduli of mixed monolayers of diblock copolymers consisting of long and short blocks. In addition, a review of related theoretical results is given.

In this work the elastic properties (intrinsic curvature and bending modulus) of two-component monolayers are systematically studied in dependence of composition.

Theoretical model of solubilization of liposomes by detergents is developed and describes the experimental phase diagrams.

This work complements [26] by chain packing mean-field calculations, and arrivals at similar conclusions.