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We present a theory for the kinetics of surfactant adsorption at the interface between an agueous solution ¢
another fluid (air, oil) phase. The model relies on a free-energy formulation. It describes both the diffusive
transport of surfactant molecules from the bulk solution to the interface and the kinetics taking place at th
interface itself. When applied to nonionic surfactant systems, the theory recovers results of previous mode
and justifies their assumptions. Common nonionic surfactants are predicted to undergo a diffusion-limite
adsorption, in accord with experiments. For salt-free ionic surfactant solutions, electrostatic interactions a
shown to drastically affect the kinetics. The adsorption in this case is predicted to be kinetically limited, anc
the theory accounts for unusual experimental results obtained recently for the dynamic surface tension
such systems. Addition of salt to an ionic surfactant solution leads to screening of the electrostatic interactiol
and to a diffusion-limited adsorption. In addition, the free-energy formulation offers a general method for
relating the dynamic surface tension to surface coverage. Unlike previous models, it does not rely o
equilibrium relations which are shown in some cases to be invalid out of equilibrium.

1. Introduction relies on arequilibrium equation of state, and assumes that it
also holds out of equilibriur®? (iii) similar theories cannot be

Aqueous solutions of surface-active agestsrfactanty play easily extended to describe more complicated systems, such as
a major role in various fields and applications, such as biological . y P Y ’

membranes, petrochemical processes, detergents letsome ionic surfactant solution%: . .
important cases, equilibrium properties of the surfactant adsorp- ' the current work we would like to present an alternative
tion at interfaces are not sufficient, and knowledge of the kinetics aPProach to the kinetics of surfactant adsorption, overcoming
is required. Processes of fast wetting, foaming, and stability these drawbacks. In section 2 we lay the foundations of our
of thin soap films may serve as good examples. The kinetics Model:* based on a free-energy formulation. Nonionic sur-
of surfactant adsorption have been addressed by experimentaf2ctants are considered, recovering results of previous models
and theoretical studies since the 1940s, and various experimentafind justifying their assumptions. In particular, we show that
techniques have been devised, primarily aimed at the measure® adsorption of common nonionic surfactants is limited by
ment of dynamic interfacial tensioAs. diffusion from the bulk solution. In section 3 we modify the
The pioneering theoretical work of Ward and Toddai theor_etlcal framework and apply it to salt-free ionic surfac_ta_nt
considered a diffusive transport of surfactant molecules from a Solutions. A few models have been proposed for describing
bulk surfactant solution to an interface and formulated the time- the kinetics of ionic surfactant adsorptish:® yet none of them
dependent relation is able to account for recent experimental results for the dynamic
surface tension of salt-free ionic surfactant solutigngve show
o(t) = ﬁ
T A common to all previous models. Using our model, we then
account for the recent experimental findings. Section 4 consid-
where ¢, is the bulk concentration and the surfactant ers ionic surfactant solutions with added salt. The adsorption
diffusivity. This equation gives only one relation betwegn is shown in this case to be limited again by diffusion, and the
(t), the surface density of surfactants adsorbed at the interface effect of salt concentration is examined. Finally, we present a
and c4(t), the surfactant concentration at the subsurface layer few concluding remarks in section 5 and point out possible
of solution. future prospects.
Subsequent theoretical research has focused on providing the
second closure relation between these two variables by introduc-2. Nonionic Surfactants
ing a certain adsorption mechanism at the interface. Various
relations have been suggested, resembling equilibrium iso- Consider an interface between an aqueous solution of
therms?=¢ or having a kinetic differential formi-1® Such nonionic surfactants and an air or oil phase. The system is
theories have been quite successful in describing the experi-schematically illustrated in Figure 1. We assume that the width
mentally observed adsorption of common nonionic surfactants. of the interface is much smaller, and its radius of curvature much
Yet, they suffer from several drawbacks: (i) the closure relation larger, than any length scale relevant to the adsorption process.
between the surface density and subsurface concentration, whictience, the interface can be regarded as sharp and flat, lying at
expresses the kinetics taking place at the interface, is introducedthe planex = 0, and the problem is reduced to one dimension.
as an external boundary condition and does not uniquely ariseAt X — o, the solution is in contact with a bulk reservoir of
from the model itself; (i) the calculated dynamic surface tension surfactant molecules, where the chemical potential and surfactant
volume fraction are fixed to bg, and ¢,, respectively. We
® Abstract published irAdvance ACS Abstractduly 1, 1996. consider a dilute solution, i.e., the surfactant volume fraction is

S0022-3654(96)00377-2 CCC: $12.00 © 1996 American Chemical Society

¢,() that the adsorption in such systems is limited by the kinetic
1 dr (1.1) processes at the interface. Consequently, we point out a problem
-7
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Variation of Ay with respect tog(x) yields the excess in

§ :i chemical potential at a distanaefrom the interface,
<
- %=0
0A

Au(X) = ) =, = 2 ¢(§) =TI ¢(x) —uy x>0

(2.4)
O0A bo
Aﬂo:ﬂo_#lzazé 7’=T|n1_ L
o o

(2.5)

From eq 2.4 we can deduce, as expected,

Hy=TIn ¢y

#=TIn ¢, (2.6)
Figure 1. Schematic view of the system. A sharp, flat interface
separates a dilute agueous solution of nonionic surfactants from an airwhereg; = ¢(x — 0) denotes the surfactant volume fraction at
or oil phase. the subsurface layer.

2.2. Thermodynamic Equilibrium. In equilibrium, the
chemical potential is equal 1@, throughout the entire system
(the variations ofAy vanish). From eq 2.4 we obtain the
equilibrium profile

much smaller than unity throughout the solution. The concen-
tration is also smaller than the critical micelle concentration

(cmc), so the surfactants are dissolved only as monomers. At
the interface itself, however, the volume fraction may become

large. _ _ d(X)=¢,; x>0 (2.7)
2.1. Free Energy. We write the excess in free energy per

unit area due to the interface (i.e., the change in interfacial 54 from eq 2.5, the equilibrium adsorption isotherm
tension),Ay, as a functional of the surfactant volume fraction
in the bulk solutiong(x>0), and its value at the interfaceg o

bo (2.8)

oo - —(0+po)/ T
AYIgl = [ AT00] dx + o) 2.1) ote

) ) o ) We have recovered therumkin adsorption isothermwhich
The first term is the contribution from the bulk solutionf reduces to the well-knowangmuir adsorption isother#
being the excess in free energy per unit volume over the bulk, when the interaction term is neglectedi< 0). From egs 2.3,
uniform state. The second is the contribution from the interface 2.5, and 2.7 one also obtains the equilibrium equation of state
itself, wherefy is the free energy per unit area of the surfactant
at the interface. The sharp, “steplike” profile considered has
led us to treat the bulk solution and the interface as two coupled
subsystems, rather than a single éhe.

~ The bulk subsystem is considered as an ideal, dilute solution,which was previously derived from other, though equivalent
including only the ideal entropy of mixing and the contact with considerations (integration of the Gibbs equatin).

Ay =HTin (1= 6 + Lo (2.9)
a

the reservoir and neglecting gradient terms 2.3. Out of Equilibrium. Throughout our analysis we
5 assume proportionality between velocities and the potential
Af(g) = (L&) (Tl In ¢ — ¢ — (¢ In P, — ¢)] — gradient® and take the surfactant mobility to B¥T according

o — )} (2.2) to the Einstein relation¥ being the surfactant diffusivity). At
positions not adjacent to the interface this leads to the following

wherea denotes the surfactant molecular dimension anlde surfactant current density,
temperature (we set the Boltzmann constant to unity). D 5

At the interface, however, sing® may become much larger jx) = —p= = —D—d’ (2.10)
than ¢(x>0), we must take into account the finite molecular T 9x X

size and the interactions between surfactant molecules, Applying the continuity conditionge/at = —j/ax, we get the

, ordinary diffusion equation
fo(pg) = (1Ua ){T[qso In gy + (1~ ¢) In (1 — pg)] —

3 _ pie
Qpo — g%z —ﬂ1¢o} (23) ot Dol (2.11)

The term in the square brackets is the entropy of mixing, this 11€ Pproximity of the interface requires a more careful
time in its complete form, sinceo is not necessarily small. treatment. First, we discretize expression (2.1) on a lattice with
The second term accounts for the energetic preference of theCells of sizea
surfactants to lie at the interface, being positive by the

definition of our molecule.s as surface ac'glve. The third is the Aylgl=a 'S Af(g) + fo(dg)
energy of lateral interaction between neighboring surfactants
at the interface, wherg is assumed to be positive too, i.e.,
expressing an overalhttractive interaction. The last term  where¢; = ¢(x=ia). Discretized current densitieg, can be
accounts for the contact with the solution adjacent to the similarly defined. Since we do not allow molecules to leave
interface, where the chemical potentialis= u(x—0).18 the interface toward the other (air, oil) phase (ijg= 0), we
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have from the continuity condition 1 %
%o__k @
at a -
and can therefore write t 0 ko __,,_—"’/
. . o NS ~— ///
%:—JZ;J:L:Q% _% (212) t‘\‘z-' FoNe T~
ot a aoxx2 ot ' © r
Applying the Laplace transform to eqs 2.11 and 2.12 while -1
assuming an initial uniform state(x,t=0) = ¢y, a relation is r
obtained between the surface and subsurface volume fractions, M ido(ty) | §|¢n(tz) | Poq]
¢o and¢x 0 02 04 06 08 1
1 /p ¢ ¢1(7) ¢
¢O(t) - aﬁ 2¢b«/E j‘; m de| + 2¢b ¢1 (213) .
This relation is similar to the classical result of Ward and Tor- L b
dai? eq 1.1, except for the termpg — ¢1. This difference is L

due to the fine details we have considered near the interface L
and our initial condition. Ward and Tordai’s analysis assumes
a continuous profile up to the nonagueous phase and hence re-
places eq 2.12 with a simpler conditidig/ot = (D/a)d¢/0X|x=o.

In addition, it requires an initial empty interfacgo[t=0) = 0],
whereas we sepo(t=0) = ¢,. At any rate, the difference
vanishes when the cell size, goes to zero. Finally, we find

the equation governing the kinetics at the interface #tself Mo
B Bo(ty) [ pote) ¢o,.q§

i - P S VI BRI | BRI B
o_ _Ji_$1DMTHo_ 0 02 04 06 08 1
ot a aT a ¢o
l —
2451 In M +Z +% (2.14) Figure 2. The two limiting cases for the time dependence of the
a’ b0 T T adsorption: (a) Diffusion-limited adsorption (DLAYhe surface cover-

age, o, is determined by the minimum of the surface free enefgy,
Simultaneous solution of egs 2.13 and 2.14 yields the solution yet the shape of, changes with time. The curve is shown at three
of the adsorption problemi.e., the time-dependent surface different times, corresponding to increasing values of the subsurface
coverage go(t). volume fractiong:: att; close to the beginning of the process, when

UM - . ¢1 =5 x 1077, (ii) at a later timet,, wheng, = 1.5 x 107, and (iii)
2.4. Limiting Cases for the Adsorption. In writing the at equilibrium. when: = @, = 5 x 10°6. The energy constants are

above equations, we have separated the kinetics of the Systeley o the (realistic) values= 12T and$ = 3T. (b) Kinetically limited

into two coupled kinetic processes. The first takes place inside adsorption (KLA)-the shape of; is fixed andg increases with time
the bulk solution and is described by egs 2.11 and 2.12 (or, until reaching equilibrium at the minimum .

alternatively, by eq 2.13), whereas the second takes place at
the interface and is described by eq 2.14. Two important fo(¢o) remains fixed since:; is constantly equal tay,. The
limiting cases correspond to the relative time scales of these surface coveragejo, increases until finally reaching the value
two processes: corresponding to the minimum &4.

(i) Diffusion-limited adsorption (DLA)applies when the In order to figure out whether one of the above limits applies
equilibration process inside the solution is much slower than to nonionic surfactant adsorption, the time scales of these two
the one at the interface. One can then assume that the interfacéimiting cases must be compared. Let us start with the DLA
is in equilibrium at all times with the adjacent solution; i.e., case and look for the asymptotic time dependence of the process.
the variation (2.5) vanishes, amg immediately responds to ~ We return to the Laplace transform of egs 2.11 and 2.12 and
changes inp; via the equilibrium isotherm. let the conjugate variable of the transform approach Z&ho.

(i) Kinetically limited adsorption (KLA}akes place when  addition, since the DLA limit is currently considered, we neglect
the kinetic process at the interface is the slower one. In this the kinetics at the interface and taggto be almost constant.
case, the solution is assumed to be at all times in equilibrium After inverting back tot-space, this procedure leads to the
with the bulk reservoir, i.e., the variation (2.4) vanishes, and  following asymptotic time dependence, previously mentioned
changes with time according to eq 2.14. by Hanseh

One may suggest an alternative way of looking at the same
limiting cases, the usefulness of which will become evident later agg eq
on. Let us reexamine the expression for the interfacial contribu- bp— ¢1= —D;
tion, fo (eq 2.3). The DLA case corresponds to the following Dt
description (see Figure 2a). The interface is all the time at the
minimum of the curvdy(¢o), yet the shape of the curve changes
with time asu; is changed by diffusion, until it attains the value
of up. The surface coverage increases with time as the minimum b0 \2 22
of fy is shifted to larger values @f,. On the other hand, KLA Ty = (O_eq) a
corresponds to a different scenario (Figure 2b). The shape of (o

t— oo (2.15)

wherego eqis the equilibrium surface coverage. Looking at eq
2.15 we can identify the characteristime scale of diffusion

5 (2.16)
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for performing such a task? yielding the time-dependent
surface coverageo(t).

2.5. Dynamic Surface Tension in a DLA ProcessSince
most experiments measure dynamic surface tensions and not
surface coverages, we still need a relation between these two
variables in order to relate theoretical calculations to actual
measurements. We return, therefore, to the evolution of the
interfacial tension during a DLA process. As was stated above,
in this limit the interfacial contributionfp(¢o), is all the time at
its minimum. We can, therefore, write

Aylg] = [ Af[p(x)] dx + i Tin (1 — ¢y + g o2

L]
Ll | N

10 100

If, in addition, the contribution from the bulk solution is
t [ sec ] neglected (recalling that it completely vanishes when equilibrium

Figure 3. Nonionic surfactants experimentally found to exhibit DLA. is reached), We_gre_ left with _the equilibrium I’e_Iatlon, eq 2.9.
Four examples of dynamic surface tension measurements are givenience, the equilibrium equation of state, relating the surface
9.49x 10°° M of decyl alcohol (open circles), as adapted from ref 27; tension to the surface coverage, holds approximately also out
2.32 x 1075 M of Triton X-100 (squares), adapted from ref 9,>6 of equilibrium. Note, that this conclusion is valid only in the
105 M of C1,EGs (triangles) and 4.35< 1074 M of C1PY (solid case ofdiffusion-limited adsorption

circles), both adapted from ref 28. Note the asymptoti€ behavior,

characteristic of DLA and shown by the solid fitting lines. Practically all previous works assumed that the equilibrium

relation between the surface tension and surface coverage holds
Typical values 082D correspond to very short times (of order ~ for thedynamicsurface tension as well. As we have just found,
1079's), but the prefactor off ed¢n)? is usually very large (of ~ nonionic surfactants usually do undergo DLA. Hence, the
order, say, 1%). Thus, the diffusion time scales may reach assumption employed by previous works was justified, as far
minutes. as nonionic surfactants were concerned. Indeed, satisfactory
In order to estimate the time scale of the kinetics taking place agreement with experimental findings is obtained when results

at the interface, we look at the asymptotic behavior of eq 2.14 of the numerical schemes mentioned above are related to the
and find® dynamic surface tension via the equilibrium equation of stéte.

However, this conclusion is drastically modified fawnic
Po.eq— Do) ~ gV surfactants, as we show in the next section.

The dependence &y on ¢, as defined by eq 2.9, is shown
Po.eq)? & e in Figure 4a. Note the moderate slope in the beginning of the
Tk = ? Be ’ (2.17) process; the surface coverage significantly changes without a
b corresponding change in the surface tension. It is a result of
the competition between the entropy and interaction terms in
eq 2.9. As the surface coverage increases, the surface tension
starts falling until it reaches its equilibrium value. Singge
monotonically increases with time during the adsorption, we
expect thetime dependence oAy to resemble the schematic
curve depicted in Figure 4b: a slow change in the beginning,
then a rapid drop, and eventually a relaxation toward equilib-
Irium. This is, indeed, in agreement with dynamic surface
tension measurements (e.g., ref 9). Returning to Figure 4a, the
surface tension will start its rapid fall roughly when the second
derivative of Ay with respect tapo changes sign, i.e., when

Since the value oD at the interface is not expected to be
drastically smaller than that inside the solution, comparison of
egs 2.16 and 2.17 leads to the conclusion that 7., We

thus expect thatommon nonionic surfactants should exhibit
diffusion-limited adsorption This is one of the conclusions of
our study as applied to nonionic surfactants and has been
observed for quite a large number of such surfactattsit is
somewhat expected, since we did not include in the interfacia
free energy, eq 2.3, any potential barrier that might lead to
kinetic limitations. The “footprint” of DLA is the asymptotic
time dependence (see eq 2.15 and ref 5)

Bo0q— doD) ~ VTt 1= o~ (BM) ™

For any reasonable dependence between the surface tension anis one examines surfactant solutions of increasing bulk
surface coveragey(t) = y[¢o(t)], we expect the surface tension  concentrations (but always below the cmc), the surface coverage
to also exhibit a similar asymptotic time dependenadg) — corresponding to the beginning of the drop in surface tension
veq ~ A/T4t. It should be compared with the asymptotic will be reached earlier along the process. The initial period of
exponentiatime dependence in the case of KLA (eq 2.17). Four Slow change in the tension will shrink, until finally vanishing
examp|es of experimenta| results are given in Figure 3, all behind the finite eXperimental resolution. This trend is observed
exhibiting an asymptotit-/2 behavior, as expected for DLA.  experimentally??

Having realized that the adsorption is diffusion-limited, the ~ The need for an interaction between surfactant molecules in
mathematical solution of the problem amounts to the simulta- order to account for such a time dependence of surface tensions
neous solution of two equations: (i) the Wartiordai equation, was previously realized by Lin et &. They even suggested
(2.13), accounting for the diffusive transport; (ii) an isotherm, the existence of a transition from a gaseous to a liquid phase as
such as (2.8) (witlp, replacingey), describing the (immediate) being responsible for the initial period of almost constant
response of the surface coverage to changes in the subsurfactension. In fact, the form df as defined in eq 2.3 may account
layer of solution. Useful numerical schemes were suggestedfor a two-phase region, but only ff > 4T. As demonstrated
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¢0 Figure 5. Schematic view of the ionic salt-free system. A dilute
solution containing surfactant ions and their counterions has a sharp,
flat interface with an air or oil phase.

is quite straightforward within our mean-field formulation); (iii)
as in the previous section, the solution is assumed to be dilute.
In the current context this last assumption also allows us to
treat the surfactant and counterion volume fractions as inde-
pendent variables, as the probability for an ion and a counterion
to overlap at the same spatial position is negligible.

The extension of the model to ionic surfactants evidently
demonstrates the benefits of the free-energy formulation we have
employed. We just repeat the scheme of section 2 while adding
terms for the counterions and electrostatic interactions. Unlike
-2 previous models and due to its simplicity, this formulation will

allow us to clarify the complex problem of ionic surfactant
t adsorption and reach novel conclusions concerning it.

Fi 4 D d bet th tace tensi d surf 3.1. Free Energy. Following the analysis of section 2, we
igure 4. () Dependence between the surface tension and sur aCC\vrite the change in interfacial tension in the form

coverage in a DLA case (the parameters are the same as in Figure 2).
(b) Schematic time dependence of the surface tension expected from a

dependencéy(¢o) such as in (a): an initial slow change, then a rapid Ay[qfr, o Y= f°° {Af+[¢+] +Af[p ]+
drop, and finally a relaxation toward equilibrium. 0 .o .
fal¢™, &, w1} dx+fo(d, ¥o) (3.1)

above in Figure 4 (whergg = 3T), this is not necessary, The first two terms are the contributions from the bulk solution,
however, for recovering the experimentally observed time gepending on the surfactant and counterion volume fractions.
dependence. The third term is the electrostatic energy stored in the bulk
solution. The last term is the contribution from the interface
itself, depending on the interfacial values of the surfactant
We now consider the problem @hic surfactant adsorption. ~ Volume fraction, ¢9, and the electric potentiakpo. The
The main difference compared to the previous, nonionic case counterions are assumed to be surface-inactive, and their
is the introduction of electrostatic interactions. The kinetics of contribution to this term is neglectédl. As in the previous
the system include, apart from the diffusive transport of dlscussmn,. thg two types of ions dlsgolved in the bu.lk. solution
molecules and their adsorption at the interface, the formation have contributions coming from their entropy of mixing and
of an electric double layer due to the increasing surface charge.cheémical potentials,
We start with the case of a salt-free solution, where the only
charges present are those of the surfactant ions and theirAf*(¢*) = %{T[(ﬁi In¢*= — ¢~ — (¢bi In ¢bi — ¢bi)] —
balancing counterions. The system is schematically illustrated a
in Figure 5. In such a case the electrostatic interactions are ﬂi(fbi _ ¢i)} (3.2)
unscreened, and thus, as we shall see, have a drastic effect on b b
the adsorption process. Instead of the single degree of freedoquhere ot
we have specified in the nonionic case, namely the surfactant
profile, ¢(xt), we should consider here three degrees of
freedom: the surfactant ion profileyt(xt), the counterion
profile, ¢~ (x,t), and the local mean electric potentigl(x,t)
(without loss of generality, we take the surfactant ions as the n _
positive ones). Po _ Py
For simplicity, we assume the following: (i) the surfactant @) @)°
molecules are fully ionized; (ii) the surfactant ions and coun-
terions are monovalent (extension to general valencies, howeverwherecy is the bulk concentration.

3. lonic Surfactants without Added Salt

are the molecular dimensions of the two ions and
#p and up their volume fractions and chemical potentials,

respectively, at the bulk reservoir. Our assumption of monova-
lent ions implies
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The electrostatic term contains the interaction between the Py 4 ot ¢
ions and the electric field and the energy associated with the — =8 5T TS (3.8)
field itself o c\@) (@)
" ¢ |3y 2 Finally, variation with respect tay(x=0) = v, yields the
fy= ) - @—_)3 Y — 3l x (3.3) expected boundary condition
wheree is the electronic charge ardhe dielectric constant of 8_’/’ __ 4me 4 (3.9)
the solvent (water). Finally, the modified expression for the X |x=o e(a+)2¢0 )
interfacial contributionfo, is obtained from eq 2.3 just by adding
an electrostatic term which is equivalent to the requirement of overall charge
1 neutrality (only surfactant ions, and no counterions, are allowed
fo(dg, Wo) = TZ{T[q’)ar Ingg + (L —¢g)In(1—pg)] — to be adsorbed at the interface).
a’) 3.2. Thermodynamic Equilibrium. In equilibrium, the

variations (3.5) and (3.6) vanish, and we recoverlbi#zmann
0~¢3_ - E(‘ﬁg)z - :“;‘pg + %gwo} (3-4) diStl‘ibUtiOl’ES ) ( )

When the interface is still almost uncharged, another elec- £ — ok Fep(T. | o

trostatic contribution should be considered, namely that of the P 0 =dpe P x>0 (3.10)
interaction between the ions and their “image” charges beyond
the interface, as was pointed out by Onsager and Sarffaras.
This force decays like &, and since the dielectric constant of "
the other phase (air, oil¥,, is smaller than that of the solvent, ¢+ _ Py (3.11)
€, it is repulsive. The “image” force is comparable to the 0 o + g (oHBes —epo) T '
repulsion from the surface charge for distances b

and the adsorption isotherm,

We have recovered thBavies adsorption isothernfor ionic

X < 1 € %+ surfactant$2 Combining egs 3.8 and 3.10 leads to the well-
167r¢>§ ete, known Poissor-Boltzmann equation
Obviously, when the right-hand side of this expression becomes 821/) 8neg, . ey
smaller than the molecular dimensiar, this force is irrelevant. S sinh— (3.12)

For a water-air or water-oil interface this happens whezmjr

~ 0.02, i.e., very soon along the adsorption process. We allow
ourselves, therefore, to disregard such early stages of adsorptio
and neglect this interaction altogether (it should be mentioned,
however, that in the case of surfacective electrolytes, the

which determines the equilibrium double-layer potentigt
r?ntegrating this equation once and using the boundary condition
(3.9) yield the surface potential

“image” interaction has a significant contribution to the oT s

interfacial tension). Yo =—sinh “(A¢y) (3.13)
We now take the variation aky with respect tap*(x) to get €

the excess in electrochemical potentials where
+ + + +: ZaAy + + + +

Au (X)=#(X)—#b=(a)%=ﬂn¢ ey — uy, A= wa’lag,

x>0 (3.5) and k1 = (8nc,e¥eT)~12 is the Debye-Hiickel screening
length Substitutingy, from eq 3.13, the Davies isotherm can

Aﬂg _ #0+ _ #I _ (a+)25;? _ be expressed in terms ¢ﬁ’ alone
O¢g o
%o ) " ¢ = . (3.14)
Tin — o — Py +ep,—u, (3.6) 2
1- ¢g 0 0 1 ¢; + [/1¢o+ + /(/1¢o+)2 + 1] o (BT

We require that the electric potential vanish far away from the
interface, that isy(x—w) = 0, and hence deduce from eq 3.5, Fromegs 3.10, 3.12, and 3.9 one can calculate the contribution

as expected of the bulk solution to the interfacial free energy at equilibrium,
+ + 00
uy =TIn ¢, foak= fi (Af" + Af™ + 1) dx
+ +
Uy =TIn¢; ey, 3.7)
- (cosh% - 1) S| [./(/wg)z +1- 1]
+ : A 2T @)%
where¢; andiy: denote, respectively, the subsurface values of @)
the surfactant volume fraction and electric potential. When we (3.15)
take the variation oAy with respect tap(x) and set it to zero
(since only electrostatic effects are considered), Rloésson From eqgs 3.4, 3.6, and 3.15 we then getehailibrium equation

equationis obtained of state
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1
@)

functions at the interface. If we add appropriate boundary
conditions at infinity (where the volume fractions converge to
their bulk value and the electric potential vanishes) and initial
ZTT(«/ (Agg)*+1— 1)] (3.16) conditions (say, a perfectly uniform initial state with a vanishing

electric potential), the mathematical problem is well posed and,
In the limit of weak electric fieldsAgg < 1), the electrostatic ~ at least in principle, solvable. The task of solving this system
repulsion between surfactant ions at the interface predomi- Of equations, nevertheless, seems rather formidable, though
nates. As a result, the electrostatic correction to the nonionic Similar systems have recently been dealt with numerically by
equation of state (2.9) is quadratic i and effectively MacLeod and Radl_d?i Fortunately enough, in all practical
reduces the lateral attraction term. In the limit of strong electric €2Ses one can avoid the elaborate mathematical treatment, as
fields (l¢; > 1), however, the high concentration of counte- Will be demonstrated below.

rions near the interface makes the electrostatic term become 3-4- Limiting Cases for the Adsorption. As in section 2,
only linear in¢: we are interested again in the distinction betwedfusion-
o

3.3. Out of Equilibrium. We write the current densities lc'lr.?f'teq a(ilsorptlor,; \.Nh?dre ttt:]e k|r|1et'§|cs ar;mc?lntrtlnlllelq t_)ty(;he
as in the previous section iffusive transport inside the solution, atéhetically limite

adsorption where the process is controlled by the kinetics at
+ = the interface. The kinetics inside the solution are governed now

(%) = _¢iD_iai= _Di(aiiﬁ 1/)) .
T o x T let us assume for simplicity that the ions have equal diffusivities,

d
q&i& (3.17) by egs 3.18. In order to identify the corresponding time scale,
whereD= are the diffusivities of the two ions. Applying the D =D~ =D, and that the electric field is weaky/T < 1.

Ay =—JTin (1 - 99) + Lo -

continuity condition, thesSmoluchowski diffusion equatioaee ~ If we add the two equations (3.18) and recall the Poisson
obtained equation (3.8), the sum™(x,t) + ¢~ (x,t) is found, to first order
in the electric field, to undergoesfeee diffusion. Since both
dp" _ D* 3 [9g* L€ L0y 318 att = 0 andt — o this sum isg, + ¢, for anyx, it follows
D axlax TP (3.18) that it remains unchanged during the entire process. Keeping

) ) N ) this conclusion in mind and again making use of the Poisson
As in section 2, we treat separately the positions adjacent to equation (3.8), we now subtract the two equations (3.18) and

the |nterface by dlscretIZIng the eXpressiOnS fOI’ the VariOUS obta|n a ||near d|ffus|on equaﬂon for the e|ectr|c potenhﬂl,
contributions and considering the current densities near the

interface. The condition (see section 2.3) BN, 321/,
N . = =0|—=- K (3.22)
Mo __Ii e
ot a This equation describes the kinetics of relaxation of the electric

double layer. Its characteristic length scale is, as expected, the
Debye-Hiickel screening lengths~1, and the resulting time

+ scale is
Glom
X=at

leads in this case to
g _Do” (307 e .0
Xx=at T 1 3X

oX

ot gt

-—2 (3.19
a 19 7,= (D) * (3.23)

More rigorously, we can calculate the asymptotic solution of

The kinetic equation for the surfactant adsorption at the interface eq 3.22, obtaining the following interesting time dependence

turns out to be

s _ D o a1 @=90) a Fdo  elwo—v)
ot (a+)2 ¢>§ T T T

(X t—00) = zpo(t - ﬁ)@(t - ﬁ)eﬂ (3.24)

where®(t) is the step (Heaviside) function. This potential may
(3.20) be viewed as a “retarded equilibrium potential”: a potrin
the solution is in some sense in equilibrium with the interface
(hence the exponential profile), but with the interface as it was
some time X/2«<D) ago. The information propagates from the
interface to the solution with the velocitkPR. From eq 3.24
eWo— V) 4l . it is clearly verified that the length scale is?, and the time
1 T % scale iste as defined in eq 3.23.

a Equation 3.23 states the time scale needed for the electric

wherel = &%/eT is the Bjerrum length (about 7 A for water at  double layer to adjust and attain equilibrium with the interface.
room temperature). The kinetic equation can then be expressedY €t in a salt-free solution, the surfactant and counterion profiles
like its nonionic parallel, eq 2.14, in terms 4’3 andqﬁ alone. thgmselves cqnstruct the electrlc.double layer, and therefore,
Finally, since we have assumed negligible adsorption of Te IS a!so the time scale of relaxation of the surfact_ant profile.
counterions at the interface, we may require Typical values forD are about 10° cmé/'s, andx~1 in salt-
free ionic surfactant solutions amounts to hundreds of angstroms.
dpoldt="0 (3.21) This yields very small values far. (on the order of microsec-
onds). The relaxation of the profile, therefore, is much faster
The Smoluchowski equations (3.18) together with the Poisson in the case of ionic surfactants (without added salt) than in the
equation (3.8) make a set of three differential equations for the case of nonionic ones. This effect is due to the strong
three unknown functiong*(x,t), ~(x,t), andy(xt). Equations electrostatic interactions which drastically accelerate the kinetics
3.9, 3.19, 3.20, and 3.21 set the boundary conditions for theseinside the solution. In other words, the diffusion inside a salt-

where the last term in the brackets may be viewed as an
electrostatic barrier located at the edge before the interface. It
can be also written, by means of eq 3.9, as
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free ionic surfactant solution is ambipolar diffusiof® rather + 44 R
than a regular one. If the ion diffusivities are not assumed to % — D ¢y expl(4tl/a’)do] <
be equal, one should replaBein eq 3.23 with some effective ot (a+)2 2
diffusivity. If the electric field is not weak, as is practically Ay + A/ (Repg)’ + 1
always the case in salt-free surfactant solutions, then the time

scale of profile relaxation will be eveshorter, and the above de(1—90)| o  Bdo 1
conclusion, obtained for weak electric fields, will not change. In|—————|+ 3+ —2sinh (ig) (3.27)
Turning to the kinetics which take place at the interface, we o
treat eq 3.20 similar to eq 2.14 of section 2, expand it close to The mathematical problem of finding the time-dependent surface
equilibrium, and find the time scale coverage;j{{(t), is thus reduced to a single integration.
3.5. Dynamic Surface Tension in a KLA Process.n order
%Feq 2 (a+)2 to relate calculated surface coverages to measured surface
= |—| XM [+ Bdgeq— EWoeqT V1ed)l/ T} tensions, we need, as in section 2, an appropriate relation
(o D between these two variables. As we have just concluded, the
equilibrium equation of state will not do in the case. Since
= r(ko) exple(geqt ¥1.ed/T] (3.25) kinetically limited adsorption is considered, the contribution to

the free energy from the bulk solution has the equilibrium

€ +
wherez® denotes the kinetic time scale found in the absence dependence on the surface coverage, fi{¢,) of eq 3.15.
of electrostatics (eq 2.17). As expected, the electrostatic Hence, we can write the free energy (or equivalently, the
repulsion of surfactant ions from the charged interface slows dynamic surface tension) as a function of the surface coverage
down the adsorption process. The sym+ y1 may also be  &lone,

Writtgn as 21 + (o — y1), where the first term expresses the_ AV[¢§(t)] = fo(¢0+) + fgglk(¢0+)

slowing down due to the subsurface concentration (which is

lowered because af1), and the second accounts for a further 1 n " i " " 4
slowing effect due to the edge electrostatic barrier. If the electric = (a+)2{T o INdg + (1 —g) IN(L—g) = ¢ Ingy, —

field is strong, as is practically the case in salt-free surfactant

solutions, the duration of the process may become longer by 2(‘/(,1%*)2 +1-— 1) + 2%+ sinhfl(/lqﬁg) —
orders of magnitude. This can be verified experimentally when A
the electrostatic interactions are screened by addetfshlising o — ﬁ(¢+)2} (3.28)
eq 3.13 in the limit of strong fields, together with eq 3.9, we o 2%
can estimate the slowing factor by Expression 3.28 determines the behavior of the dynamic surface
tension as the surfactant ions adsorb at the interface and the
cat ¢geq 4 Al . surface coverage increases. Note that it is very different from
exp[e(zpoyeq—i- wl,eo)/T] =5 n — < Poeq the equilibrium relation (3.16), and hence, using the equilibrium
Po a equation of state to relat&y to ¢; is invalid in this case.
(3.26) Assuming a strong electric fieldigg > 1), the function

Ay(¢0+) can be shown to depart from the convex shape of a

This factor is typically very large. For example, in the experi- simple well, if 3/T > 2(2 + \/:_;) =~ 7.5. For such high values
mental system of ref 12 one findst™ ~ 1072, ¢§e[{¢b+ ~ 10 of 8 we should expect, therefore, an interesting time dependence
andl/at ~ 1, so the slowing factor amounts to abouf.10 of the dynamic surface tension, as demonstrated in Figure 6. It

We see that the strong electrostatic interactions present inshould be stressed that the curve of Figure 6a is not presumed
salt-free ionic surfactant solutions drastically shorten the time to exactly correspond to the experimental results reproduced in
scale of diffusion inside the solution and drastically lengthen Figure 6b. Our claim is that an interfacial free energy of the
the time scale of kinetics at the interface. We expect, therefore, form suggested by eq 3.28 may clearly account for the unusual,
that ionic surfactants in salt-free solutions should exhibit experimentally observed dynamic surface tension depicted in
kinetically limited adsorption On the one hand, this conclusion  Figure 6b.
greatly simplifies the mathematical treatment of the problem:  For values of parameters other than those chosen in Figure
we can safely assume that the electric double layer is in quasi-6, the interfacial free energy may have a nonmonotonic, double-
equilibrium with the changing interface.€., it obeys the well shape. In such a case, we still expect the time dependence
Poissor-Boltzmann theory) and deal with the kinetics at the of the surface tension to schematically resemble the curve in
interface alone. On the other hand, the conclusion of kinetic Figure 6b, i.e., to exhibit a period of almost constant tension as
control invalidates some of the assumptions employed by the system undergoes the transition from the first well to the
previous models. Itimplies that the relevant adsorption scenariosecond. Our current, diffusive formalism, however, cannot
of the two described in section 2.4 is the second one, illustrated quantitatively describe the kinetics of such a procéss.
in Figure 2b. We recall that according to this limiting scenario, 3.6. Effect of Counterion Adsorption. An issue still to be
the interfacial contribution to the free enerdy(¢,), retains addressed is whether such high values for the interaction
the same shape throughout the process and reaches its minimuroonstantg, are reasonable for ionic surfactants. Measurements
only at equilibrium. Hence, one cannot use in this case the on nonionic surfactants yield typical values férwhich are
equilibrium equation of state, such as eq 3.16, to calculate smaller than #.2° There is no obvious reason why ionic
dynamic surface tensions. surfactants should exhibit, apart from the Coulombic repulsion,

Having realized that the adsorption is limited by the kinetics also much stronger lateral attraction at the interface. The answer
at the interface, we can take the ion profiles and electric double lies in one of the assumptions we have used. Throughout the
layer to be in quasi-equilibrium. The PoisseBoltzmann analysis above, it was assumed that the counterions are surface-
theory, therefore, can be implemented, and the kinetic equation,inactive and hence not present at all at the interface itself. In
(3.20), is rewritten as fact, this assumption is inaccurate and was taken merely for
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oF The adsorbed counterions introduce the following direct
i correction to the interfacial free energy as was formulated in
L a section 3.1.
_02 —
= i 1 - _ o
N L 6(Ay)counter_ — 2[T(¢O In ¢’0 - ¢0) - e¢o Yo~ Mg ¢0]
& -04 @)
N L
) r In quasi-equilibrium this expression reduces to
O -06 |-
~— L T
i 6(Ay)counter: - TZ(/J)O
o8l (@)
i I I B R AR so the correction toa")2Ay/T takes the form
0 02 04 06 08 1
b5 @)% \2
Y a — 2
6(7) = —(21—) dn(05)  (33D)
counter a
o
N b In addition, the adsorbed counterions introdudrect correc-
_ “wr tions into the free energy, through the teregg v, andf %, of
g [ eq 3.28. However, these two corrections turn out to exactly
O 40k R cancel each other. Note that apart from electrostatic interactions,
} C . we have neglected any other, short-range interactions between
%\ C *en surfactant ions and counterions at the interface.

— B oo, Looking at expression 3.31, we find that the effect of a small
a C . amount of adsorbed counterions is equivalent to an effective
30 ., increase in the lateral attraction term; ﬁ(¢g)2/2 of eq 3.4.

C . The coefficient (2a+/a7)2¢g can be also written ass2a/

r . (ah)2. Takinga~ < at ~ | leads to a correction of order-110,
R5 k= "'“1"0 vl ol '“““74 i.e., the counterion adsorption may introduce, indeed, a signifi-
100 1000 10 cant addition to the attraction term. Note, that the increase in
t [sec] f is sensitive to molecular details (the dimensions of the two

Figure 6. (a) Dependence between surface tension and surfacetypes of ions). This fact may be related to the experimental
coverage in the KLA case, according to eq 3.28, where the values takenobservation that some ionic surfactants do exhibit the unusual

for the parameters ag = 12 A, ¢, = 3.6 x 104 o = 11.5T and3 time dependence depicted in Figure 6b, while others dé&ot.
= 9T. (b) Experimentally observed dynamic surface tension of a salt-

free 3.5x 104 M SDS solution against dodecane, adapted from ref 4. lonic Surfactants with Added Salt

12. The time dependence is schematically consistent with a nonconvex

dependencéy(¢;) such as the one in (a). In many practical cases, the solution contains, in addition to

the surfactant ions and their counterions, also a certain amount
the sake of a clearer and simpler discussion. The high surfaceof dissolved salt. The effect of adding mobile ions, whose
potentials involved in salt-free surfactant solutions should attract concentration usually exceeds that of the surfactant, is to screen
a certain amount of counterions to the interface. Our aim now the electrostatic interactions. Since it was found in section 3
is to calculate the correction introduced into the interfacial free that strong electrostatic interactions drastically affect the nature
energy as a result of the presence of a small amount of of the adsorption process, we should expect the results in the
counterions at the interface. presence of added salt to be significantly different from the case

For simplicity, we assume the counterions to be in quasi- of salt-free ionic solutions.

equilibrium throughout the system, and therefore obey the In principle, adding salt introduces two additional degrees

Boltzmann distribution (3.10) of freedom into our formalism, namely the profiles of the salt
ions and their counterions. This should significantly complicate
by = ¢gee¢0/T the already elaborate problem of ionic surfactant adsorption. In

order to avoid such complications we adopt the following
Since the surface charge consists now of both surfactant ionss'm.pllfylng assumptions: . . Co
and counterions, expression 3.13 for the surface potential should () The salt is surface-inactive and its concentration is much
be modified larger than that of the surfactant. This assumption allows us to
separate the role played by the two types of ions: the surfactant
2T o ions adsorb at the interface and build up the surface charge,
Yo="g sinh {A[¢, — (@'/a )¢y} (3.29) whereas the salt ions form the electric double layer inside the
solution.
(ii) The salt ions are much more mobile than the surfactant
ones. Relying on this assumption, the kinetics of the salt ions
can be neglected, and the double layer they form can be assumed
%o maintain quasi-equilibrium with the changing surface charge.
(iii) For simplicity, we assume that the salt ions and

B > 4o counterions are monovalent as well, or more generally, have
¢o = 410y, (¢) (3.30) the same valenc3?.

In the limits of a strong field}(qb;r > 1) and a small density of
adsorbed counteriong{/(a)? < ¢g/(a")?], we find from eq
3.29 that the counterion surface coverage depends quadraticall
on the surfactant one,
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Most of the formulation given in section 3 remains valid, in F s . 3
particular the equations governing the surfactant kinetics, eqs [ "™m,, ° ]
3.18-3.20. The main difference is that the electric potential, - ‘R
. . ",
1, is no longer regarded as an independent degree of freedom - I,
coupled to the surfactant profilg, Instead, it is simply given g "-‘.
) L . ~ L o
by the potential of an equilibrium double layer, depending on ~ ",
the surface coverage and salt bulk concentration alone. The "g °
high salt concentration we have assumed allows us to take a ?l" 0.1 °
screened double-layer potential in the linear, Debiéckel > C o
regime* C °
4me - '
P == go(e (4.1) : :
eKa Llllllll 1 IIIIIIII 1 Illlllll 141t
bearing in mind that in this section, the salt bulk concentration, 0.1 1 10 100 1000
Cs, replaces the surfactant one,, in the definition of «. t [sec]
Substituting this potential in egs 3.18 and 3.19, we obtain the Figure 7. DLA exhibited by ionic surfactants in the presence of added
equations determining the kinetics inside the solution salt. Three examples are given: dynamic surface tension of 4.86
105 M SDS with 0.1 M NaCl against dodecane (open circles and left
¢ 0 ¢ P X ordinate), adapted from ref 12; dynamic surface tension of21@*
ot = x| ax - _2¢oe @ (4.2) M SDS with 0.5 M NaCl against air (squares and left ordinate), adapted
2ca from ref 40; surface coverage deduced from second harmonic generation
measurements on a saturated solution of SDNS with 2% NaCl against
9, p[o® P 09, air (solid circles and right ordinate), adapted from ref 41. Note the
0 = alax - —2¢>O¢>1 s (4.3) asymptotid—Y2 behavior, characteristic of DLA and shown by the solid
Xlx=a  2ca fitting lines.

In the last equation we have also assumed that the Debye shown, in the presence of salt, to differ only slightly from those
Hiickel screening length is much larger than the surfactant of the nonionic case, we conclude thahic surfactants with

molecular dimensionga < 1. The equation describing the  aqded salt, like nonionic surfactants, should exhibit diffusion-
adsorption kinetics at the interface, eq 3.20, remains valid as it jimjted adsorption As in the case of nonionic surfactants, this

Is. ) ) ) ) conclusion is well supported by experiments, as illustrated in
“As in the previous two sections, we are interested in the Figure 7. Indeed, measurements on ionic surfactant solutions
distinction between the two limitsdiffusion-limited vs kineti-  yith salt can be well fitted by theoretical curves, using the same

cally limited adsorption. In order to find the time scale of schemes used for nonionic surfactants (see sectiéf 2).
diffusion, we treat the electric field as a small perturbation and

seek a solution to egs 4.2 and 4.3 which is close to the one in5. Concluding Remarks
the nonionic case. A procedure similar to the one given in

section 2 is now employed, yielding the following asymptotic In this work we have presented an alternative approach to

the problem of the kinetics of surfactant adsorption. One of

expression the advantages of this approach is that the diffusion inside the
KkPpbo.eq a¢0,eq' C, KPoe 3c, aqueous solution and the kinetics of adsorption at the interface

Op— P = TR — T (11— oS are not introduced as two separate, independent processes, but
2ca 7Dy s 2ca s both arise from the same model. This makes the model more

(4.4) complete than previous ones and allows us to point at the process
limiting the kinetics of the entire system in various cases. We

When this result is compared to its nonionic parallel, eq 2.15, find the adsorption to be limited by the bulk diffusion in the
two observations are to be made. The firstis that eq 4.4 containscases of nonionic surfactants and ionic surfactants with added
an additional constant term, since the equilibrium subsurface salt, and by the kinetics at the interface in the case of salt-free
concentration differs from the bulk one in the presence of an jonic surfactant solutions. Such conclusions lead to a significant
electric field. The second is that the diffusion time scale is mathematical simplification of the statement of the problem.
slightly corrected, as expected, by the weak electrostatic They are also in agreement with experimental findings.

interactions, Another advantage is that the formulation can be readily
c k) 3c\12 extended to more cqmplicated_ systems. We have use_d this to

Ty= T((jO) 1o Poe (1 _ _b) (4.5) account for the kinetic adsorption of ionic surfactants with and

2 ZCSa2 2c, without added salt. In particular, we have been able to explain

the recently reported unusual time dependence of the surface
where 7 denotes the diffusion time scale found in the tension in salt-free ionic surfactant solutions. In addition, our
nonionic case (eq 2.16). The correction vanishes when we takefree-energy approach provides a general, straightforward method
very high salt concentrations, leading to a complete screeningfor calculating dynamic surface tensions from surface coverages,
of electrostatic interactions. which does not rely on equilibrium relations. This feature turns
Turning to the case of KLA, we find that the expression for out to be essential in the case of salt-free ionic surfactant
the time scale of kinetics at the interface derived for salt-free solutions.
solutions, eq 3.25, remains valid also in the presence of added The adsorption of ionic surfactants behaves very differently
salt. However, unlike the case of section 3, the electric field in in the presence or absence of salt: it is diffusion-limited in the
this case is weak, and the resulting slowing factor is small, so former case, and kinetically limited in the latter case. This has
that 7« > r(ko). Since the time scales of both the diffusion been shown both experimentally and by our theory. In order
inside the solution and the kinetics at the interface have beento reach better understanding of the kinetics of surfactant
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adsorption, additional experiments are required, particularly on

ionic surfactants. All experiments until now have involved
aqueous solutions which are either free of salt or containing
high concentrations of it. It should be interesting to examine

agueous solutions with low salt concentrations and observe the

crossover from one limiting behavior to another. Moreover,

Diamant and Andelman

(14) Dukhin, S. S.; Miller, R.; Kretzschmar, Golloid Polym Sci 1983
261, 335. Miller, R.; Dukhin, S. S.; Kretzschmar, Golloid Polym Sci
1985 263 420.

(15) Borwankar, R. P.; Wasan, D. Them Eng Sci 1986 41, 199.

(16) MacLeod, C. A.; Radke, C. langmuir1994 10, 3555.

(17) For an earlier work using a similar distinction, see: Tsonopoulos,
C.; Newman, J.; Prausnitz, J. them Eng Sci 1971, 26, 817.

(18) Note that we did not include in expression 2.3 a potential barrier

since the adsorption in the case of salt-free ionic surfactant hindering the surfactant from adsorbing at the interface. The introduction

solutions has been found to be kinetically limited, dynamic
surface tension measurements may be used to “probe” the actu
dependence of the interfacial free enerfgfo), on the surface
coveragego. This, in turn, may help explain the equilibrium

phase behavior of ionic surfactant monolayers under various

conditions (e.g., under compression).

The theory presented in this work is incomplete in two main
aspects. The first is that our diffusive formalism, as was
mentioned in section 3, cannot fully describe the kinetics in

of such a barrier amounts to adding to (2.3) a positive term lineas,ias
e shall do, indeed, when considering the electrostatic repulsion in section

(19) Adamson, A. WPhysical Chemistry of SurfaceSth ed.; Wiley
& Sons: New York, 1990; Chapters XI and XVI.

(20) See, for example, Langer, J. S.3olids Far From Equilibrium
Godrehe, C., Ed.; Cambridge University Press: London, 1991.

(21) Note that the conditions at the interface are quite different from
those inside the aqueous solution, and the diffusivilegppearing in eqs
2.10-2.14, cannot be expected to have strictly the same value, as we have
assumed here for simplicity.

(22) This is the so-called Tauberian method for finding asymptotic

cases where an energy barrier must be overcome before thexpressions using the Laplace transform.

interfacial free energy reaches its minimum. According to the

analysis of section 3, actual dynamic surface tension measure

ments imply that the free energy in the case of certain ionic
surfactant solutions probably does exhibit such a barrier.

(23) Close to equilibrium we can also writ@o/ot = (Dén/a2po.eq-

@B Tp1(1 — ¢o) — ¢o], which coincides with the adsorptierdesorption

form of the Frumkin (or Langmuir, whefi = 0) kinetic equation used by
previous works:~10
(24) Note that in the discussion above we have completely neglected a

Quantitative treatment of the evolution of such systems should third time scale-the time needed for lateral diffusion and molecular

require, therefore, a more accurate (perhaps “Kramers#fike”

reorientation at the interface. If, however, due to certain molecular
constraints, this time scale is no longer negligible, exceptions to the above

theory. The second aspect is the lateral diffusion at the interface,conclusions are to be expected (see refs 25 and 26).

whose time scale has been completely neglected by this work.
As was mentioned in section 2, cases where lateral diffusion is 144
significant are encountered in practice, and a future, more

complete theory cannot ignore its effect.
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