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Insoluble surfactant monolayers at the air/water interface undergo a phase transition from a high-temperature
homogeneous state to a low-temperature demixed state, where dilute and dense phases coexist. Alternatively,
the transition from a dilute phase to a dense one may be induced by compressing the monolayer at constant
temperature. We consider the case where the insoluble surfactant monolayer interacts with a semidilute
polymer solution solubilized in the water subphase. The phase diagrams of the mixed surfactant/polymer
system are investigated within the framework of mean field theory. The polymer enhances the fluctuations
of the monolayer and induces an upward shift of the critical temperature. The critical concentration is increased
if the monomers are more attracted (or at least less repelled) by the surfactant molecules than by the bare
water/air interface. In the case where the monomers are repelled by the bare interface but attracted by the
surfactant molecules (or vice versa), the phase diagram may have a triple point. The location of the polymer
special transition line appears to have a big effect on the phase diagram of the surfactant monolayer.

1. Introduction

Understanding the subtle interactions between macromol-
ecules, such as polymer or proteins, and amphiphiles, such as
surfactants or phospholipids, has been a problem of prime
interest in recent years in many industrial applications and in
biological systems. For instance, biomembranes1,2 are usually
depicted as fluid bilayers composed of different constituents:
phospholipids, cholesterol, and proteins. In addition, a complex
macromolecular network (the cytoskeleton) is associated with
the inner side of the bilayer and modifies the mechanical
properties of the membrane, while the glycocalix, on the outer
side, is believed to play an important role in molecular
recognition. In industry, surfactants are used in a wide range
of applications (detergents, soaps, oil recovery, paints) where
polymers are often added in order to provide stability for the
system, especially in the case of colloidal suspensions and oil/
water emulsions.3 Those mixed polymer and surfactant systems
tend to create complex self-assembly structures (connected
micelles, gels, networks, etc.).4-6 Finally, drug delivery via
microencapsulation is another example where the stability of
surfactant vesicles is improved by the adsorption of polymer.7

In recent years, a new category ofassociatingpolymers has
been introduced. Those are the hydrophobically modified water-
soluble polymers (HM-WSP), consisting of a water soluble
polymer backbone carrying small hydrophobic side chains. Such
polymers present interesting properties of self-association, which
may even be enhanced by the addition of surfactant, and are
very useful as viscosity modifiers of aqueous solutions.8 The
subtle coupling between the surfactant and the polymer may
lead to unusual phenomena like thermogelation,9 where gelation
of the system is obtained upon increasing of the temperature.
Such systems have been studied theoretically10 as well as
experimentally in the bulk. However, little is known about their
behavior at interfaces.11

In the present work, the interaction of water-soluble polymers
with a surfactant monolayer located at the air/water interface is
considered. We restrict ourselves to the relatively simple
situation of an insoluble surfactant monomolecular layer (Lang-
muir monolayer). Langmuir monolayers have been used in
many applications,12,13 from evaporation control to nonlinear
optic devices (via the creation ofLangmuir-Blodgett mono-
layers). They are also used to study crystallization of solids14

and provide useful model systems for more complicated
fluctuating liquid interfaces (membranes) where curvature effects
cannot be neglected.
Another motivation for the present study comes from the lack

of understanding of adsorption (or depletion) of polymers close
to nonideal interfaces, as compared with adsorption on ideal
(namely, perfectly flat and chemically homogeneous) surfaces.
On ideal surfaces15-19 theories for neutral and flexible polymers
in good solvent have been performed (both for adsorption and
depletion) and compared with scaling theories. For nonideal
surfaces, much less theoretical works exists. It has been
suggested that the bending properties of a curved interface are
modified in the presence of adsorbing polymer.20-22 When the
polymer adsorbs on both sides of the interface (a bilayer, for
instance), the curvature modulus decreases, while the saddle-
splay modulus increases. When it adsorbs only on one side, a
nonzero spontaneous curvature is induced. The situation of a
perfectly flat but chemically heterogeneous interface has been
considered only in a few works.22-25 The case of annealed
disorder (namely, when the disorder is at thermodynamic
equilibrium and the heterogeneities can diffuse laterally) is found
to behave differently from the case of quenched disorder (where
heterogeneities are spatially “frozen”). However, in both cases
the adsorption of the polymer is increased by the nonideality
of the surface. In this context, a surfactant monolayer is an
example of a nonideal annealed surface, where the order
parameter is the local surfactant surface concentration.
The phase diagram of surfactant monolayers can be con-

structed as a function of the thermodynamical variables:12

surface pressure and temperature (or equivalently area per
molecule and temperature). At low surface pressure, a phase
separation occurs (for temperatures below the corresponding
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critical temperature). Dilute (gaseous) and dense (liquid-
expanded) regions of the monolayer coexist, in analogy to phase
transitions in the bulk. In the phase diagram, single-phase and
two-phase regions are separated by a coexistence curve. At
higher surface pressure, other phase transitions occur. Depend-
ing on the symmetries of the specific surfactant molecules, the
phase diagrams are more complex and still a topic of current
investigation.26,27

In the following, we consider how a simple condensation
transition (gas to liquid expanded) of a surfactant monolayer at
the air/water interface is affected by the presence of polymer
in the water subphase. The free energy and the assumptions
used in deriving it are introduced in section 2, while in section
3 we discuss the main results, as applied to a simple case; the
general theory is detailed in Appendices A and B. Finally, some
analytical considerations on the critical point are presented in
Appendix C.

2. The Polymer/Surfactant Free Energy

The model used for the mixed surfactant/polymer system
follows closely the lattice model introduced in ref 24. The local
(dimensionless) free energy per siteF, rescaled in units ofkBT,
wherekB is the Boltzmann constant andT is the temperature,
can be separated into three parts: the surfactant contribution
Fs, the polymer contributionFp, and the coupling termFps:

In the following, those three terms are discussed separately.
2.1. The Surfactant Contribution Fs. The monolayer free

energy is calculated using a lattice-gas model. Each lattice site
is occupied either by a surfactant molecule or by an artificial
vacancy, in order to allow us to consider a compressible
monolayer. The free energy of a surfactant monolayer is the
sum of the enthalpy and entropy of mixing and depends on the
monolayer area fraction (or equivalently coverage)c ranging
from 0 to 1,c ) A0/A, whereA0 is the close-packing area of a
surfactant molecule (or the area of one site on the lattice) and
A is the actual area per surfactant molecule on the interface.
Typically A0 = 25-35 Å2 for a surfactant molecule.28 Disre-
garding linear terms, the surfactant free energyFs (per site and
per kBT), within a Bragg-Williams (mean field) theory, is
written as

where ν-1 is the dimensionless interaction parameter of the
surfactant on the surface and describes van der Waals interac-
tions between neighboring particles. The interactions between
the head groups of the surfactant molecules, playing an
important role in the determination of the highly compressed
phases, as well as the degrees of freedom of conformation for
the hydrophobic chains, whose coupling with the surfactant
coveragec is determinant in the liquid expanded versus liquid
condensed transition,28 are not taken into account. As only
short-ranged interactions are considered (between neighboring
sites), the surfactant molecules are supposed to be neutral. The
main interactions modeled by the parameterν are the van der
Waals interactions.
For an insoluble monolayer, the total number of surfactant

molecules is fixed. At low (and positive) values ofν (corre-
sponding to low temperatures), a phase separation between dense
and dilute regions follows from eq 2.2. The stability of such a
monolayer is obtained by studying the convexity of the free
energy.29 The monolayer becomes unstable if the second
derivative of the free energy becomes negative. The condition

Fs′′(c) ) 0 defines thespinodal line, separating metastable and
unstable regions. The spinodal line obtained from eq 2.2 is
νs0(c) ) 2c(1 - c), and it lies within the coexistence region of
the phase diagram. In addition, the coexisting curve limiting
the two-phase region (the binodal line) is easily found from eq
2.2 as the system is symmetric aboutc ) 0.5:

The spinodal and binodal lines join together at the critical point
c ) 0.5,νc ) 0.5. In Figure 1 the binodal line and the critical
point are shown for a pure surfactant monolayer.
2.2. The Polymer Contribution Fp. The polymer in the

subphase is assumed to be neutral and flexible as well as in
good solvent conditions, hence has a positive second virial
coefficient and no polymer-solvent phase separation. For a
semidilute polymer solution, a mean field theory applied to the
Edwards density functional method is commonly used.19,30The
free energy density is conveniently expressed as a function of
the variableφ(z) related tocp(z), the local monomer concentra-
tion, by φ2(z) ) cp(z)/cb. The coordinatez denotes the
perpendicular distance from the interface, andcb ) cp(zf∞) is
the concentration of the polymer in the bulk (acting as a
reservoir). The characteristic length in the solution is the
Edwards correlation lengthê ) a/x3Vcb, where V is the
excluded volume parameter (positive, in good solvent condi-
tions), and the typical energy parameter (perkBT) for the
interactions between monomers in the bulk isεp ) A0êVcb2.
Using these notations, the free energy per site reads

The first term accounts for the elastic flexibility of the
polymer chains, and the second originates from the excluded
volume interaction combined with the equilibrium condition
with the polymer bulk reservoir. The polymer free energyFp
is a functional of the polymer profileφ(z) and of the order
parameter at the interfaceφs ) φ(z)0). It does not include the
energy of interaction with the surface, discussed separately
below.
Minimizing Fp with respect to the polymer profileφ(z),

leaving the surface value as a free parameter, yields the polymer
profile φ(z) ) coth(z/ê+b), whereb is a constant of integration

Figure 1. Phase diagram for a bare surfactant monolayer, without
polymer in the water subphase. At lowν (low temperatures), the
homogeneous state is unstable and the binodal line delimits the two-
phase coexistence region labeled A+B. The critical point is located
at νc ) 0.5, cc ) 0.5 and is shown by a dot.

νb
0(c) ) - 1- 2c

log c- log(1-c)
(2.3)

Fp )
εp

2∫0∞dz (ê(∇φ)2 + 1
ê
(φ2 - 1)2) (2.4)

F ) Fs + Fp + Fps (2.1)

Fs ) ν-1c(1- c) + c log c+ (1- c) log(1- c) (2.2)
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related toφs by φs ) cothb, in the case of adsorption (φ(z) >
1), andφ(z) ) tanh(z/ê+b′) in the case of depletion (φ(z) < 1),
where, similarly, φs ) tanh b′. For both adsorption and
depletion, the free energyFp for the optimal profile is

and has a minimum atφs ) 1. This means that the polymer
solution would like to be homogeneous throughout the solution
at the imposed bulk valuecp(z) ) cb. The only possibility of
obtaining a profile withφs* 1 is due to the short range coupling
of the polymer with the surface. This coupling includes the
surfactant monolayer as well as the bare air/water interface. It
is given below by the termFps.
A quantity accessible to experiment which measures the total

adsorption of the monomers at the interface is the polymer
surface excess defined asΓ ) ∫0∞ dz (cp(z) - cb). Using the
above results of the minimization for the polymer profile (mean-
field theory), it is simply related toφs by

Note that ifF is the volume fraction of the monomers in the
bulk solution, a naive calculation starting fromcb = F/a3 (where
a is the size of a monomer) yieldsεp = F3/2. For a semidilute
polymer solution,N-4/5 , F , 1 (whereN is the number of
monomers in a chain). Hence, roughly, forN ) 104 the range
for typical values ofεp is given31 by 10-4 < εp < 10-1.
Although the self-consistent field theory provides a convenient

and qualitatively correct framework for the description of the
semidilute polymer solution, some of its predictions (like the
form of the polymer profilecp(z) for instance) are in disagree-
ment with a scaling theory.19 Nevertheless, we will use it to
model the polymer behavior in solution.
2.3. The Coupling Term Fps. A bilinear term in the

surfactant and monomer concentrations at the interface (z) 0)
is a simple, yet meaningful, phenomenological coupling for the
polymer-interface interaction, which is assumed to be short-
ranged:

R0 is the polymer/surfactant interaction parameter, andγ0 is
the polymer/bare interface interaction parameter. In eq 2.7, we
define the “effectiVe” polymer/surfactant interaction parameter
εps≡ R0 - γ0. It is positive whenever the monomers interact
more favorably with the surfactant molecules than with the bare
water/air interface. Thespecial transitioncoverage is defined
as c* ≡γ0/(R0 - γ0) as long asγ0 ( γ0. In principle, those
parameters can depend on temperature.
The phenomenological couplingFps can be justified for

polymers in the semidilute regime since in such systems the
monomer concentration is small with respect to unity. However,
it represents only the lowest term in an expansion in the
surfactant concentration at the interface. Whenεps > 0, the
Fps term corresponds to a repulsion of the polymer from the
surface (depletion) forc< c* and to an attraction to the surface
(adsorption) forc > c*. The special transition linec ) c*
occurs for physical values of the coverage, 0< c* < 1, when
the attraction (repulsion) of the monomers with the surfactant
molecules is in competition with the repulsion (attraction) with
the bare interface. In the 0< c* < 1 range, a positiveR0 is
equivalent to having a positiveεpsand means that the interaction
between the monomers and the surfactant molecules is attractive.

2.4. The Total Free Energy F. Combining all three
contributions,Fs + Fp + Fps, we obtain the total free energy
(per site of the interface and perkBT):

Note that the energy is invariant under the transformationεps
f -εps, c f 1 - c andc* f 1 - c*. Therefore, it will be
assumed in the following thatεps> 0 without loss of generality.
The free energyF is a function ofφs andc. Minimizing it

first with respect to the polymer surface order parameterφs
(mean field approximation), we obtain

whereλ ) εps(c- c*) ) R0c+ γ0(1- c) measures the strength
of the interaction between the polymer and the overall interface
(including the bare interface as well as the surfactant). Equation
2.9 relatesφs2(c), the concentration of monomers at the interface,
with the surfactant area fractionc. Consequently, the entire
polymer profile and the polymer surface excess can be found
as a function of the surfactant concentration on the interface.
The limit of a very strong adsorption,λ/εp f ∞ (e.g., c* ,

0), yieldsφs = λ/εp . 1. On the other hand, the limit of very
strong depletion,λ/εp f -∞ (e.g., c* . 1), yieldsφs = |εp/λ|
, 1. Forλ/εp f 0 (e.g., c f c*), φs f 1, which means that
the polymer solution remains homogeneous:cp(z) ) cb, even
at the surface. As is shown in Figure 2a, the special transition
line c) c* divides the parameter range into an adsorption region
(c > c*) and a depletion one (c < c*).
If the surfactant monolayer is in the two-phase region, dilute

and condensed regions of the surfactant coexist and the polymer
adsorbs differently on those regions because of its different
affinity as described by the parameterεps> 0. Note that since
the curveφs(c) is convex (see Figure 2b), the polymer surface
excess is enhanced when the surfactant monolayer undergoes a
phase separation. Qualitatively, the convexity of the curveφs-
(c) indicates24 that the surfactant concentration fluctuations
increase the average polymer surface concentrationφs and,
hence, the polymer surface excessΓ ∼ φs - 1.
Equation 2.9 shows how the surfactant molecules affect the

polymer adsorption. The main remaining task is to understand
how the polymer itself affects the phase diagram of the
surfactant monolayer, since the two problems are coupled. Using
eq 2.9,φs ) φs(c), the total free energy can be written only as
a function of the surfactant coveragec:

The study of the convexity of the total free energyF(c) as a
function ofc (the only remaining order parameter) determines
the location of themodifiedspinodal line. Similarly, the full
phase diagram can be obtained numerically from a common-
tangent construction ofF(c).
For the sake of clarity, the main physical features can be

illustrated in a simple situation. This is done in the next section,
where εp, c*, and νεps are taken to be independent of the
temperatureT andν ∼ T. A more general treatment without
any assumptions on theT-dependence of the interaction
parameters is presented in Appendices A and B.

3. Results

3.1. T-Dependence of the Interaction Parameters.T/ν is
independent of the temperature if we assume that the interaction

Fp )
εp

3
(φs

3 - 3φs + 2))
εp

3
(φs - 1)2(φs + 2) (2.5)

Γ ) cbê(φs - 1) (2.6)

Fps) - 1
2
[R0c+ γ0(1- c)]φs

2 ) - 1
2
εps(c- c*)φs

2 (2.7)

F ) ν-1c(1- c) + c log c+ (1- c) log(1-c) +
1
3
εp(φs - 1)2(φs + 2)- 1

2
εps(c- c*)φs

2 (2.8)

φs ) λ
2εp

+x( λ
2εp)

2
+ 1 (2.9)

F(c) ) Fs(c) -
εp

6
(φs

2 + 3)φs (2.10)
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potential of the surfactant molecules has an infinite repulsive
core followed by a weak attraction independent of the temper-
ature, 0< w, kBT. In such a case, the surfactant second virial
coefficient is given byVs) 1- w/(kBT). Expanding the energy
Fs, eq 2.2, in powers ofc shows that the virial expansion29 is
equivalent to the Bragg-Williams theory (at low concentrations)
with ν-1 ) w/(kBT). Thus kBT/ν is independent of the
temperature. Note that the strength of this attractionw is related
to the critical temperature of the pure surfactant monolayer by
w ) νc-1kBTc ) 2kBTc.
For the semidilute polymer solution, taking only excluded

volume interactions between monomers and assuming an
athermal solvent,V andεp are independent ofT.
We also assume that the interaction between the monomers

and the bare interface is independent of the temperature,
resulting inγ0 ∼ 1/T since the dimensionlessγ0 is rescaled in
units ofkBT. In a similar manner, neglecting the steric effects
between the monomers and the surfactant molecules, and
assuming that the monomer/surfactant interactions are attractive,
weak, and short-ranged, results inR0 ∼ 1/T. Under these
conditionsνεps andc* are independent ofT.
In conclusion, the phase diagram in the simplified case can

be plotted in the (ν, c) plane and is a cut of theglobal phase

diagram (presented in the appendices) plotted in the (ν, c, εp,
νεps, c*) space. The next subsections will present some features
of this simplified case.
3.2. The (ν, c) Phase Diagram.We limit ourselves toν >

0, εp > 0 andεps> 0; ν > 0 corresponds to an attraction between
the surfactant molecules;εp > 0 follows from the assumption
that the polymer is in a good solvent (its excluded volume
parameterV is positive), andεps > 0 can be used without loss
of generality, as was explained in section 2.4. The spinodal
line νs(c) of the mixed surfactant-polymer system is obtained
from the condition

The critical point is the extremum point on the spinodal,
satisfying in addition

Equation 3.1 shows that the spinodal temperatureνs is shifted
upward24 and the region of instability is increased. Physically,
this general effect comes from the indirect attractive interaction
between the surfactant molecules induced by the polymer, and
was already explained elsewhere.22 Here, it is represented by
the term-εp(φs3 + 3φs)/6 in the free energy. It is bigger for
larger values of the surfactant concentrationc becauseφs(c) is
an increasing function ofc. Consequently, the phase diagram
is no longer symmetric aroundc ) 1/2. The shift on the
spinodal and binodal lines is bigger for the large values ofc
and the critical point is shifted to a concentrationcc > 1/2.
In the following, we discuss several limits and try to show

that (except in the low-coupling limit) the position of the special
transition linec ) c* in the (ν,c) plane crucially affects the
phase diagram. This can be checked easily in the limits of very
high and very low surfactant concentration, where the scaling
of the spinodal temperatureνs is analytically derived and
depends on the relative position of the spinodal line with respect
to the special transition line.
3.3. The Limits c f 0 and c f 1. Three cases can be

distinguished in thec f 0 limit of the spinodal line:
1. If c* > 0, the polymer is strongly depleted from the

interface. The shift of the spinodal temperatureνs(c) from the
pure valueνs0(c) is small and scales asνs - νs0∼ c3, whereνs0
) 2c(1 - c) is the pure surfactant spinodal line (no added
polymer).
2. On the other hand, ifc* < 0, the polymer is strongly

attracted by the interface andνs scales asνs ∼ c1/3.
3. In the special case whenc* ) 0, the polymer solution

remains homogeneous. The dominant term in the spinodal
equation also changes andνs scales asνs ∼ c1/2.
The scaling of the spinodal temperature in the limitc f 1

depends similarly on the position of the special transition line
relatively to the linec ) 1. In the following, the other regions
of the phase diagram are considered andν is at least of order
unity.
3.4. The Low-Coupling Limit: νεps , 1. In the case when

νεps is small enough,32 the third term in spinodal equation 3.1
is negligible. The phase diagram is very similar to that of the
pure surfactant monolayer (see Figure 1). The spinodal tem-
peratureνs(c) as well as the binodal temperatureνb(c) can be

a

b

Figure 2. (a) Polymer order parameterφs and (b) polymer surface
excess,Γ̃ ≡ Γ/(cbê) ) φs - 1, as a function of the surfactant coverage
c for εps/εp ) 10 andc* ) 0.5. In (a) the special transition line divides
the region where the polymer is adsorbed (c > c*) from the region
where it is depleted (c < c*). In (b), for homogeneous monolayers of
concentrationsc1 ) 0.29,c2 ) 0.875, andc* ) 0.5, the polymer surface
excess is respectively-0.6, 3, and 0. Due to the convexity of the
curve, for a surfactant monolayer of average concentrationc* demixing
between coexisting regions of concentrationc1 andc2, the surface excess
Γ is positive.

∂
2F

∂c2
) -2ν-1 + 1

c(1- c)
-
εps

2

εp

φs
3(c)

φs
2(c) + 1

) 0 (3.1)

∂
3F

∂c3
) 0 (3.2)
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expanded in powers ofνεps. To second order inνεps, the shift
of the binodal line is identical to the shift of the spinodal line:

For the low-coupling limit, the critical temperature is shifted
upward24 by a factor of order (νεps)2. Note that, to second order
in νεps, the shift is independent of the surfactant area fraction
and the special transition coveragec*. The critical concentration
cc is also shifted upward, but only to third order inνεps:

Another case where the third term in spinodal equation 3.1 is
negligible is whenφs(c) , 1. Here, the polymer is very strongly
depleted from the interface. This occurs, for instance, whenεp
, 1 andc < c*.
3.5. The Strong-Coupling Limit: Large Values of νεps.

We define the strong-coupling limit as the situation when the
spinodal line is strongly shifted upward,νs(c) . 1 and the first
term in spinodal equation 3.1 is negligible.εps is the only
parameter left in the equation depending on the temperature.
As ν ) (νεps)/εps, the temperature on the spinodal line is
proportional to the parameterνεps and the coefficient of
proportionality εps-1 is obtained from spinodal equation 3.1
rewritten as a fifth order equation forεps depending onεp, c*,
andc (and independent ofνεps):

Whenever eq 3.5 has a unique positive solutionεps, the
approximation of the strong coupling limit is self-consistent
provided thatνεps . εps. This is the case forc g c*. On the
other hand, when the polymer is depleted from the interface
(corresponding toc < c*), there is a minimal value ofc for
which eq 3.5 has a positive solution. Indeed, a sufficient
condition for eq 3.5 not to have any positive solution is:

This implies that, in a system where condition 3.6 is respected
for the largest physicalc value,c) 1, the strong-coupling limit
cannot be defined and the critical temperatureνc is necessarily
of order unity.
Whenc* f -∞ or whenεp f 0 (andc > c*), the solution

of eq 3.5 is small,εps, 1. In this situation,νεps of order unity
is enough to ensure thatνs . 1 and

In the strong-coupling limit, the binodal line is also propor-
tional to the coupling parameterνεps. Numerical solution of
eqs 3.1 and 3.2 indicates that the behavior of the binodal line
is simpler than the one of the spinodal line. In particular, if
the strong coupling limit can be defined only over a range of
surfactant coveragec (for instance, when the special transition
line intersects the phase diagram), then the binodal line is found
to be proportional toνεps for all values ofc (except for the
limiting values c f 0 or for c f 1). Figure 3 shows the

dependence of the binodal temperature on the special transition
valuec*, at a fixed value of the polymer interaction parameter
εp. Lower values of the special transition coveragec* cor-
respond, for a fixed couplingνεps, to a higher binodal temper-
ature.
3.6. High Polymer Flexibility, Ep , 1; Possibility of a

Triple Point. As was explained in section 2,εp is likely to be
very small for a semidilute polymer solution. Whenεp , 1,
the strong-coupling limit is obtained forc > c* (as was
explained in section 3.5) and the polymer is strongly adsorbed
at the interface (see Figure 3). On the other hand, forc < c*,
the polymer is depleted from the interface and the situation is
a one of low coupling. Consequently, the features of the phase
diagram are particularly sensitive to the position of the special
transition line: whenc* > 1, the phase diagram is very close
to the one of the pure surfactant monolayer (see Figure 1), while
for c* < 0 the spinodal line is given by eq 3.7 and the binodal
temperature is strongly shifted upward. When the special
transition line intersects the phase diagram, there is a competition
between the two types of phase behavior. In section 3.5, it was
mentioned that the phase diagram of the strong coupling is
dominant in that situation.
More precisely, an expansion of the free energy in powers

of εp/εps shows that, forc> c*, F(c) = -1/6(εps3/εp2)(c- c*)3,
while for c < c*, it yields F(c) = Fs(c). Figure 4a shows a
plot of the free energy in a case where this sudden decrease of
F(c) for c > c* is particularly well defined. Whenc* > 1/2,
the binodal line of the pure surfactant monolayer can be obtained
with a common tangent construction (in the range of temper-
atures where the two coexistence concentrations are lower than
the special transition coveragec*). However, it corresponds
to a metastable state. There is yet a second pair of coexisting
concentrations which leads to an even lower free energy.
When 0< c* < 1, the phase diagram of the strong-coupling

limit predominates over the one of the pure surfactant mono-
layer, while for c* > 1 this is not the case anymore. For
physical values of the parameters, the transition between the
two regimes, occurring aroundc* ) 1, is smooth. In some
situations, the two pairs of coexisting concentrations mentioned
above are stable and correspond to two first-order phase
transitions, as is shown in Figure 4b. The total phase diagram
exhibits two critical points and one triple point. An example
of such a phase diagram with a triple point is presented in Figure

νs(c) - νs
0(c) ) νb(c) - νb

0(c) ) 1
4εp

(νεps)
2 (3.3)

cc - 1/2) 1

8εp
2
(νεps)

3 (3.4)

4( εp

c(1- c))2 + ( c- c*
c(1- c))2 εps2 - 4

c- c*
c(1- c)

εps
3 -

εps
4 -

(c- c*) 3

εp
2c(1- c)

εps
5 ) 0 (3.5)

c* - c> ( 11

1350+ 210x42)
1/4xεp = 0.2524xεp (3.6)

νs(c) ) νεps(c- c*) 1/3[c(1- c)]1/3εp
-2/3 (3.7)

Figure 3. Value of εps-1 on the binodal line in the strong-coupling
limit (independent onν) for c* ) 0 (dashed line),c* ) 0.5 (dotted
line), andc* ) 0.8 (full line) at a fixed value of the polymer interaction
parameterεp ) 0.1. The binodal temperatureν is directly related to
εps-1 by ν ) (νεps)εps-1. Whenc* decreases, the polymer interacts more
favorably with the interface and its effect on the phase diagram of the
surfactant monolayer is stronger: the binodal temperature increases.
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5. In Figure 6 we show for the same set of parameters three
typical isotherms plotted in the reduced surface pressureΠ -

reduced area per surfactant plane. The reduced surface pressure
is defined by rescaling the actual surface pressure (i.e., the
difference between the bare water/air surface tension and that
of ther surfactant monolayer) byA0ν/kBT, resulting in the relation
Π ) νc2 ∂(F/c)/∂c. Depending on the temperature, the isotherms
can have zero, one, or two plateaus corresponding respectively
to zero, one, or two coexisting regions.

4. Discussion

In order to derive our model, we assumed several simplifying
assumptions. The expression for the surfactant free energyFs
does not take into account the surfactant hydrophobic tail
degrees of freedom. The coupling between the tail conforma-
tions and the concentration of the surfactant molecules becomes
crucial at high surfactant densities and can lead to a rich phase
behavior,26,27which was not addressed here. We consider here
only the dilute phases of surfactant monolayers: the gaseous
phase at low densities and temperatures, the liquid-expanded
phase at higher densities, and the condensation transition
between them.28

Another limitation of the model comes from our mean-field
treatment of the polymer free energyFp. The assumption that
the polymer solution is semidilute may break down close to
the interface if the polymer strongly adsorbs. Our approach
assumes thatcp(z)0) , 1 or equivalentlyλ , F, whereF is
the volume fraction of the monomers in the bulk andλ ) εps(c
- c*). The coupling termFps should be regarded as the first
term in an expansion. A more precise study should take into
account higher order terms, particularly in the surfactant
concentrationc.
For water-soluble polymers, hydrogen bonds play an impor-

tant role because of the strong polarity of water molecules and
more refined expressions forFp andFps should be used. For
example, the phase diagram of water-soluble polymers like poly-
(ethylene oxide) (PEO) exhibits closed loops of immiscibility
and the definition of good solvent conditions is somewhat
vague.3

We are not aware of many experiments performed on
adsorption of polymers on a Langmuir monolayer, which will
allow a direct comparison with our results.7 Interesting

a

b

Figure 4. Free energyF as a function of the surfactant concentration
c at the interface forν ) 0.48,νεps ) 1, c* ) 0.95. In (a)εp ) 0.02
and in (b)εp ) 0.1. The common tangent construction is shown by
thin lines, and the coexistence values are shown by circles. In (a), in
the region 0< c < c*, the plot is similar to the case of the pure
surfactant monolayer. The corresponding coexistence region, 0.33e
c e 0.67, is only metastable, since it is contained in the second
coexistence region 0.11e c e 1.0. In (b), both coexistence regions
0.31e c e 0.72 and 0.83e c e 0.99 occur.

Figure 5. Phase diagram of the surfactant monolayer forc* ) 0.95,
εp ) 0.1, andνεps ) 1. The two-phase region labeled A+B ends at
the critical point: νc ) 0.51,cc ) 0.50. The second B+C critical point
is located atνc ) 0.53,cc ) 0.94. All three two-phase regions, A+B,
A+C, and B+C, join at a triple pointsν ) 0.46, cA ) 0.25, cB )
0.79, andcC ) 0.99swhere all three phases (A, B, and C) coexist.
Critical points are shown by a dot.

Figure 6. Isotherms for the surfactant monolayer. The reduced surface
pressureΠ ) νc2 ∂(F/c)/∂c is plotted versus the reduced area per
molecules 1/c- 1) A/A0 - 1 on a logarithmic scale.A0 is the close-
packing area andF is the total free energy as defined in the text. Three
typical isotherms are shown for three different temperatures:ν ) 0.56
(dotted line, no phase transition);ν ) 0.52 (dashed line, one phase
transition); ν ) 0.49 (full line, two phase transitions). The other
parameters are identical to the ones of Figure 5.
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polymers that can be used experimentally to test our theory
are hydrophobically modified water-soluble polymers (HM-
WSP).6,8-11 Theseassociatingcopolymers are attracted by the
bare interface because of short hydrophobic side chains, attached
covalently to the main chain. By adjusting the number and the
length of the side chains, one can directly modify their surface
affinity. In our model it corresponds toγ0, the parameter of
interaction between the polymer and the bare surface.
Figure 7 shows two different kinds of interaction between

the monomers and the interface. In (a), monomers interact with
the interface through any kind of short-ranged interaction: either
attractive or repulsive. In (b), the attraction of HM-WSP
polymers towards the interface is illustrated: one of the aliphatic
side chains of a HM-WSP polymer is in a low energy state in
the air subphase. The monomers of the main chain covalently
bound to this aliphatic group are consequently attracted in the
region of the interface.
The HM-WSP polymers can be used to study systematically

the dependence of the phase diagram on the special transition
concentrationc* (as well as on the coupling parameterεps),
including the interesting situation where the special transition
line intersects the phase diagram (0< c* < 1) because the
polymer is repelled from the surfactant molecules (R0 < 0).
The surfactant can be chosen as nonionic, with a polar head
(hydrophilic) identical to the monomers, resulting in a repulsion
between the “brush” (formed by the polar heads) and the
polymer (water being a good solvent for both).22,29 The resulting
coupling parameterεps is negative and the triple point occurs
for values ofc* close to zero and not close to unity as whenεps
> 0 (Figure 5). However, such polymers usually have a
complicated behavior in the bulk and their self-assembly
properties may be crucial. Another possible candidate for
experiments may be a polymer with a “simpler” behavior in
water, like PEO, having a surface affinity.33 Probably here one
needs to treat more explicitly the hydrogen bonds.
The parameters in the model can also be tuned by changing

the surfactant characteristics. Pentadecanoic acid, for example,
whose gaseous to liquid expanded transition has already been
studied by several authors,34,35 can probably be an interesting
surfactant to use.
In a previous work,22 several phase diagrams for the mixed

polymer-surfactant system have been proposed from qualitative
and general arguments. The proposed phase diagrams exhibit

the special transition line for the polymer (c ) c*) and the
coexistence line for the surfactant molecules, but the interaction
between these two lines was not treated in detail. Our results
suggest that the position of the special transition line has a very
strong effect on the position of the coexistence line. Reference
22 also predicted aΘ line separating a region where the polymer
segregates from the surfactant from a region where the polymer
and surfactant are mixed together. Our mean-field model does
not address directly this prediction since we have only one
minimum of the polymer surface valueφs as a function of
surfactant coveragec (see eq 2.9), and we assume that the
polymer solution is homogeneous in the directions parallel to
the interface as long as the surfactant monolayer is homoge-
neous.
From our study it seems that theΘ line of ref 22 and the

coexistence line are the same: regions of different concentra-
tions for the polymer correspond to regions of different
concentrations for the surfactant. The polymer can be attracted
to the interface and segregates from the surfactant only if it is
attracted by the bare interface but repelled by the surfactant
molecules. This situation is driven by energy terms which are
first order in the polymer concentration (see eq 2.7) and is
consequently different from the one predicted in ref 22. It will
be interesting to understand in a detailed way this discrepancy,
especially for 0< c* < 1, where the coupling between the
special transition and the surfactant phase diagram leads to the
richest variety of phenomena.

5. Conclusions

We addressed in detail the adsorption of a semidilute polymer
solution on a surfactant monolayer and the resulting phase
diagrams. In our model, the most important degree of freedom
is the local concentrationc of surfactant at the interface. Since
the monomers interact with regions of different concentrations
with an energy proportional toc - c* (c* is the concentration
at thespecial transition), a rich variety of phenomena results
from the coupling between the polymer solution and the
surfactant monolayer. The polymer surface excess is enhanced
and the phase diagrams of the surfactant monolayer are
modified. The monomers induce an additional indirect attraction
between the surfactant molecules depending on the concentration
of surfactant on the interface. Consequently, the range of the
homogeneous region in the phase diagram decreases. When
the monomers interact more favorably with the surfactant
molecules than with the bare interface, the critical concentration
itself increases.
The value of the special transition coveragec*, describing

the interaction of the monomers with the surfactant molecules
relative to their interaction with the bare water/air interface, has
a major effect on the phase diagram of the surfactant monolayer.
When the monomers are repelled by the surfactant molecules
as well as by the bare interface (for instance,εps > 0 andc* >
1), the phase diagram is not very different from the one of a
simple surfactant monolayer without polymer in the water
subphase. On the other hand, when the monomers are attracted
by the surfactant molecules as well as by the bare interface (for
instance,εps > 0 andc* < 0), the increase of the two-phase
region can be important. In the intermediary situation when
the polymer is attracted to the interface or depleted (0< c* <
1), these two scenarios are in competition leading to a rich phase
behavior and, in some cases, the phase diagram displays two
critical points and one triple point (as in Figures 5 and 9k).
Finally, we mention two possible extensions of the present

study. The first is to consider the situation of soluble surfactants
and to take into account the complex surfactant-polymer

Figure 7. Two different kinds of interaction between the monomers
and the interface. In (a), monomers interact with surfactant molecules
either attractively (for instance, as a consequence of favorable van der
Waals interactions) or repulsively (if, on the contrary, water is a good
solvent for both molecules, and the surfactant heads act as a polymer
brush). In (b), an associating polymer is shown; the hydrophobic
subchains tend to dispose themselves in the air subphase and conse-
quently attract the polymer chain close to the interface. (Adapted from
ref 22.)
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interactions in the bulk. Interesting experimental results have
been obtained for such systems.11 Moreover, our model can
easily be adapted to mixed monolayers with two components.
Such binary mixtures have been shown to exhibit immiscibility
at room temperature, (e.g., for cholesterol and dimyristoylphos-
phatidylcholine (DMPC)36,37). The understanding of the features
of this phase transition may help to understand interactions of
polymers with flexible membranes (lipid bilayer) and the
phenomenon ofbuddingof membranes.1,2,38,39
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Appendix A: The Spinodal Equation

The general equation of the free energy of the system, as
was derived in section 2, is

If we do not assume any specific temperature dependence for
ν, εp, εps, andc*, the global phase diagram has to be studied in
the five-dimensional space ofν, εp, εps, c*, andc. The binodal
and the spinodal surfaces are four-dimensional hypersurfaces
in this five-dimensional space. We shall consider both positive
and negativeν. It is worthwhile to investigate the spinodal
surface because it can be done analytically, and it roughly
describes the phase separation region, since the spinodal surface
lies always within the coexistence region. The surface of
instability (spinodal surface) also indicates the locations of
possible critical points. For fixed values ofεp, εps and c*,
spinodal equation 3.1 describes cuts of the spinodal surface by
the curveν-1 ) ν-1(c)

It is interesting to look also at other cuts of the parameter space
beside the (ν-1,c) direction. An analytical expression can also
be found in the (εp,c) direction (but not for the other interaction
parameters).
Defining u as

we note thatu ) 0 for both the special transition line and the
spinodal line of the noncoupling case (F(c) ) Fs(c)). From
spinodal equation A.2 it follows that, ifεp is a solution of the
spinodal equation 3.1,εp2 is the solution of a bi-quadratic
equation:

Alternatively, it can be shown that, ifεp is a solution of (A.4),
then, eitherεp or -εp is a solution of spinodal equation 3.1. As
the polymer is supposed to be in good solvent conditions, we
disregard negative solutions of the spinodal equation forεp. The

second order equation forεp2 (eq A.4) may have either only
one real solution or even no real solution at all, depending on
its discriminant. Furthermore, only positive solutions should
be taken into account, sinceεp2 > 0. All these considerations
give several bounds to the possible values ofu and λ. The
roots of bi-quadratic equation A.4 are

Whenâ+ is real and positive, only one solution of the spinodal
equation exists: eitherεp ) xâ+ or εp ) - xâ+. We shall
consider this solution only in the case when it is positive. The
same can be said forâ-.
Defining u0 ) -3 + x8 = -0.1716, we separate three

cases for the roots of eq A.4 given by eq A.5:
1. Foru > 0, â+ is real and positive (whileâ- is negative

and, therefore, irrelevant). Hence, there is only one solution
for εp.
2. Foru0 e ue 0, â+ andâ- are both real and positive (for

u f 0, â- f 0). Hence, there are two solutions forεp.
3. Foru< u0, neitherâ+ norâ- is real and positive. Hence,

there is no physical solution forεp.
Onceεps andc* are fixed,εp is a function ofν andc. It is

instructive to identify the domains in the (ν,c) plane where
spinodal equation 3.1 has zero, one, or two real solutions. This
requires locating the linesu ) 0 andu ) u0. Depending on
the values ofεps andc*, two different situations are identified
and shown in Figure 8. In particular, it can be seen in Figure
8b that, for 1/2< c* < 1, there can be a range of values for
ν-1 where cuts of the spinodal surface in the plane (εp,c) are
disconnected (ifεps is below a certain critical value). For
instance, in Figure 9j (1/2< c* ) 0.86< 1), a cut of the phase
diagram atν0-1 < ν-1 ) 1.8< ν1-1 is presented. The spinodal
line is defined for two disconnected regions of concentration:
one centered aroundc ) 0.6 and one at higher concentrations.

Appendix B: The Global Phase Diagram

The phase diagram for the surfactant monolayer, including
the surfaces of instability and coexistence, is presented in the
three-dimensional parameter space ofν-1, εp, and c through
several cuts in two dimensions (εp andc), while fixing the other
two parameters,εps and c*. We first discuss some general
features of the phase diagram, starting with the simple case of
noeffectiVecoupling between the polymer and the interface (εps
) 0; F(c) ) Fs(c)) as a reference point. The dependence of
the phase diagram on the position of the special transition line
is then studied, and the phase diagrams are presented for the
casesc* < 0, c* > 1, and 0< c* < 1.
When there is noeffectiVe coupling between the polymer

solution and the surfactant monolayer,εps ) 0 and the special
transition line is not defined. The concentration of the polymer
at the interface depends on the strength of the interaction
between the monomers and the interface,R0 ) γ0 ) λ. The
phase separation in the monolayer was explained in section 2.1,
and all its features are independent on the polymer parameter
εp. In the plane (ν-1,c), the lineν-1 ) 1/[2c(1 - c)] delimits
the unstable region (see Figure 8). From eq A.2 it appears that
as soon as there is a nonzero effective coupling, the line of
instability occurs for smaller values ofν-1. This means that
the coupling enlarges the region of instability of the homoge-
neous state. Consequently, the dark shaded region inside the
line ν-1 ) 1/[2c(1 - c)] in Figure 8 is always a zone of
instability, for any value of the parametersεp, εps, andc*. When
εp is big, the polymer “stiffness” induces the polymers in

F ) ν-1c(1- c) + c log c+ (1- c) log(1-c) -
εp

6
(φs

3 + 3φs - 4) (A.1)

2ν-1 ) 1
c(1- c)

-
εps

2

εp

φs
3

φs
2 + 1

(A.2)

u) c- c*
εps

( 1
c(1- c)

- 2ν-1) (A.3)

4u2εp
4 - λ2(1+ 4u- u2) εp

2 - λ4u) 0 (A.4)

â( ) λ2

8u2
(1+ 4u- u2 ( (u+ 1)x1+ 6u+ u2) (A.5)
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solution to be uniform, and the coupling acts as a chemical
potential having a value (1/2)εps, as can be seen from eq 2.10
(after expandingφs to first order in powers ofεp-1). In this
limit, the properties of the phase separation are the same as in
the noncoupling case. Considering the cuts of the phase diagram
in the direction (εp,c) for εps) 0, there are two different regions
of the parameter space: (1) the regionν-1 < 2, where there is
no instability and no phase separation, and (2) the regionν-1

> 2, where there is a phase separation.
Figure 9a shows the spinodal and the binodal lines forν )

2.31. Both lines are vertical because the properties of the phase
transition are independent ofεp, as was already explained above.
In the limit ν-1 f 2, the phase diagram reduces to a line of
critical points parallel to theεp axis atc ) 0.5. The coupling
results in a deformation of the line of critical points and enlarges
the phase coexistence region. The cuts of the phase diagram
in the direction (εp,c) for ν-1 < 2 are topologically very different
from the cuts obtained forν-1 > 2, because the latter necessarily
contain the region of instability of the noncoupling situation
(even for large values ofεp), while, for the former, large values
of εp necessarily correspond to domains of stability of the
monolayer.
We first discuss the cases where the special transition linec

) c* does not intersect the parameter space (c* < 0 or c* >
1). The phase diagrams are constructed by numerical solution
of eqs 3.1 and 3.2.

B.1. The c* < 0 Case. When both the surfactant and the
interface attract the monomers, two situations can occur: ifR0

> γ0 > 0, thenεps > 0 andc* e 0. But if γ0 > R0 > 0, εps <
0 andc* g 1. However, as was explained at the beginning of
section 2.4, these two situations can be mapped onto each other.
Therefore, we concentrate here on the caseεps> 0 andc* e 0.
The only relevant solution of the spinodal equation forεp is
thenεp ) + xâ+, defined outside of the region of instability of
the noncoupling case. Whenεp is big, the polymer stiffness
enforces the polymer solution to be uniform,φs = 1, and the
monomers exert a strong uniform attraction on the surfactant
molecules.
For ν-1 < 2, there is a phase separation, provided thatεp is

small enough. This is shown in Figure 9b, where it can be
seen that the spinodal and the binodal lines join at a critical
point. Whenν-1 is changed, the basic topology of the binodal
and spinodal lines remains unchanged. But, in the limitν-1 f
2-, close to the region where a phase separation occurs even
without a coupling, the value ofεp at the critical point increases.
Moreover, the critical concentration tends to the value of the
noncoupling casec ) 1/2 (becauseεp at the critical point is
large). If, on the other handν-1 decreases, the value ofεp at
the critical point decreases and the critical concentrationcc
increases,cc f 1 whenν-1 f -∞.
For ν-1 > 2, the phase diagram is presented in Figure 9c.

There is no critical point because the phase separation occurs
for all values ofεp. For εp f 0, the effects of the coupling
between the monomers and the surfactant molecules are the
strongest: the polymer is strongly attracted to the interface,
particularly in the regions dense in surfactant. As a result, the
surfactant molecules aggregate with a close-packing coverage
c ) 1.
B.2. Thec* > 1 Case. The opposite situation happens when

both the surfactant and the bare interface repel the monomers.
As explained above, it is enough to consider onlyεps > 0 and
c* g 1. In this situation, the functionν-1(c) defined by the
line u) u0 in the plane (ν-1,c) (see Appendix A) has a minimum
ν0-1 < 2, which is a function ofεps andc*. Whenν-1 < ν0-1,
thenu < u0. The spinodal equation has no solution and the
homogeneous monolayer state is stable. Forν-1 > ν0-1, from
a topological point of view, the spinodal surface is deformed
for intermediate values ofεp. Whereas for large values ofεp
the polymer remains stiff and the properties of the phase
transition are those of the noncoupling case, for small values
of εp the repulsion of the interface is dominant. The polymer
is strongly depleted and the coupling has no effect.
The cuts of the phase diagram in the direction (εp,c) have

the following features:
1. Forν0-1 < ν-1 < 2 the phase diagram has a closed-loop

immiscibility curve with an upper and a lower critical points
as shown on Figure 9d. Whenν-1 f 2-, the upper critical
point tends to∞ and the lower one to 0, whereas whenν-1 f
ν0-1, the domain of instability becomes very small.
2. For ν-1 > 2, there is a phase separation, whose

characteristics differ from the one of the noncoupling case only
for intermediate values ofεp. An example of such a case is
presented in Figure 9e.
The line of critical points has only, for intermediate values

of εp, a small distortion with respect to the straight line of the
noncoupling case. One consequence is that there is a maximal
value for the critical concentration. Whenc* is increased, the
repulsion from the interface increases and the phase diagram
resembles the noncoupling case, even at intermediate values of
εp.

Figure 8. Regions of definition of the spinodal hypersurface in the
plane (-ν-1,c) for (a) εps) 1 andc* ) 0.8, (b)εps) 1 andc* ) 0.95.
The full line is theu ) u0 line defined in Appendix A. The curved
dashed line is the line of instability for the noncoupling case: 2ν-1 )
1/[c(1 - c)]; the vertical dashed line is the linec ) c*. The region
where only the solutionâ+ is real and positive and generates a positive
solutionεp to the spinodal equation is lightly shaded, while the region
where both solutionsâ+ andâ- are real and positive and generate a
positive solutionεp is hashed. The dark shaded region is the zone where
the surfactant monolayer is always unstable. The region above the
full line (u) u0) is a zone where neitherâ+ norâ- is real and positive.
In (b), theu ) u0 line has two extrema atν ) ν0 andν ) ν1.
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B.3. The 0 < c* e 1 Case. We turn now to the more
complex case where the special transition line intersects the
physical range of parameter space (0< c < 1). The situation
for 0< c* < 1/2 is rather simple, the two typical phase diagrams
are shown in Figure 9f (forεps < 2) and 9g and (forεps > 2).
They resemble thec* < 0 case. However, for 1/2< c* < 1,
depending on the value of the coupling parameterεps, the
competition between the different terms in the free energy leads
to a large variety of possible phase diagrams. An example of
a phase diagram with a reentrant phase is presented in Figure
9h. In Figure 9i yet another type of phase diagram is presented

where a second metastable region resides inside the two-phase
region. In some cases, as was suggested at the end of Appendix
A, the phase diagram appears as if it is composed of two
disconnected parts (those are cuts obtained forν0-1 < ν-1 <
2). An example is given in Figure 9j. Note that for 2< ν-1 <
ν1-1 the spinodal surface is disconnected while the binodal
surface is connected, since at very low values ofεp a phase
separation always occurs between very dense (c = 1) and very
dilute (c = 0) regions (forc* < 1), as is explained below. In
the three dimensions (εs,εp,c), the phase diagram is always
connected: whenν-1 is increased the disconnected parts of the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 9. Cuts of the phase diagram in the (εp,c) plane. The full lines represent the binodal surface, while the dashed lines represent the spinodal
surface. Critical points are shown by a dot. (a)ν-1 ) 2.31 andεps ) 0; this plot shows the reference situation of the noncoupling case. The next
plots illustrate the text of Appendix B, in the three casesc* e 0, c* g 1, and 0e c* e 1. In (b) to (j) εps ) 1. (b) ν-1 ) 1 andc* ) -1; (c)
ν-1 ) 2.2 andc* ) -1; (d) ν-1 ) 1.95 andc* ) 2. This plot shows a closed-loop phase diagram. (e)ν-1 ) 2.2 andc* ) 2. Theεp scale in this
plot is logarithmic for convenience. (f)ν-1 ) 1 andc* ) 0.3; (g) ν-1 ) 2.2 andc* ) 0.3; (h) ν-1 ) 1.8 andc* ) 0.84. This phase diagram
displays a reentrant phase. (i)ν-1 ) 2.1 andc* ) 0.84. Theεp scale in this plot is logarithmic for convenience, and the shaded region corresponds
to the metastable states. (j)ν-1 ) 1.8 andc* ) 0.86. This plot shows a disconnected phase diagram. In (k)ν-1 ) 2.1,εps ) 2.1, andc* ) 0.95.
A first two-phase region A+B extends to infinite values forεp; the second two-phase region ends at a critical pointcc ) 0.90, (εp)c ) 0.16; all three
two-phase regions, A+B, A+C and B+C, join at atriple pointsεp ) 0.06,cA ) 0.30,cB ) 0.70, andcC ) 0.99swhere all three phases (A, B,
and C) coexist.
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phase diagram meet and this may result in the appearance of a
triple point for a range of values forεs (an example is shown in
Figure 9k). These triple points occur only for a small range of
values forεp, typically, for εp = 0.1.
Note that in all these phase diagrams (Figure 9f-k), the

binodal line at low values ofεp always ends atc ) 0 andc )
1. It can be understood since for low values ofεp, regions of
surfactant concentrationsc < c* (and outside of the region of
instability of the noncoupling case) are not unstable because
they repel the monomers, and the coupling consequently does
not have any effect. The free energy is unchanged as compared
to the noncoupling case. However, it is strongly modified for
c > c*, as has been explained in section 3.6 and is shown in
Figure 4a. The common tangent construction results in a couple
of stable coexistence points (c = 0, c = 1). Therefore, the
regions of surfactant concentrationsc < c* (and outside of the
region of instability of the noncoupling case) are metastable.

Appendix C: The Critical Point

It is possible to obtain analytical results for the critical point,
by solving simultaneously eqs 3.1 and 3.2 for the two
unknowns: the critical concentrationcc and the critical tem-
perature.
C.1. Bounds on the Critical Concentration. In general,

no analytical expression for the critical concentrationcc exists
but we derive an analytical expression for an upper bound.
Equation 3.2 can be rewritten as a third order equation forφs

2:

where the coefficientf(c) is defined as

We denotec1 as the value of the surfactant concentration for
which f(c) diverges. A careful study of eq C.1 shows thatf(c)
< 0 and yields a nonanalytical solution forφs and consequently
for cc. It can also be shown that 1/2< cc < c1. From its
definition,c1 is the solution of a fourth order equation and has
a (complicated) analytical expression as an odd increasing
function of εps3/εp2. For εps3/εp2 ) 0, c1 ) 1/2, and whenεps3/
εp
2 f ∞, c1 f 1.40

C.2. The Critical Point in the Strong-Coupling Limit.
Hereafter we concentrate on the specific case of the strong-
coupling limit, whereν-1 can be neglected in spinodal equation
3.1

Taking the polymer order parameterεp and the special transition
c* as known parameters, the characteristics of the critical point
can be determined by solving a system of three equations
(spinodal equation C.3, eq 3.2, and the definition ofφs (eq 2.9))
with three unknowns: the concentration of surfactantc, the
temperature appearing throughεps, andφs (which has been added
for mathematical convenience). First, bounds on the critical
concentration are obtained, depending only on the special
transition concentration. then, a method of determination of
the critical concentration is discussed. Using eq C.3, eq 3.2
can be rewritten as a second order equation forφs

2.
As there is at least one real and positive solution to this

equation, a bound on the value of the critical concentration,

depending only on the special transition concentrationc* is
obtained (Figure 10).
For c* e 0:

For 0e c* e 1:

For c* > 1:

For c* ) 0, this bound is 0< cc < 2/3. Therefore, if the
effective coupling parameterεps is positive, we know that the
critical concentration obeys 1/2< cc < 2/3.
The second order equation forφs2 can be rewritten as a second

order equation for the critical concentrationcc, depending on
the special transition c* and on the concentration of monomers
at the interfaceφs:

The study of this equation shows the following:
For c* ) 0 or c* ) 1, it reduces to a first order equation.
For c* < 0,

φs
6 + 3φs

4 + 3f(c)φs
2 + f(c) ) 0 (C.1)

f(c) ) 1- 2c

(1- 2c) + c2(1- c)2εps
3/εp

2
(C.2)

φs
2 + 1) εps

2
φs

3 c(1- c)
εp

(C.3)

Figure 10. Range of critical concentrationcc as a function only of the
special transition concentrationc* in the strong-coupling limit; shown
inside the shaded region.

1- c* - xc* 2 - c* + 1e cc e (1/3)[(c* + 1)+

xc* 2 - c* + 1]

(1/3)[(c* + 1)- xc* 2 - c* + 1] e cc e (1/3)[(c* + 1)+

xc* 2 - c* + 1]

(1/3)[(c* + 1)- xc* 2 - c* + 1] e cc e 1- c* +

xc* 2 - c* + 1

[4 - 3(φs
2 + 1)2]cc

2 - 2[2- (1+ c*)(φs
2 + 1)2] cc -

c*(φs
2 + 1)2 ) 0 (C.4)

cc ) c- ≡ [2- (1+ c*)(φs
2 + 1)2 -

x(φs2 + 1)4(c* 2 - c* + 1)- 4(φs
2 + 1)2 + 4]/[4-

3(φs
2 + 1)2]
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For c* > 1,

For 0< c* < 1, the situation is more complicated. It can be
shown, in particular, that there is a minimum for the concentra-
tion of the monomers at the interface at the critical point. This
minimal value always corresponds to a situation of depletion
for the polymer solution. It can also be shown that in some
situations, whenεps > 0 and 1/2< c* < 1 or symmetrically
whenεps < 0 and 0< c* < 1/2, the solutionsc- andc+ may
be relevant: this accounts for the possibility of two critical
points. The definition ofφs (eq 2.9) can be rewritten as

εps can be eliminated from spinodal equation C.3 by using its
expression obtained from eq C.5. On the other hand, the
concentration can be substituted by using its expressionc-(φs,c*)
or c+(φs,c*). One is left with a high order polynomial equation
for φs depending only on the special transition concentration
c* and the polymer interaction parameterεp. Once this equation
is numerically solved, the other characteristics of the critical
point (concentration, temperature) are easily obtained as simple
function ofφs. In particular, once the critical concentration is
known, the criticalεps, hence the critical temperature, is obtained
from eq C.5.
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cc ) c+ ≡ [2- (1+ c*)(φs
2 + 1)2 +

x(φs2 + 1)4(c* 2 - c* + 1)- 4(φs
2 + 1)2 + 4]/[4-

3(φs
2 + 1)2]

φs
2 - 1)

εps

εp
φs(c- c*) (C.5)
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