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We investigate the distribution of polyelectrolytes in solution between two charged walls.
Such a situation arises, for example, in colloidal suspensions where the polyelectrolytes affect
both the aggregation and the stability of the colloidal particles. We consider the case of
a good solvent, i.e. in the presence of excluded volume interactions among the monomers.
The system is confined between two infinite flat charged walls, making the problem effectively
one dimensional. The polyelectrolytes are weakly charged, and several models for the charge
distribution are considered. We use a mean field approach to derive two coupled differential
equations: a modified Poisson-Boltzmann equation for the electrostatic potential, and a self
consistent field equation for the polymer concentration. The equations are solved numerically.
As an example we present a case of competing surface interactions: electrostatic attraction
vs. chemical repulsion resulting in a non-monotonic concentration profile. We discuss also the
difference between a polymer with a uniform “smeared” charge and one in which the charges
are annealed and can redistribute themselves at thermodynamical equilibrium.
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We consider an aqueous solution containing charged polymers (polyelectrolytes) and small ions
(electrolyte) between charged surfaces (Fig. 1). The polymers are positively charged, while the
surfaces can be either positive or negative. In addition to electrostatic interactions, we consider
excluded volume repulsion between the monomers, and short range (chemical) interactions of

the monomers with the surfaces, which can be either attractive or repulsive.
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Figure 1: Schematic view of the system.

The motivation for such systems comes from two main sources. The first related system is a
colloidal suspension [1, 2, 3], that is, solid particles immersed in an aqueous solution. Polymers
may be added to the solution in order to modify the inter-colloidal forces. Some processes,
such as waste water treatment and mineral processing, require attraction between the colloids,
while other processes, such as ink and paint stabilization, require repulsion [3]. Another related
system is a biological one in which proteins (charged macromolecules) affect the interactions
between lipid bilayer (biological membranes).

The electrostatics of an electrolyte solution between two flat and charged surfaces has been
investigated extensively in the frame work of the Gouy—Chapman theory [4], whose starting
point is the Poisson—Boltzmann equation. On the other hand, the adsorption (depletion) of
neutral polymers to (from) one surface and between two surfaces has been also investigated
thoroughly, and good understanding was reached [5, 6, 7]. The combination of electrostatic
interactions, together with the connectivity of the polymer chain [8], proves to be a complex
problem due to the interplay between the short range “chemical” interactions, the polymer
conformations (entropy) and the long range (though often screened) electrostatic interactions.



We describe the system in a mean field approach through the local electrostatic potential
¥ (7) and the polymer order parameter ¢(7), related to, p(7), the polymer concentration by
(7)) = ¢2(F) [10, 11, 12].

The electrostatic potential is determined by the Poisson-Boltzmann equation. For a mono-

valent electrolyte solution assumed here it can be written as:
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where ¢(7) is the charge density determined by the Boltzmann distribution for ions in an electric
potential 1(7); ¢, is the bulk electrolyte concentration, 8 = 1/kgT where kp is Boltzmann
constant and 7 is the temperature; e is the elementary charge unit, and ¢ is the dielectric
constant of the solution. Charged polymers and their counter-ions will appear as additional
terms on the right hand side of equ. (1).

One way of deriving the Poisson-Boltzmann equation is by writing the free energy as a
sum of the electrostatic and entropy of mixing contributions, and then performing a variational
procedure [13, 14]. The advantage of this approach is that one can also add the polymer
contribution to the free energy and perform the same variational procedure on the total free
energy.

At the surfaces, the electrostatic boundary conditions are chosen as fixed surface charge
density o: 9’|, = —4?”0 . In a similar way, and depending on the system in mind, one can
also choose fixed surface potential as the electrostatic boundary conditions. The effect of the

surfaces is screened on a length scale of the Debye—Hiickel screening length x=1

(proportional
to1/ ci/ %), due to the presence of the electrolyte.
For a semidilute solution of polymers the local free energy of the system can be described

by [11, 12]:
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The first term represents the connectivity of the polymer chains, where a is the effective length
of one monomer and is roughly of the order of a few Angstroms. The second term represents the
polymer interactions. It includes the electrostatic interaction as well as the excluded volume
repulsion %vgb‘l, where v > 0 has units of volume and is the excluded volume parameter in good
solvent conditions. The last term represents the contact of the system with a polymer reservoir
and p, is the chemical potential of the polymers.

A variation of the free energy yields the self consistent field equation for neutral polymers:
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where ¢ is the bulk polymer concentration. The Edwards correlation length of neutral polymer

solutions, as is apparent from equ. (3), is equal to a/y/3vé? and characterizes the polymer
b

concentration variations in the solution (e.g., close to the wall).



interaction of monomers with the surface:
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The adsorption length D is inversely proportional to the strength of the surface interaction and
is negative (positive) for attractive (repulsive) surfaces.

We return now to the problem of polyelectrolytes where all the contributions to electrostatic
and polymer free energy are included. Details are given elsewhere [13, 14].

The contributions of the polymer charges are computed for three models:

o Smeared: The charges are uniformly distributed (hence the name “smeared”) over the
polymer chains. Each monomer has a fractional charge equal to pe. In this case the

contribution to the free energy is
1) = pdPey (5)

e Annealed: Each monomer has a probability p to carry one elementary charge e (and 1 —p
to be neutral). The monomers can ionize or de-ionize dynamically, and thus adjust to the
local electrostatic potential [9]. Tracing over the monomer charge degrees of freedom in

the partition function results in the following contribution to the free energy:

@) — _kpT¢*log(1 — p + pe 7<) (6)

e Quenched: As in the annealed case, each monomer has a probability p to be charged.
However, the distribution of the polymer charged is “frozen” (quenched). We will not
further discuss here this more difficult case [14] but in many respects we expect this case

to be intermediate between the smeared and the annealed cases.

From a variational procedure performed on the full free energy, two coupled equations for
the electrostatic potential ¢/ and polymer order parameter ¢ can be obtained and will replace
equ. (1) and equ. (3).

In the smeared case, for example, the Poisson—Boltzmann and the self consistent field equa-

tions are modified to become:

dre
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Similar equations have been derived for the quenched and annealed cases [14].



We present two numerical examples of polymer concentration profiles. As our model is effec-
tively one dimensional, the only spatial coordinate left is the distance from the surfaces x whose
origin is taken at the mid-plane between the two surfaces.
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In the first example (Fig. 2) we compare the polymer concentration profiles of the smeared
model (solid line) and annealed model (circles) for three salt concentrations measured in units
of mole/litter [M]. The top two pairs of profiles in the figure correspond to high salt con-
centrations (strong electrostatic screening) while the bottom pair corresponds to a lower salt
concentration (weaker electrostatic screening). Beside the three different values of ¢, all other

phenomenological parameters used to evaluate the profiles are the same (their values are given



polymers with the same adsorption characteristics but which, obviously, is independent of the
salt concentration, cj.
The parameters of Fig. 2 are chosen such that the electrostatic potential is affected only
in a negligible way by the presence of polymers [13]. This can be demonstrated by comparing the
Debye-Hiickel screening length, which varies between 1 7 A and107 A, tothe Edwardscorrelationlengthequalto:
The differences between the smeared and annealed models comes from the electrostatic
contribution to the polymer part of the free energy (Sec. 2). At low charge density (p << 1)

and low potentials (e << 1), one can expand the annealed free energy in powers of Sei:
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Note that the difference between the two free energies is second order in ¢ and makes the
annealed free energy lower than the smeared one. This can be understood simply by observing
that the annealing of the polymer charges adds a new effective degree of freedom to the system.
Those charge degrees of freedom can adjust according to the local electrostatic potential, and

allow a better optimization of the free energy.
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In the second example (Fig. 3) we show the result of a competition between short range
(chemical) repulsive interactions (D > 0) and electrostatic attractive interactions (negative
surface charge). We observe a depletion layer near the surface, whereas at larger distances
the surface induces an effective adsorption. In this case too, the model parameters have been
chosen in such a way so that the electrostatic profile is barely affected by the presence of charged
polymers.

Since the difference between the smeared and annealed models is only minor (see Fig. 3), we
can consider the simpler smeared case. The polymer behavior can be understood by considering
the one dimensional self consistent field equation, equ. (8):
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should be accompanied by a change of sign in the right hand side of equ. (10). Near the surface
the sign of the first derivative of the polymer concentration p(z) (which is the same as the sign
of the polymer order parameter ¢(z)) is determined through the Cahn boundary condition,
equ. (5) by the sign of D. For a depletion case, D > 0 and ¢'(x) > 0 near the left surface. The
electrostatic potential is negative at the negatively charged surface, and decays exponentially on
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4 Conclusions

In this work, we have investigated concentration profiles of charged polymer chains between
two surfaces. We have introduced three models for the charge distribution along the chain.
The simplified smeared model is used extensively in the literature as it is easier to handle
analytically, but the annealed and quenched models provide a more realistic description of
experimental systems. At low electrostatic potentials (fey << 1) the smeared model provides
a good approximation for the annealed model. However, at high electrostatic potentials the
difference between the models become significant (see Fig. 2) and should be taken into account.
Generally speaking, the annealed charges are less sensitive to the electrostatic conditions, as
they can redistribute themselves over the chains according to the local electrostatic potential.
The quenched model is considered in more detail elsewhere [14].

We have also investigated the interplay between electrostatic and other interactions such as
excluded volume effects in the bulk and short-range interactions between the polymers and the
surfaces. In particular, the effect of competing repulsive short-ranged interactions vs. attractive
electrostatic interactions has been explored (Fig. 3). We have also seen that further away from
the wall the electrostatic interactions dominate as long as they are not screened.

Some possible future directions of research can follow the present study. For example, the
osmotic pressure between the two surfaces can be calculated [14] from the local free energy as
was done for neutral polymers [6], and compared with experiments. One might also want to
extend this work to non-flat geometries, in order to improve the modeling of polyelectrolyte
adsorption on colloidal particles. We have considered here fixed surface charge densities, having
in mind charged colloids or surfaces. One can also consider situations where the surface potential
is externally fixed and induces a variable surface charge density. Finally, it will be interesting to

look at polyelectrolyte solutions in a potential gradient (e.g., electrophoresis or electro-osmosis).
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