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Abstract. We investigate equilibrium Shapes of vesicles composed of a mixture of partially
miscible amphiphiles embedded in two- and three-dimensional Space. The amphiphilic molecules

can diffuse within the membrane and undergo an intramembrane phase separation below a critical

temperature. We assume a simple phenomenological coupling between the local relative

composition of the amphiphiles and the local curvature of the membrane shape. A linear stability
analysis in the vicinity of the critical temperature indicates that a shape instability is induced by the

coupling. Using a single mode approximation, we obtained phase diagrams for (I) two-

dimensional vesicles and (iii three-dimensional axisymmetric vesicles. The equilibrium shape
deformations are shown to depend on the phenomenological parameters of our model yielding

highly non-trivial vesicle shapes which deviate from spherical-like objects.

1. Introduction.

Amphiphilic molecules in aqueous solution often self-assemble as bilayer membranes. Those

membranes can form closed objects known as vesicles (liposomes) exhibiting a wide variety of

shapes. Recent theoretical studies using an elastic continuum model have been quite successful

in explaining the shape deformations of real biomembranes such as the biconcave shape of

erythrocytes [1-4]. However, in these works, the membranes are treated as structureless and

homogeneous layers, whereas, real biomembranes are heterogeneously composed of amphi-

philes and intramembrane proteins that can freely diffuse within the membrane.

Motivated by the large complexity of real biomembranes, an increasing number of works

hive recently been devoted to studying shape deformations Qf membranes coupled to their

intemal degrees of freedom. Among others, these include the orientational order of the tilt

angle of amphiphilic molecules with respect to the membrane plane [5], the dual network in

erythrocyte membrane (the lipid/spectrin membrane) [6], the local density of amphiphilic

molecules on the membrane in order to explain the phase transition from L~ or L~ phase to

P~ phase [7], and the intramembrane phase separation of mixtures of amphiphiles [8-18]. In
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addition, computer simulations of two-dimensional vesicles using a microscopic model

regarding amphiphilic molecules as rigid rods (or rigid wedges) have been performed [19].

Let us consider the case of a mixed membrane, composed of two types of amphiphiles, as an

example of a membrane with an additional inplane degree of freedom. Experimentally, it is

known that a lateral phase separation can occur in such a mixed membrane [20]. It has been

reported [21] that the crenated shapes (the echinocytosis) of red blood cells are induced by
either anionic or non-ionic amphiphiles which are intercalated from the solution into the

membrane, while cationic amphiphiles give rise to the phenomenon of in»agination. It has

been proposed [22] that an asymmetric distribution of intercalated amphiphilic lipids between

the two layers of the membrane is at the origin of the crenated and invaginated shape
deformations. Anionic amphiphiles are intercalated preferentially into the outer layer, while

cationic ones are intercalated into the inner layer due to the interaction with the negatively
charged lipid (phosphatidyl-serine) as they are usually concentrated in the inner layer of the

erythrocyte membrane. Such intercalated compounds expand the area of one of the bilayers,
resulting in crenation or invagination. This effect of asymmetrically distributed

«
impurities

»

(different kinds of amphiphiles from original constituents) between the outer and the inner

layers has also been considered theoretically [7-18]. A coupling between the local curvature of

the membrane and the local concentration of intercalated
«

impurities
» can induce both an

inhomogeneous distribution of impurities and a local shape deformation.

In the present work, shape deformations of vesicles composed of two amphiphiles, A and B,

are investigated as well within a coupling between local composition and curvature. We

consider here only the weak A/B segregation limit which is valid in the vicinity of a critical

point. This complements our previous studies [10, 12], where the other limit of strong

segregation between the two amphiphiles was investigated. The organization of this paper is

as follows. In section 2, the general formalism of our phenomenological model is described in

detail. We consider two-component vesicles embedded in two- and three-dimensional spaces.

In section 3, shape deformations of two-dimensional vesicles or equivalently cylindrical
vesicles are investigated in the vicinity of the critical point. In such a situation, both the

amplitude of the shape deformation and the deviation of the local composition from its average

value are small enough so that the free energy can be expanded in a power series in these small

deviations. A linear stability analysis is performed, and an instability of the shape deformation

is found to occur. Phase diagrams calculated within a single mode approximation are

presented. In section 4, shape deformations of three-dimensional vesicles are studied, using
again a linear stability analysis. In addition, phase diagrams are presented for axisymmetric

vesicles. Finally, our concluding remarks are given in section 5.

2. General formalism.

Consider a closed-form membrane (vesicle) consisting of a lipid bilayer. Our formalism

applies to two-dimensional (2d) vesicles represented by a closed contour in 2d space as well as

to three-dimensional (3d) vesicles represented by a closed surface embedded in 3d space. In

the former case, a 2d vesicle can also be thought of as a cross section of a cylindrical vesicle in

3d. We focus on shape deformations of vesicles having a simply-connected topology (circular
like) in 2d and spherical-like (genus 0) in 3d. Fissions, fusions and other possible topological
changes of vesicles will not be considered [23].

Symmetrical bilayer membranes (I.e., composed of two identical sides), or amphiphilic
monolayers with no spontaneous curvature [24], are characterized by the following elastic

energy II

I lH~ / d°u (2.1)
2
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where
«

is the bending elasticity modulus [25], H the mean curvature, D
m

d I, d being the
2

dimensionality of the embedding space and
/ d~u is the line (area) element in 2d (3d) (see

Appendix A for more technical details). The integrals in equation (2.I) and hereafter are

performed over the entire contour (2d) or surface (3d) of the vesicle. For 3d systems, the

Gaussian curvature should be added, in general, to equation (2. I). Since we focus on vesicles

with spherical topology (genus 0), this term adds only a constant contribution to the free

energy due to Gauss-Bonnet Theorem [26] and can be ignored [25].
So far ideal structureless membranes are described. However, real biological membranes are

composed of several different types of amphiphiles, intramembrane proteins and other

molecules. Phospholipids and other substances intercalated into the outer and inner layers can

diffuse within the membrane [20]. For simplicity, let us suppose that the membrane is

composed of two different types of amphiphiles (A and B species). Such a mixed A/B

membrane can undergo a lateral phase separation below a critical temperature [20]. Motivated

by the slow rate of inside-outside (« flip-flop ») transition [27], we will, for simplicity, entirely
neglect exchanges of amphiphilic molecules between the inner and outer layers of the

membrane. The phase separation can be described by an order parameter ~fi
=

~fi~-

~fi~ being the relative concentration per unit area. Close to the critical point, a Ginzburg-
Landau expansion of the free energy in powers of ~fi yields

F~
=

~
(V~fi)~ + f(~fi))

/d~u
~

(2.2)

f(~fi
= p ~fi +

~~
~fi~ +

~~
~fi~ +

~~
~fi~

21 31 41

where b and A, (I
=

2, 3 and 4 are constant coefficients, and p denotes the chemical potential

difference between the A and B species. We included odd powers in ~fi in the expansion (2.2) to

account for the more general case where the system is composed of two different amphiphiles
and is not, in general, symmetric about ~fi

=

0. Such a free energy functional models two

component membranes which undergo a fluid/fluid phase separation, while most experiments

are performed in a fluid/gel coexistence region. Experiments on systems undergoing fluid/fluid

phase separation are therefore necessary to check the validity of the present theory.

In the case where an amphiphilic monolayer is composed of an A/B mixture with different

spontaneous curvatures [28], such a monolayer prefers curved morphologies depending on the

A/B composition. The spontaneous curvature coming from the spatial inhomogeneity of the

relative concentration ~fi can be modeled by the following phenomenological coupling between

composition and mean curvature [8, 9]

A ~fiH
/ d~u (2.3)

where A is a coupling constant. The coupling mechanism which appeared in equation (2.3) can

also be applied to mixed bilayer membranes [7]. Asymmetric distribution of the absorbed

substance (e.g., anionic, non-ionic or cationic amphiphiles) between the outer and inner layers

may cause a local spontaneous curvature. As was mentioned above, anionic and non-ionic

amphiphiles are preferentially absorbed from solution onto the outer layer of erythrocytes
causing a crenated shape (echinocytosis). On the other hand, cationic amphiphiles are

absorbed onto the inner layer causing an invaginated shape [21, 22].

We introduce a pressure difference (P
=

P~~~ P,~) across the vesicle and add a term

PV (in 3d) or PA (in 2d) to the total free energy. One can choose either a fixed pressure

JOURNAL DE PHYSIQUE ii T 4 V 8 AUGUST 1994 Ml
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constraint or a fixed volume constraint in 3d (a fixed area constraint in 2d). For the fixed

volume constraint, the pressure difference acts as a Lagrange multiplier which guarantees the

specified value of the total interior volume (area in 2d) of the vesicle. In investigating
fluctuations of an equilibrium shape of a vesicle, the fixed volume and the fixed pressure

constraints can be read as V- and P-ensembles, respectively [29]. The V-ensemble is suitable to

describe short time behavior such as the erythrocyte flickering phenomenon, in which the

volume of vesicle does not change. On the other hand, the P-ensemble is more suitable to

describe the long time behavior. In the latter case, the solvent can diffuse across the vesicular

membrane, causing changes in the enclosed volume [30]. The difference between those two

constraints is important in the investigations on the dynamics of vesicles as well as on the

fluctuations in the equilibrium state. The difference between phase diagrams under the fixed

pressure constraint and under the fixed volume constraint are discussed in reference [17]. In

the present paper, we use the fixed pressure constraint. Such a constraint is suitable to describe

equilibrium states under an imposed pressure in the long time regime as well as it simplifies the

calculation.

The equilibrium state of the vesicle is determined by minimizing the total free energy under

the following two constraints.

(a) The membrane is incompressible. Namely, the total surface area of vesicles (total

contour length in 2d) is fixed.

II
dD~

~ jL
in 2d

s in 3d
(2.4)

where L(s) is the fixed total contour length (total area) of the vesicle.

(b) The total amount of amphiphiles on the vesicle is also conserved. Namely, we assume

that amphiphiles on the vesicle do not exchange with an external reservoir. For amphiphilic
monolayer, this means that the total amount of amphiphiles in the layer is conserved. The area

(line in 2d) fraction of A and B species in the layer is specified by

l~fi ,§ d~u
=

(1°) L in 2d

(1°)s in 3d
(2.5)

where equation (2.5) expresses the difference between the amount of A and B in the monolayer
and (~fi) denotes the average of the order parameter. The constraint equation (2.5) is also

applicable to bilayer membranes if the outer layer is composed of the A and the B amphiphiles

while the inner layer consists only of the A amphiphiles. Since the amphiphiles are assumed

not to flip between the outer and the inner layers [27], the area fraction of A/B in the outer layer

is conserved. In the experimental situation [21], the amphiphilic molecules are preferentially

absorbed from the surrounding solvent onto one of the two sides of the bilayer depending on

whether the head of the amphiphile is cationic or anionic. The simple situation of our model

mentioned above can be regarded as an idealization of such an experiment. On the other hand,

the general case of bilayer membranes composed of a binary mixture (I.e., each two sides of

the bilayer is composed of A and B amphiphiles) is rather complicated. Neglecting exchanges
of amphiphiles between the inner and the outer layers, the area fraction of amphiphiles must be

conserved in each two sides of bilayer. Safran et al. [13] and MacKintosh and Safran [14] have

discussed such a general situation. Following their ideas, we can extend our model to include

two order parameters (~fi~~ ± ~fi~~~)/2 where ~fi~~
and ~fi~~~ are relative compositions in the inner

and the outer layers, respectively, where the coefficients A,'s of ~fi
=

(~fi~~- ~fi~~~)/2 in

equation (2.2) are shown to depend on (~P~~ + ~P~u~)/2.
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Replacing the order parameter ~P with a shifted order parameter V'defined as

v~ (u)
m

~p (u) +

(
(2.6)

the free energy density f(~fi) can be written in term of V'where the third order term in V'

vanishes

a~
~

a~
~~~~'~~~°~~l~'~fi~'~fi~' ~~'~~

The coefficients a, (I
=

1, 2 and 4 ) are related to the original A, and p. For systems close to a

critical point of their phase separation, a~ =

a(T Tj) with a >
0, a~ >

0 and Tj is the bare

critical temperature. This means that the homogeneous phase (where V'is single valued)

becomes unstable for T~ T$. Using equation (2.6), the constraint (2.5) is rewritten as

where M is the fixed total difference in the amount of A and B, and
(V')

=

A~/A~. aking the
constraint (2.4) into

account,
the constant

term ao tums out to give

contribution to the free energy and can be neglected. If one nvestigates the equilibrium state

with a fixed M,
the

linear V'term in quation (2.7) can also be
eliminated

from
f( V') due to a constant

ontribution
of F. The linear term is only

the system free with ifferent M.
However,

in the following ections,
we discuss

equilibrium
states with a

fixed
M, and drop the linear term in 'from uation (2.7).

The ubstitution of ~fi by V'in the ombined elastic energy terms, equations (2. I) and (2.3),

gives to
n

averaged ontaneous

erms
:

j d
F~

~
l

~
) j (~ ~

~Sp)~

F~
A H /

2. lo)
H~ ~ (

P ~ A~

AV'(u)m V'(u) - (V') . (2.12)
For 2d

lH,§
du

=

2 ar.
(2.13)

This identity implies that the averaged spontaneous curvature H~~ in Fj [Eq. (2.9)] is

irrelevant, while, F~ expresses the local spontaneous curvature term, and is relevant for 2d

vesicles. In 3d, no such identity as equation (2.13) exits. Hence the averaged spontaneous

curvature H~~ as well as the local spontaneous curvature (the F~ term) are relevant there. As is

seen from equation (2. II ), the averaged spontaneous curvature comes from asymmetry in the

exchange of A and B (A~#0) as well as the asymmetry in the A/B area fraction

(V').
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Combining all contributions results in an expression for the total free energy F
=

F + F~ + F~ + PA (F + F~ + F~ + P V in 3d). As was explained above, the Ginzburg-
Landau free energy functional F~ has only even powers in terms of V'

F~
=

~
(vqz )2 ~

fl y~2
~

~4

~4)
~j ~D

2 21 4;
~ ". (2.14)

In the following, we perform a linear stability analysis and investigate the phase diagram of

equilibrium shape deformations of vesicles using the single-mode approximation (SMA) in

two and three dimensions.

3. Vesicles in 2d space.

We now consider a one-dimensional closed contour, representing a vesicle embedded in 2d

space (see Fig. I). Such a 2d vesicle can also be regarded as a cross section of a cylindrical
vesicle. The vesicle is composed of A and B species. It is convenient to choose the polar angle

6 as the particular parametrization of the contour. This will replace the general parameter u of

the preceding section (see Appendix A). We recall that two constraints of constant contour

length and total amounts of A and B, equations (2.4) and (2.8), are imposed.

In what follows we limit our treatment to shallow temperature quenches close to the bare

critical temperature 7j. In such situations, the deviation R of the vesicle radius r(6 from a

perfect circle is much smaller than the radius of the reference circle, i-o. Furthermore, the

deviation of the order parameter (AV'( from its spatial average (V') is much smaller than

~~~~Y r(6
= 1-o + R (6 (R (6 « ro (3.1)

V'(6)
=

(V') + AV'(6) (AV'( «1 (3.2)

In this case, the fixed total contour length of the 2d vesicle is taken as L
=

2arro.

y

90 fi

81°)

9
~

o

Fig. I. Parametrization of
a 2d vesicle (contour) embedded in the.<y-plane. Equivalently, this can be

regarded as a cross Section of a cylindrical vesicle extending to infinity along the z-axis- The polar angle

between x-axis and the radius vector to a point on the contour is denoted by o, while s(o ) denotes a

contour length from 0 0. The tangential and normal unit vectors to the contour within the xy-plane are

g~ and it, respectively.
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3. LINEAR STABILITY ANALYSIS IN 2d. In order to investigate the onset of instability of the

vesicle shape, it is enough to retain terms up to second order in R and V'. Since all variables

depending on flare 2ar-periodic functions, R and V'can be expressed as a Fourier series in 6

(see Appendix D)

m

R (6
= c-o + ~ [c,~ cos no + s,~ sin no (3.3)

,
=1

9~ (s (6 ))
=

V'o +

(
V'~~ cos

~"~
s(6 + V'~~ sin

~"~
s(6 )j ; 0

w s w L (3.4)

~

L L

where s 6 is the contour length measured from the origin up to a point specified by 6 (Fig. I

s(o
=

(I.~ + i~)~~~ do' (3.5)
~

where I.(6) denotes the derivative of r(6) with respect to 6. To second order in

c~ and s,~, the constant co is determined from the constraint [Eq, (2,4) or L
=

s(2ar)
=

2arro].

~°
~.o,,~j~ ~~~~~ ~ ~~~ ~~'~~

Using the expression of the order parameter V', [Eq. (3.4)]. the constraint (2.8) is easily
satisfied by taking V'o as

V'o
=

(V') (3.7)

where (Y')
m

M/2arro. It is convenient to define
ar «fro as the unit of energy, as this is the

bending energy for a perfect circular vesicle of radius i-o. Rescaling appropriately all quantities
yields,

ro
Pr(

c~ Aro
F

" ~ F Pm $ Cn " ~ fl'cn
" $ ~'<n

~ ° (3.8)

I
m

~

A b~
m ~~ a~ b~

m

( ~

~
a~

$
m

~
~

arro A- A i-o A
i~o

and i~ and Y'~~ are defined in the same way as B~ and Y',,,, respectively. To 2nd order in

?~, i~, #~~ and #~~, each term of the rescaled free energy
fl is expressed as :

fit
=

(
(n~ 1)~ (2( +

I(1+ (3.9)
2,,

=1

i~
=

( in~
+ b~ + (#)~) (#)~

+ #[,~) + (3.10)

,,=1

F~
=

~ (n~ )(?~ Y'~~ + i~ Y'~~ + (3. I1)
~

n i

Pi
=

~ (
(n~ 1) ?( +

(3.12)
~

n i

where (#)
m

~° (Y') and irrelevant constant terms are neglected.
«
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Using equations (3.9-3.12), the total rescaled free energy F
=

Fj +F~+F~+ PA is

written as

F
=

£ D~(?( +
I()

+ E~(Y')~ + Y')~) +
2(n~ I )(B~ Y'~~ + i~

'~~)1+
(3.13)~

n =1

where the coefficients fi~ and #~ are defined as

~" ~~~ ~~~ ~
(3.14)

#~
m

in~
+ J~ +

~~
Y') ~

2

A linear stability analysis can now be performed using equation (3.13). Two cases can be

distinguished (a) fi
~ fi~ and, (b) fi m fi~, where the threshold value fi~ for 2d vesicles is

ji~
=

3 (3.15)

(a) fi
~ fi~

=

3. In this case, l$~
>

0 for all
n modes beside the n =

I mode. The circular

shape is stable (c~
= s~ =

0) provided that the coupling term F~ [the last terra in Eq. (3.13)],

vanishes. On the other hand, if there exists a coupling term (A # 0), an instability can take

place. Linear stability analysis involves minimizing the free energy (3.13) with respect to

?~ and i~

~~
~~ i~

~~
except for n =

(3.16)

~n
~

~
~'sn

n I p

The shape of the n
=

I mode is a perfect circle if only terms up to the 2nd order in

cj and sj are included in F
~.

Higher than 2nd order terms result in small deviations from the

circular shape. Therefore, for the 2nd order expansion employed here, the n =

I mode

describes a lateral phase separation while preserving the perfect circular shape. Eliminating

?~ and i~ from I by substituting equation (3.16) into equation (3.13), we get

I
=

~j f~(#)~
+

#]~) (3.17)
~

~i

where

~2
r~

m
E~ (3.18)

n~ I ji

From these expressions, an instability is found to occur for all modes n satisfying

f~~o. (3.19)

An interesting limit is the one of infinitely large vesicles (ro
-

m). Here, the vesicle

resembles a
fluctuating lamella. The discrete mode n has a continuum limit and is replaced by

the wavenumber qmn/ro. Substituting this definition of q and the Laplace pressure
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P
=

«/ro, « being the line tension, into equation (3.18), fl~ can be rewritten as

f~
=

$q~ + b~
~

~ (3.20)
q +

/K

where $
=

b«/A~. This exactly coincides with previous results for membranes (lamella)

fluctuating about a flat reference plane [9, lo, 12].

(b) fi
m fi~

=

3. In this case, D~ So for some n modes. Therefore, the circular shape is

unstable even without the coupling term F~. All n modes satisfying the condition

fi
>

n~ I are unstable. Such an instability is induced by a pressure difference even for single-

component vesicles [29]. Notice that in this case, the coupling term F
~

is not the only source of

the instability for a mixed vesicle.

3.2 PHASE DIAGRAM IN 2d SPACE. In order to study the phase transitions, we have to retain

higher than 2nd-order terms in the free energy and look for minimum energy states among

different modes. Here, we assume that the equilibrium state is described by a pure state with a

single n mode. (Single mode approximation is abbreviated aS SMA.) This is a reasonable

approximation in the proximity of the critical point.

R (6
= co + c~ cos no (3.21)

Y'(s(6))
=

Y'o + Y'~ cos

~"~
s(6) (3.22)

L

where co is determined so that the total contour length is conserved (see Appendix B). The

constant term Y'~ is determined so as to satisfy the constraint (2.8) and results in equation (3.7).

Using equations (3.21) and (3.22), the relevant terms up to 4th order in ?~ and Y'~ in the

expansion of F are

F
m

12(n~-1)?~ Y'~+D~?(+#~ #(+ (n~- I)(n~-2)?( #~
~ ~

~~~~~~~~~~~)~~-(2fi+23)n~+6jB4~a4~~l
~

~ n
~' (3.23)

where the first three terms in (3.2i) coincide with (3.13). Note that the state specified by

(?~, i~)
can be mapped into the state (- ?~, i~) by a rotation.

In case (a) mentioned above where fi
~ fi~

=

3, the free energy F [Eq. (3.23)] can be

minimized with respect to ?~ without higher (3rd and 4th) order terms in ?~ [3 Ii. The coefficient

of the ?( term, I.e., b~, is positive for all n modes except for n =
I corresponding to a

translation of the circular vesicle as a whole. Then we obtain

I
=

f~ I(
+

~ i( (3.24)
2 16

and the minimum free energy is found to be ;

- ~ i( for i~
~

0
F

=

b4 (3.25)

0 for f~
>

0
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In case (b), fi m fi~
=

3, a circular shape is unstable due to the imposed pressure even without

the coupling term [29]. Because b~
w 0 holds for several n modes, we must take into account

terms up to 4th order in both ?~ and Y',, to determine the lowest-energy. Numerical calculations

are performed in order to find the free energy minima. However, when we discuss the relative

stability between the n =

I and n m 2 modes, we must retain terms up to 6th order in the total

free energy since the coefficient of the 4th order term in ii is negative for fi
>

3 [this coefficient

is 3(3 fi)/2 for n =

I mode]. The coefficient of the 6th order term in ?~ is given by

[3 n~ + 22 n~
+ 67 n~ (2 fi + 56) n~ + lo ]/2~, and it reduces to 46 2 fi for the n =

I mode.

For simplicity, we have chosen to study the phase diagram in the region lo
~

fi
~

5 where it was checked that the 6th order coefficient is always positive [32].
The validity of the single mode approximation (SMA) in the shallow quench limit can be

justified only if the following two conditions are satisfied. First, the magnitude of the

equilibrium value of the order parameter must be sufficiently small [see Eq. (3.2)]. Using
equation (3.24), this condition reduces to the inequality

1-
8 r ~~~

#,,
=

"
« l for r~

~
0 (3.26)

~4

Furthermore, in the region fi w
0, the inequality (3.26) reduces to

b~
» I J~ (3.27)

Note that condition (3.27) reduces to b~ » I near 7~ (b~
-

0 ).

The second condition arises from the single mode approximation, where the order parameter
is expressed by only a single sinusoidal mode. In this approximation, the A and B amphiphiles

are weakly immiscible, I.e., the order parameter profile varies slowly at the domain boundary
between A-rich and B-rich regions. The width of the domain boundary f is expressed as

f
-

2 arr~

l~
for b~ ~

l (3.28)
J~

~~~

and f must be the same order as a half of a wavelength of an equilibrium selected mode,
n*, as the equilibrium state

~~2
q*

where the wavenumber q*
m

n*/ro. The strong segregation limit, for b~ » I, is the limit

where the domain walls are sharp (f
-

0), and conditions (3.26) and (3.29) are violated.

Hence, the single mode approximation is valid only close to the critical point. Near the bare

critical temperature (b~
m

0 ), equation (3.29) provides the condition for the rescaled parameter

I. This approximation is justified as long as
$~ '~~

m
2 ii * As is mentioned below, the phase

diagram is calculated in the rescaled parameter space, where both conditions, equations (3.26)

and (3.29) are satisfied.

phase diagrams in the rescaled parameter space (b~ ~~~,
fi, J~) are obtained by numerical

evaluations of the free energy, where all the terms up to 6th order in ?,~ and #~
are taken into

account (as was explained above). Shape deformations depend, in general, also on
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( Y') as have been previously explored in the strong segregation limit [12]. For simplicity, we

consider here only the ( Y')
=

0 case. The phase diagram in the ($~
~~~,

fi plane for the bare

critical temperature, T
=

Tj (b~
=

0), is presented in figure 2a, and the phase diagram in the

($~ '~~, J~ plane for a rescaled pressure difference fi
=

I is shown in figure 2b. For both

phase diagrams, b~/8 is taken as loo satisfying condition (3.26). However, as long as this

condition is satisfied, the precise value of b~ will only have a minor effect on the phase

diagram.

5
(a) (b) Homogeneous

2

4

~~ ) 3 ii 3

o 4
2

~ 5

6il
~

0 lo 20 0 lo 20

[-1/2 i~l/2

Fig. 2. Phase diagrams for a 2d vesicle for : (al the parameter plane (i~ '/~ fi) with b~
=

0, I-e-,

(T T~) and (b) the parameter plane (i~ '? b~ with fi I. The numbers in the figure stand for the

most stable modes and
«

homogeneou~
»

for the disordered homogeneous state with a perfect circular

shape. In both cases (a) and (bj, the spatial average of the order parameter is set as ( v')
=

0. The shifted

critical temperature is given by the line between
«

homogeneous
»

and selected ii-mode states. This line

is a line of second-order phase transition. whereas all other tines are of first order. For fi m fi~ =
3, the

mechanism of the mode selection is Same as that of si,igle-component vesicles [29], and where the

n =
2 mode is always selected.

The lines denoting phase boundaries between regions with different stable modes, are

obtained by numeric-al evaluation of the free-energy minima, and include terms up 6th order.

We remark that almost identical results can also be obtained by evaluating analytic-ally the free

energy minima in equation (3.25) for fi
~ fi~

=

3. On the other hand, for fi
>

fi~
=

3, numerical

evaluations using all terms up to the 6th order are necessary because lower order terms have

negative coefficients.

As can be seen from the phase diagrams (Fig. 2), equilibrium shape deformations with non-

trivial n >
I modes are found. The n =

I mode seen in figure 2b has a phase separation with

only two domains while keeping an «
almost

»
circular shape. One also sees from figure 2b

that the critical temperature given by the line separating
«

homogeneous
»

and the other

selected phases (n=1, 2, 3, ), is shifted from the bare critical temperature Tj

(b~
=

0 and depends on the effective coupling coefficient i~ '~~ This line is (within our mean-

field treatment) a line of second-order phase transitions, whereas all the other transition lines
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are of first order with a jump in the order parameter. The shifted critical temperature

T~ approaches Tj +
A~la« (I.e., d~

=

I), as
$~ ~~~ becomes larger [9, 1Ii. On the other hand, the

b~ ~~~ dependence of T~ for smaller i~ ~~~
comes from the finite size effect of the vesicle.

In figure 2a, the n =

2 mode is selected in the region fi m 3 due to the energy gain coming
from the pressure difference term just as for single-component 2d vesicles [29]. On the other

hand, for fi
~

3, the coupling terra F~ and the domain boundary energy play an important role

in determining the equilibrium state. While F~ prefers higher modes, the domain boundary

energy, proportional to the gradient terra in F~, prefers smaller domain boundaries, or

equivalently smaller mode numbers. The most stable mode is determined by the competition

between F~, the coupling term, and the gradient term in F~. Therefore, higher modes are

selected as the effective coupling coefficient b~ ~~~ becomes larger.

4. VesicIes in 3d space.

Now we consider a two-component vesicle embedded in 3d space. This system is

characterized by the total free energy F and two constraints (fixed total area and fixed amounts

of each of the A and B species) as described in section 2. The vesicles is represented by a

closed surface with the spherical topology. Using spherical coordinates (r, 6, p ), the position

vector r from the origin to a point on the vesicle is expressed as r =
r(6, p)e~ where

e, is a unit vector, r is the radius and 6 and p are the polar and azimuthal angles, respectively.
More technical details are explained in Appendix A.

As for 2d vesicles, we consider here only a shallow temperature quench in the vicinity of the

critical point, where the vesicle is nearly a perfect sphere, and the A and B amphiphiles are

weakly segregated. Therefore, the deviation R(6, p) from a perfect sphere of a radius

ro and the deviation A Y'(6, p of the order parameter from its average value ( Y') are small.

r(6, p = r~ + R(6, p (R(6, p )( « r~

Y'(6, p)
=

(Y') + AY'(6, p) (AY'(6, p)( Ml.
~~'~~

The fixed total area of the vesicle is taken as s
=

4arr(.

4. I LINEAR STABILITY ANALYSIS IN 3d. As was shown in section 3, it is enough to take into

account terms up to second order in R and AY' in order to investigate the onset of the

instability. Since the vesicle has a closed forrn with a spherical topology, it is convenient to

expand R(6, p ) and Y'(6, p in spherical harmonics [33]

R(6, w) A Co +

f (
Ci~ Yi~(6, w)

" ~j (4.2)

V'(6, w)
=

9/o +

f z 9'im Yim(6, w)

where the spherical harmonics are Yi~
m

Ni~, Pl'(cos 6) e'~*, Pf(cos 6) are the associated

i

Legendre polynomials and the normalization constant Ni
=

~ ~
~ "~

~~
~

While
~ 4ar ( + m )!

the expansion coefficients Ci~ and Y'i~ are complex numbers, the relations Ci[=

Ci,
_~

and Y'(
=

Y'i,
_~

guarantee that R and Y'are real functions. The I
=

0 contribution,

C~, is determined from the condition that the total area of the vesicle is conserved [Eq. (2.4)].

Using the expansion in equation (4.2), Co can be expressed by the amplitudes of other



N° 8 WEAK SEGREGATION LIMIT OF MIXED VESICLES 1345

I
m modes (Ci~) keeping only terms up to 2nd order.

~° 16~ro
~~ ~i~~~~~

~ ~
j~~~~~~

~~'~~

The second constraint of fixed total amount of amphiphiles [Eq. (2.8)] gives the following
relation

fl'o
=

I fl'I ) Z Z C fm fl'f
m

(4.4)iii
~

-i

where (Y')
m

M/4arr( and the second term includes corrections due to shape deformation.

Using expansion (4.2) and the constraints (4.3) and (4.4), the total free energy up to 2nd order

in Ci~ and Y'i~ can be written as

I=) ( (
[(I(I+1)-2)(I(I+I)-H~~-fit)©i~)~

t=1~=-t

+ ($I (I + I ) + b~ +
~

Y') ~ #i~ ~
+

2(I (I
+ 1) 2) Ci~ #j[1(4.5)

2

where (#)
m

~~°
(Y'). The definitions of the rescaled (tilde) parameters are the same as

«

those for the 2d case [see Eq. (3.8)], except for the rescaled pressure and spontaneous

curvature, which are defined in the present 3d case as
fimPr(/2« and ji~~mH~~ro,

respectively. We take 8ar« as the energy unit since it is the elastic bending energy of a perfect
3d spherical vesicle without spontaneous curvature. In expression (4.5), our results of the

elastic energy Fj and the osmotic pressure term
Pi [first line of Eq. (4.5)] are identical to

previous results for single-component vesicles [34, 35]. The expression of the free energy for

3d vesicle [Eq. (4.5)] has almost the same features as that for 2d vesicle [Eq. (3.13)], except
for the appearance of the spontaneous curvature. It should be noted that the states with different

values of m but with the same
I value are degenerate. Two cases can be distinguished (similar

to the 2d case), and are discussed separately (a) fi
~ fi~ and (b) fi m fi~, where the threshold in

pressure difference is defined as

fi~
=

6 H~~ (4.6)

(a) fi
~

fi~. In this case the spherical vesicle is stable if the coupling term F3 is absent.

However, in the presence of the coupling, the spherical vesicle can become unstable.

Investigations of such an instability can be performed by minimizing the free energy (4.5) with

respect to
ili~(©f~

©t~
~

#t~, (I, 1). (4.7)
I(I

+ i ji~~ >

Eliminating iii~, from the free energy using equation (4.7), the minimum free energy is

expressed as

a~ ~
F

= w
I I ~f ~'fm ~~.~~
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where it is defined as

ftm[f(f+ i)+a~+d (@)~- ~~~+ ~~~~
(4.9)

2 f(f+ i)-fi~~-#

where I
=

I mode is included in equation (4.9). Therefore, the instability occurs for the modes

satisfying the inequality 11
~

0.

In the limit of an infinitely large vesicle (ro
- m ), the discrete I mode reduces to a

continuous wavenumber q (I
=

roq). The same expression as for an almost flat fluid

membrane is obtained [see also Eq. (3.20) for 2d vesicles].

(b) fi
m fi~. In this case. the circular vesicle is unstable even without the coupling term. The

inequality fi m fi~ is the same as the criterion for the onset of instability in single-component 3d

vesicles [2-4, 34, 35] of the I
=

2 mode. More generally, the onset of instability of any
I

m 2 mode is given by the threshold pressure fi~(I)

>
>

>~(i )
m

I (I
+ 1) ji~~. (4. lo)

4.2 PHASE DIAGRAM IN 3d SPACE. We now consider the equilibrium phase diagram of 3d

vesicles for shallow temperature quenches, where the deviations of the order parameter from

its average value and that of the vesicle shape from a perfect sphere are small. For simplicity,

we restrict our treatments to axial symmetric shape deformations and axial symmetric order

parameters (having only m =

0 modes). As for 2d vesicles, we assume that the equilibrium

state is characterized by a single mode (the single mode approximation SMA)

R(6)
=

Co + CiPi (cos 6) I # 0 (4.ll)

where Ci
m

C to Njo. The constraint (2.4) on the total area of the vesicle surface determines

Co

Co
=

£ ~~[j ~~+ ~ (ci)2 ( j (ci)n + (4,12)
o

~_~
ro

Detailed expressions of a,~ up to 6th order are given in Appendix C. Expansion up to 6th order

in C j is needed in order to evaluate free energy minima as is explained in Appendix C. Using
equation (4.12), the sum of the bending energy and the osmotic pressure energy of the vesicle

(fi~
m

fi
+

Pi is found to be

~~
2 i~+

~~
~

~ ~~
~ ~~~

l~~'~~

l +

~~ f~
(f

+ )~ 2 f (f
+ I

)
# 1)°~(f )(il

j )~

6

+ z W~"~(i, H~~, fi)(Cj)" + (4.13)

n =4

where iii
m

C ilro and1(°~(i) is defined as

ij0)(I)
m

I' ip~(w,)13 dw
= ~

2~ ii, I o, o I, o >2 » o (4.14)
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where (I
j,

i~ m j, m~ i~, m~) are the Clebsch-Goidan coefficients [36]. Detailed expressions
of W~"I up to 6th order are given in Appendix C. The integral1(°~(i is non-vanishing only for

even
f. This implies that shape deformations specified by fit and Ci are different for even

f

(I.e., a prolate shape for iii
>

0 and an oblate one for iii
~

0). For odd I, these two shape

deformations are identical but spatially inverted. Therefore, the bending energy term

ii and pressure term
#I do not include odd power terms in fit with odd I.

4.2.I single-component i,esicles. We look first at shape deformations of a single-

component vesicle using the free energy F~
=

ii
+ P V. As was mentioned in case (b) above,

the (-mode state becomes unstable at a pressure fi
=

fi~(I). For even
I, the two states with

opposite signs but same amplitude of iii
are degenerate only when terms up to 2nd order in

Ci are taken into account. However, this degeneracy is lifted when 3rd order term in

fit is considered in the expansion off
~.

Depending on the sign of the 3rd order term, one of the

two states is preferred. The criterion of the selection between the two states at the threshold

pressure fi
=

fi~(I) is as follows. The prolate shape with a positive value of iii is selected for

ji~~ greater than a critical spontaneous curvature iij~(I)

-~
2 I(I

+ 1)(3 I(I
+ i ) io)

~~ ~~~~~P " ~~P~ "

3 12(I
+ 1)2 6 I (I

+ 1) + 8
°~ ~~~~

Otherwise, the oblate shape with a negative value of il
I

is selected. It should be noted [4, 33,

35] that if one inserts I
=

2 in criterion (4.15), a prolate-ellipsoid shape (C~
>

0 is selected

for ji~~ >
1.2. Otherwise, an oblate-ellipsoid one (©

~ ~
0 is selected [37]. This can be seen

in figure 3, where the dashed lines are irrelevant for single-component vesicles.

We also calculated free energy branches for different modes using equation (4.13). The

coefficient of the highest-order term in iii considered here must be positive to evaluate the

(a) prolate ellipsoid (b2 > 0) (b) ablate ellipsoid (b2 < 0)

Fig. 3. Schematic views of vesicle shape deformations with an
f 2 mode for (aJ i~~

~
0 (a prolate

elhpsoidj and (bj i~~
~

0 (an oblate ellipsoid). These have the same amplitude of i~~. The dashed lines

denote phase boundaries (v'= 0 lines) between A-rich and B-rich regions.
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energy minima. The coefficient of the fourth order term (iii)~ in Fj is negative for

I
m 3 (see Appendix C). Hence, here and in the following, we take into account terms up to

6th order, where the coefficient of (©
I )~ is positive for any I. In figure 4, free energy branches

of the I
=

2 mode are shown. In figure 4a, the free energy
i~ is shown as a function of the

rescaled pressure for ji~~
=

0. The metastable branch of a prolate-ellipsoid shape emerges at

pressure fi~
-

5.938. A first-order phase transition from a spherical shape to a prolate-ellipsoid

shape takes place at fi
=

fij
-

5.945 [38]. For fi
>

fij the prolate-ellipsoid shape is selected,

while an oblate-ellipsoid shape is a metastable state for fi
> fi~

=

6. A spherical shape is stable

for fi~ ii, metastable for ii ~fi~ fi~ and unstable for fi >fi~. In addition, free energy

branches for non-zero spontaneous curvature are shown in figure 4b for a particular value of

fi~~ =

2. In contrast to figure 4a, an oblate-ellipsoid shape emerges as a metastable state at

fi
=

fi~
m

7.970, and is selected as the lowest energy state for fi
>

fij
m

7.973. On the other

hand, a prolate-ellipsoid shape is metastable for fi
> fi~

=

8, as can be seen from equation

(4.15). A spherical shape is stable for fi
~

jij, metastable for jij
~

ji
~

fi~.

4.2.2 Two-component vesicles. Now we consider the Ginzburg-Landau free energy

i~. The domain boundary energy between an A-rich and a B-rich regions is described by the

gcadient term in fi~. When the deformed shape and the order parameter (see Appendix D) are

(~) (b)
~j~

~ '~~~ ~ '
i

prolate
I

oblate
(I ~fI~PS°id (~ ellipsoid
ii / i'

', j~ sphere ' sphere
, p j j

IQ
;. ;.

.i
IQ

,.. ,....1

6 6.1 8 8.05
Pi Pi

,I',
,,,
,

P~°l~t~ ~~~~~id " ~~~~~id ~~$$d
ellipsoid ',

,

Fig. 4. Free energy F
~

F + F V is plotted versus the rescaled pressure difference p for two typical

cases (a) fi~~ 0 and (b) fi~~ 2. Free energy branches of three kinds of shapes are shown : a

prolate-ellipsoid (i~~
~

0 ), an oblate-ellipsoid (i~~
~

0 ), and a sphere (i~~
=

0 ). The solid lines represent

states of the minimal free energy. The dashed lines stand for metastable states, and the dotted ones for

unstable states corresponding to maxima off,. The f-axis itself is the branch of a perfect sphere. (a) For

fi,~ 0, the metastable prolate-ellipsoid branch emerges at fi
=

fi~ =
5.938. A first-order phase transition

from a perfect spherical shape to a prolate-ellipsoid shape occurs at fi fij
=

5.945. The oblate-ellipsoid

one is metastable for fi
~ fi~

=

6. (b) For fi~~ 2, the metastable oblate-ellipsoid branch emerges at

fi
=

fi~
=

7.970, and becomes stable for fi
~

fij
=

7.973. The prolate-ellipsoid branch is metastable for

fi=fi~~8. In both cases of (a) and (bj, a spherical shape is stable for fi~fi~, metastable for

fi~ ~
fi

~ fi~ and unstable for fi
~

fi,.
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taken to depend only pn a single I mode, the gradient term in i~
can be calculated

1/(vY~(o))2dodw

=

4~T 9'I( )~ )
(~ f (f

+
1)11°~(f) et

+
G4(f)(©I)~

+ (4.16)

The detailed calculation of G~(I is shown in Appendix D. Here we consider the influence of

the domain boundary energy on the equilibrium state. For 2d vesicles, the domain boundary

energy is only proportional to n~ where n is the mode number (number of domain boundaries)
[see Eq. (3.13)]. On the other hand, for 3d vesicles, the domain boundary energy depends on

the shape deformation [the second and third terms of Eq. (4.16)] as well as on the number of

domain boundaries (the first term). Fewer domain boundaries (small I mode) are preferred in

the same way as for 2d vesicles.

Furthermore, the domain boundary energy influences the shape deforrnations. For even
I,

the domain boundary energy, [Eq. (4.16)] implies that the prolate shape (©I
>

0 ) is preferred

over the oblate shape (©
I ~

0 ), due to the second term in the r.h.s. of equation (4.16). This is

because the shape with Ci>0 has smaller domain boundary regions than that with

Ci
~

0 (see Fig. 3 as an example of a shape deformation with I
=

2, where the dashed lines

stand for domain boundaries defined by Y'
=

0 lines between A-rich and B-rich regions). For

odd I
>

I, shape deformations (©I # 0) are preferred, because odd powers in iii in equation

(4.16) vanish and G~(I) is always negative for I
m 3. Namely, the domain boundary energy

induces shape deformations in order to reduce domain boundary regions [12, 16, 17] for both

even and odd modes. Moreover, when the contribution of domain boundary energy to the total

free energy is sufficiently large, such intramembrane domains may induce budding of the

membrane in agreement with previous results [16, 17].

Other terms in i~
are easily calculated using equations (D.7-D.9) and the relevant terms in

the free energy
i~

are expressed as

~~ 14(2/+1)
~~ ~~

~~~~) ~~
~

f (I
+ I ) I(°I(I) fit

+ G~(I )(©I)~
+

lY')
+

~~ #) I(°I(I) #(
+

~~ I(°I(I ) #)
24

6

(4.17)

where I(°I(I is defined and calculated in Appendix C, and Y') is the rescaled spatial average

of Y'.

The coupling term
I

~
is also calculated using the single mode approximation and is found to

be

i~
=

~~~( )~~-
~ ©i 4i f (f

+ i i)°i(f)(iii)2 4i
+

s~(f)(iii)~ ii
+ (4.18)

A detailed derivation of equation (4.18) and explicit expressions of s~ are shown in

Appendix D.

We now consider the influence of the coupling term on the mode selection of the equilibrium

state. Higher mode states with iii Y'i
~

0 are preferred as is seen from the first term in
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equation (4.18). For odd I,
we note that the state with fit

~
0 (Y'i

>
0) and the state with

iii
>

0 (Y'i
~

0) are identical but spatially inverted. For even
I, the state with iii

~
0 and

it >0 is preferred due to the 3rd order term [~ (©i)~ iii. As an example, for the

I
=

2 mode (see Fig. 3), an oblate-ellipsoid shape (il~
~

0 and Y'~ >
0) is preferred over a

prolate-ellipsoid shape (©
~ >

0 and Y'~
~

0 ). We remark that the effect of the coupling term

i~ is contrary to and in competition with that of the domain boundary [Eq. (4.16)], which

prefers shapes with fit
>

0 in order to reduce the domain boundary energy.

In order to obtain phase diagrams, we evaluated numerically the minima of the total free

energy using equations (4.13), (4.17) and (4.18). it is enough to retain terms up to the fourth

order in C
I

and it
to see the influence off

~
and fi~ on the equilibrium state selection. While

for F~
=

Fj + PV, we had to retain terms up to the 6th order since the coefficient of the

highest order terms in iii taken into account must be always positive. The phase diagram is

calculated in the rescaled parameter space ($~ '~~, fi, d~, ji,~).

Since we used the single mode approximation in the shallow temperature quench, we have to

impose validity limits on the parameters b~ and I
as was done for 2d vesicles [see Eqs. (3.26)

and (3.29)]. As long as equation (3.26) is satisfied, the precise value of the parameter

b~ is not of importance and was arbitrary chosen to be 2000. The area fraction

(#) is a relevant parameter. Such a
(#) dependence of shape deforrnations for 3d two-

component vesicles (where the coupling energy F
~

is not taken into account) was explored by
Jfilicher and Lipowsky [17] for domain-induced budding of axisymmetric 3d vesicles. Here,

for simplicity, we choose (#)
=

0. In figures 5 and 6, we show the calculated phase

diagrams for fi~~ =

0 and for ji~~
=

2, respectively. In these figures, the ± superscript

stands for the sign of Ci in the selected state. Other definitions are the same as those of

figure 2. One of our main findings apparent from these figures is a selection of equilibrium
shape deformations with non-trivial I

>
I modes. The I

=
I mode seen in figures 5b and 6b

gives rise to the phase separation while keeping an «
almost

»
spherical shape. (The spherical

shape is slightly distorted if higher order terms are included in the expansion.)
The mechanism of such a mode selection is described as follows. As is seen in figures 5a and

6a, the mode with I
=

2 is selected for fi m fi~ due to the pressure difference in the same way as

a single-component vesicle becomes unstable. The shapes with opposite signs of i~~ are

different than the 2d case. A prolate-ellipsoid shape (i~~
>

0 iS selected for fi~~ =

0, while an

oblate-ellipsoid one (1~2 ~
0 is selected for H~~ =

2 according to the criterion (4.15) which

gives a critical value of fi[~(i
=

2)
=

1.2. For fi
~

fi~, the mode selection is determined by

the competition between i~ and i~. A state with fewer domain boundaries is preferred by

i~ [Eq. (4.17)] while i~ prefers high (-mode states due to the first term in equation (4.18).

Therefore, higher modes are selected as the effective coupling constant
$~ ~~~ becomes larger.

Moreover, for even
I,

a selection between the states with opposite signs of Ci is shown in

figures 5 and 6. Such a selection is determined by the energy difference coming from second

and third terms in equations (4.16) and (4.18). One can see that fl~ prefers shape deformations

with i~
I >

0 in order to reduce the domain boundary region due to the second term in equation

(4.16). On the other hand. I
~

prefers a
fit

~
0 state due to the second term in equation (4.18).
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(a) (b)

4(-)
2(-)

,~ m

z
'~

3I
3j 4(-)

noj 5

o
#l

0 lo 20 0 lo 20

[-1/2 [-1/2

Fig. 5. Phase diagrams of 3d vesicles with no spontaneous curvature (fi~~ 0 ), are shown (a) in the

parameter plane ~ji, i~ "~) with b~ 0, I,e. (T 7j and (b) (b~ (T), $~ ~'~ with fi 0. The numbers and

the ( ± superscript stand for the most stable modes and the sign of i~i, respectively.
«

Homogeneous
»

means the disordered state with a perfect spherical shape. For fimfi~ =6, the mode selection is

determined by the pressure difference in the same way as single-component vesicles [2-4, 34, 35], and

where the f
=

2~+~ mode (C~
~

0) is selected as is seen from the criterion (4.15).

~~~ Homogeneous
2(-)

5

~

4(-)
i~ j 3 i~

o ~~_~ ~l
)

~

6(-)

0 lo 20 0 lo 20

j-1/2 j-1/2

Fig. 6. Same as figure 5 but for fi,~
=

2.0. All other parameters are the same as those used in

figure 5. For fi m fi~ 8, the mode selection is determined by the pressure difference in the same way as

single-component vesicles [2-4, 34, 35], and where the f
=

2~~~ mode (i~~
~

0 is selected as is seen

from the criterion (4.15).
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When the coupling energy is dominant (I.e., $~ ~~~
cc A is sufficiently large), the shape with

i~i
~

0 is selected as the equilibrium state. On the other hand, when $~ ~~~ is sufficiently small,

the shape with fit >0 is selected. The phase boundary between the states 2~+1 and

2~~~ shown in figures 5a, b and 6b is deterrnined by such a mechanism.

In figures 5b and 6b, one finds that the shift of critical temperature depends on

$~ ~~~ [9, 11] as well as for 2d vesicles. Such a shift of critical temperature is induced by the

coupling between the shape and the order parameter. It should be noted that shapes with modes

I
m 2 are selected even if there is no pressure difference [Figs. 5b and 6b], in contrast to the 2d

case where only n =

2 is selected without an imposed pressure difference.

5. Concluding remarks.

For two-component vesicles embedded in two and three dimensions, we investigate shape
deformations in the vicinity of the bare critical temperature by linear stability analysis.

Furthermore, phase diagrams are calculated for 2d vesicles and 3d axisymmetric vesicles using
the single mode approximation. The equilibrium shape deformations are mainly determined by
the competition between the domain boundary energy and the coupling energy. The domain

boundary energy prefers lower modes in order to reduce the domain boundary, and the

coupling term prefers higher ones. Therefore, the higher mode selected as the effective

coupling coefficient $~ ~~~ becomes large. The selected mode of the shape deformation as well

as the order parameter are functions of the pressure difference fi, temperature J~(T) and the

averaged spontaneous curvature fi~~. It is found that the bare critical temperature T$ of the

phase separation is shifted to a new T~, due to the coupling between the vesicle shape and the

order parameter [9, 11]. The phase diagrams obtained in the present work are in qualitative

agreement with those obtained for strong segregation limit (low temperatures) presented in our

preceding paper [12]. The importance of the domain boundary in determining equilibrium
shape deformations of 3d vesicles, such as domain-induced budding [16, 17], is consistent

with our result.

Furtherrnore, we emphasize that the local spontaneous curvature also plays an important role

in equilibrium shape deforrnations [8-15]. In fact, echinocytosis (or crenation) and invagination
of red blood cells are induced by intercalation of anionic and cationic amphiphiles into

membranes [21]. The origin of such shape deformations seems to be the local asymmetric
distribution of amphiphiles between the inner and the outer layers of the membrane [20, 22].

Although we studied the equilibrium shape deforrnations for 3d axisymmetric vesicles, we

expect that shape deforrnations such as echinocytosis and invagination will be selected as

equilibrium states if a shape deformation without the axisymmetry restriction are considered.

Further studies of equilibrium shapes without such an axisymmetry restriction is rather

mathematically complex and quite challenging.
As another interesting problem, we mention the dynamics of shape deformations of fluid

membranes in relation to lateral (intramembrane) spinodal decomposition. The hydrodynamic
interaction with the surrounding solvent and a hydrodynamic transport of amphiphiles within

fluid membranes have to be included in the dynamics [18]. We hope that in the future

controlled experiments on two-component vesicles will become available and will enable a

comparison between experiments and theory.

Equilibrium states of single-component vesicles in 3d are also investigated using a single

mode approximation. The explicit expansion of the free energy F~
=

F + P V for any (-mode

is obtained up to the 6th order in i~i. Using the free energy expansion, free energy branches

can be obtained for any general (-mode. The free energy branches for the particular value of
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I
=

2 are shown as a function of the pressure fi for fi~~ =

0 and 2. The result for zero

spontaneous curvature is in qualitative agreement with previous results obtained using a

somewhat different variational method [3]. We also'obtain the critical spontaneous curvature

H[~ (i) which determines the selection between prolate and oblate shapes with a single I mode

(I is even). This result is an extension of critical spontaneous curvature obtained for

I
=

2, fi[~
=

l.2, [4, 33, 35] to any general I mode.
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Appendix A.

On the mathematical treatment of membranes.

In this Appendix, we describe the mathematical treatment of membranes. The membrane is

regarded as a sheet of vanishing thickness, on which the order parameter field V~ such as the

relative composition of two kinds of amphiphiles, is defined.

Any point r belonging to the membrane embedded in a 3d space can be parametrized by any

two independent variables u' and u~
as

r(u~,u~). The tangential vector along the

u"-direction is given by g~
= r

~

where the Greek indices stand for I or 2 and X,~ denotes a

partial derivative of X with respect to the variable u". The covariant metric tensor

g~~ is provided by g~~
= g~ g~. The normal unit vector i1to the surface is obtained by

i1= (gj x g~)/ / where g is defined by g
=

det (g~~ ). The contravariant metric tensor is

given by the inverse of g~~, Therefore, satisfying the relation g~~ g~Y
=

3], where repeated

indices are summed over I and 2 and 3( stands for Kronecker's delta function. The

contravariant tangential vector is then given by g~
=

g~~ g~. The tensor b~~ is defined as

b~~
=

-g~ ~
.i1=i1~ g~

=

b~~. The trace and determinant of the tensor b(
are two

important invariants

H
=

Tr (b()
=

b] K
=

det (b() (A,1)

where H is the mean curvature and K is the Gaussian one.
2

Since the order parameter Y'is defined only on the surface, its spatial variation

VY' can be expressed as

VY'
=

Y'
~

g" (A.2)

(a) 2d 1,esicles. A 2d vesicle can be regarded as a special case of a 3d vesicle. Namely, the

2d vesicle can be thought of as a cross section of a cylindrical sheet with translational

symmetry along one spatial direction (say the z-axis). Using the polar coordinate in the xy-

plane, a position on the vesicle is specified by r(6
=

r(6 e~ where e~ denotes the unit radius

vector (see Fig. I). The curvature H
=

b( is expressed as

~;,2
~

~2_ ~~
H

=

~ ~ ~

(A.3)
(I.-+r )~~
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where we adopt the notation I
= r,~ and I

= r, ~, ~
for clarity purpose and choose the sign of the

curvature H to be positive when the vesicle is convex towards the outside region. The total area

enclosed by the vesicle is given by

2
«

A
=

r~ do (A,4)
2

o

For 2d vesicles, the identity (2.13) holds for simply-connected (circle-like) shapes as follows

lH /du
= I&(s)ds =

&(s)((](
=

2ar (A.5)

where H
=

8(s)
m

d&(s)/ds, ds
=

,§
du and &(s) is the angle between the x-axis and the

tangential vector to the contour at the point specified by contour length s (see Fig. I).

(b) 3d vesicles. A 3d vesicle with the spherical topology can be parametrized by the two

polar angles (u~, u~)
=

(6, p). A position on the membrane is specified by the vector

r=r(0, p)e~ where e~ is the unit vector and r is the radius. The area element
,§ is expressed as

/
=

r~ (r~
+ r~~) sin~ 6 +

~~)
~~~ (A,6)

Using equations (A.I), the curvature H is

H=~~~~j~12r~-r~A+3rB- r~~A+r~~B-r~B~ (A.7)
g~

~

where
~2

A
m r

~~
+

~'~~
+ ~$~ ~

r
~

B
m

r~~ +
') (A. 8)

sin2 6 sin 6 sin 6

Using the covariant tangential vectors, the volume inside the vesicle is given by

V
=

l(g~xg~).rd6dp
= jr~sin6d6d~n (A9)

3 3

The gradient terra (VY')~ in F~ is expressed as

VY')~=~lr~(Y'~~sin~6+fl'~~)+
(fl'~r~-fl'~r~)~ (A,10)

g

Appendix B.

Free energy for 2d vesicles.

We present detailed expressions for each term in the total free energy using the Single mode

approximation (SMA). In the linear stability analysis using Fourier expansion of R and Y'in

equations (3.3) and (3.4), it is enough to retain terms up to 2nd order in both ?~ (i~) and

#~~ #~~). On the other hand, when we study equilibrium states of the vesicle, the equilibrium

state is assumed to be a state with a single mode in the Fourier expansion [39]. In order to

determine the free energy minimum, terrns up to 6th order in 2~ and Y'~ are needed as is

mentioned in section 3.2.
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Since we assume that the total contour length of the 2d vesicle is constant, co is determined

by the constraint (2.4). Expanding the line element in powers of R(6) ((R(6)( « ro), we

obtain the following relations

Bo =

n~ ?( n~(n~ + 4) ?( (n~ + 4 n~ + 8 n~) ?~ + (SMA) (B 1)
4 64 256 "

The integrand in I
can also be expanded in R (0 ), and using equation (B. I ), the relevant terms

in the bending energy
ii is found to be

fi (~2 1)2 ~2 ~
l

~6
~

41
~4 ~~ ~2

~ ~ ~4
2 " 16 2 "

+ (3 n~ + 22 n~
+ 67 n~ 56 n~

+ 10) El + (SMA ). (B.2)

Using equations (A.4) and (B. I), the pressure term
Pi [m (rotor« PA is also expanded in

power series in ?~

Pi
=

fi [- (n~ ?( + n~(n~ 4) B( n~ ?(
+ (SMA) (B.3)

2 32 16

where in equation (B j and in what follows irrelevant constant terms are neglected. Using
equation (3.22) and g du

=

ds, the Ginzburg-Landau free energy terra is easily calculated

i~=)
(in~+b~+(~ l@)~) @i+(@I (B.4)

Performing rather tedious calculations, the relevant terms in the coupling energy F
~

turn out to

be

+

Appendix C.

Calculation of Fi + PV for 3d vesicles.

Here we present the detailed expressions of the free energy
fl,

m

ii
+ P V. Assuming that the

total area of the vesicle in 3d is constant, Co is determined_ by the constraint (2.4), which

results in equations (4.3) or (4.12), depending on whether one uses Fourier expansion (4.2) or

the SMA [Eq.(4.ll)], respectively. In the expression of Co in equation (4.12), the

a,~'s are calculated to be

a~ =

o

l
~~~i

(f (f
+ + 2)~

~~
~~ ~ ~

(~ + ~~ (c. i

a~ =

(ij21(f)

i
~~j ~ ~~j

3 I(I
+ 1) + 2

~~~j
i (I(I

+ 1) + 2)3
"6 " P ~ ~6 ~ ~6 i 2 f

+
~ ~ i (2 f

+ 1)3



1356 JOURNAL DE PHYSIQUE II N° 8

where I)~l(I) is defined as

1(~l(f)m
~

(i w~)~ ~f~~~~
~~ [Pi(w)]"~~~ dw. (C.2)

-1
W

The value of I)~l(I
can be evaluated analytically because Pi (w) is a polynomial function of

w, and is non-vanishing only if I
n is even. The detailed expression of W~"I in equation (4.13)

is given by,

w(ni(I, »~~, >)
m

x~ (I
+ »~~ y~(I

+ >z~ (I ) (c.3

where X~(I), Y~(I) and Z,~(I) are defined as

£ lH2 /do dw
m

i + z x~(I)(e~)n
"

(2

~~~
H

/ do dp
m

~~(-
I +

( Y~(I)(©iYl(C.4
8"

n=2

Pi
m

fi + ~ ,~(f)(©I)"1.
3

~2

In order to evaluate the energy minima of fl~, the coefficient of the highest order terra in

fit
must be positive. As the coefficient X~ (I ) is negative for I

m 3, we must talce into account

terms up to 6th order in Ci, where the coefficient of (i~i)~ in F~, I.e., W~~l(I, ji~~, fi), is

positive definite for any I (except for unphysically large values of H~~ and (fi ). Therefore,

we calculate terms up to the 6th order in i~i in F~. The explicit expressions of X~(I),

Y~(I and Z~(I) for n =

4, 5 and 6 are given as follows

X~(f)
m

( f3(f
+ 1)3 + 2 f~(f

+ 1)~ 4 f (f
+ i )) i(°I(f)

+ (- 2 f (f
+ 1) + 5) 1(~l(f)

+ 2
~~~~ ~ ~~ ~

~)~ ~

(2 f
+ I

X~(f
m

~ [- 2(f3(f + 1)3 + 2 f~(f
+ 1)~ 4 f (f

+ I
) i)°I(f

~ ~
~

~~ ~ ~~) ~~21~~~ ~
f3(f

+ 1)3 4 f (f
+ i )

~~oj
~~j

5 2 f
+

3

x6(f)
=

(
[8(f~(f + 1)~ +

f~(f
+ 1)~ 2 f(f

+ I
) i)°I(f)

+ 5 (- f~(f
+ 1)~ 28 f(f

+ 1) + 40)1)~l(f) + 2 (4 f(f
+ I )

I I(~l(f
3

+ 4 ~~( )~/ ~ f3(f
+ 1)3 + 2 f~(f

+ 1)~ 4 f (f
+ I )) I(°I(f)

+
~

~ (-912(I+1)2+6i(I+1)+40)ij21(I)

+~~~~+ ~((f(f +1)-2) (I(I+1)+2j2j jc.5)
(2f +1)
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Y~(f)
=

(
(f~(f + 1)~ f(f

+ I )) I(°)(f) )I(~i(f)

~
(f (f

+ 1) + 2)
3 f (f

+ 1) 2)j
2(2 f

+ I

Y~(I)
=

( [(- 3 12(I
+ 1)2 + ~ i(I

+ i )j /jo>~~) + i(~~~ + i +

jij~>~~~

~

~~
(f3(I + 1)3 4 I(I

+ i )j/joi~~)j

Y~(f)
=

( II
(212(I + 1)2 I (~ + i )j /io>(~)

(~
(~ + i +

j
/j~i~~~

(31 I
f(f

+ I ) ~
~j ~~~

+ /6 + ~
2 I

+ i
( + i i ( + 1) + /4 (

~~~ ~
(i (I

+ 1) + 6j i12)(I

~ ~~

~~

~~

(i (I
+ 1) + 2j2

5
I (I

+ i ) ~jj ~~ ~~

~~~~
"

( '
~'~~~~ ~

2(2

~+
1)2

~
~~ ~ ~j(~ ~~ ~ ~ ~jj

z~(I)
=

(
j 2 ij2)(I)1

~6~~~
"

j
[~ ~~~~~~~ ~l~~~~~ +

@j
(~ (~ + l + 6)1(~~(f)

+
~ ~~

~~

~~

(f (f
+ 1) +

)
~ (f (f

+ I ) lo) ~~ ~

Appendix D.

Remarks on the order parameter in SMA.

In order to explore phase diagrams using the single mode approximation, extra care should be

given to the precise definition of the order parameter for the SMA.

(a) 2d vesicles. The L-periodic function of the natural coordinate s with a single n mode

[see Eq. (3.22)] is used for the investigation of phase diagrams in section 3.2. The reason is as

follows.

If one uses the form

«

Y'
=

~o + ~ (~,~ cos no + ~~,, sin no
,

(D.

,,

where

~°
-

~'> )
~~ ~~n ~Cn + ~n ~Sn~ +

~

~'>
«

)
~D.2~

the result of the linear stability analysis is same as that obtained by the expansion (3.4).
Namely, there is no difference in the choice of bases of the expansion as long as one only
performs a linear stability analysis.
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However, since we used a single mode approximation to study phase diagrams as is

described in section 3.2, the choice of bases for the expansion of Y'becomes a crucial point. If

one uses the order parameter specified by a single mode of the expansion of equation (D. I),

the order parameter profile along the contour s is changed by the shape deformation. This

change of the order parameter profile can be seen, if a ring vesicle is expanded to a straight line

while keeping the total contour length and profiles of Y'for different c,~ but with fixed
n and

~,~ are compared. This change comes from the change of the line element ,fi due to shape
deformations. Namely, the order parameter profile is not specified by n and ~~ alone in this

case. Using this order parameter of equation (D.3), it is not clear how to describe the state of

the order parameter with a single n mode. Therefore, the use of equation (D. as a single mode

state is not suitable in SMA.

On the other hand, if equation (3.22) is used as the order parameter in SMA,

9'
=

Y'o + Y'~ cos

~"~
s where Y'~

=

( Y') (D 4
L

the order parameter profile does not depend on the vesicle shape because of ,j
=

I, and is

suitable to study phase diagrams in SMA. Accordingly, the expansion (3.4) and its single

mode (3.22) are used.

(b) 3d1,esicles. For an axisymmetric 3d vesicle, a possible selection of the order parameter

with a single I mode (m
=

0) is that of equation (4.2),

V'(0)
=

~o + ~i Pi(cos 0 ), ~i
w

~ioNio (f # 0) (D.5

where ~~ is determined by the constraint (2.8)

~° ~'~
2 i~+ ~~ ~~ ~'

'

~')
"

~
(D.6)

Here we use a lower case notation for the coefficients fs in order to distinguish them from that

of equation (4.2). Since the order parameter of equation (D.5) is given in the o-space, equation
(D.5) is not suitable to investigate equilibrium states in SMA for the same reasons as was

explained above for 2d. When the order parameter with a single mode is given, the change of

the area element ,~
due to the shape deformation should be taken into account like in the

2d case.

The order parameter Y'(0 on a deformed vesicle with a single I mode is given by the

following procedure. First (see Fig. 7a) the order parameter Y" (0') with a single mode f is

given on the peifiect sphere (before the shape deformation) as

P'(0')
=

P~ + PiPi(cos 0') (I # 0) (D.7)

where o' denotes the polar angle specifying a position of a infinitesimal area ds' on the sphere,

in which the value of the order parameter is assumed to be constant P'(0'). After the shape

deformation, the area ds' changes into a deformed area ds, in which the value of the order

parameter, P 0 ), is assumed to be the same as P'(0') in ds'. Thus, the order parameter after

the shape deformation is given by

P[0(0')]
=

P'(0') (D.8)
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S
~i

g/ o

do' do

O o

jai ibi

Fig. 7. Schematic representation showing how an infinitesiaml ring-like area dS' on a perfect sphere
is mapped onto a deformed surface through a shape deformation. (al An order parameter with an

f mode

is defined on a perfect spherical ~hape (before the shape deformation). The order parameter is given by
v''( o') at the area dS' ~pecified by a polar angle 0'. (b) After a shape deformation with the same

f mode,

the area dS' is mapped onto dS specified by o, while keeping its area fixed. From the mapping, a mapping
function o(6') and an order parameter profile after the shape deformation v'(o) v"[o'( oil are

obtained.

where 0 denotes the polar angle specifying the position of the area ds [see Fig. 7b]. The

mapping from 0' to His determined by the constraint that the local area of the membrane is

unstretchable. However, the shape of a piece of the membrane can be deformed due to the

fluidity of the amphiphilic sheet. Since the local area of the membrane is unchanged by the

shape deformation (I.e., ds'
=

ds), the following relation is obtained (see Figs. 7a and b)

I( sin 0 ' do '
=

~§ d ~ ~~'~

or equivalently

l~'i-j sin 0" do"
=

j~,I
do" (D. lo)

o o

In this formalism, Y'~ is exactly the average of the order parameter irrespective of the shape
deformation, which is different from equation (4.4). Actually, using equations (2.8), (D.7) and

(D.8), Y'~ is found to be

16Y'(0)/d0 dp =1Y"(0')r(sin 0'd0'dp'=4arr( Y'o =M. (D.ll)

The constraint (2.8) is always satisfied by taking Y'~ as

Y'~
=

(Y') (D.12)
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Using equations (D.7-D.9), the gradient term in F~ is expressed as

I/[VY'(0)]~ do dp
=

I/[VY"(0'(0))]~ do dp

=

2ar Y'/
~

r

r~
+ (1 w2~

dR j l/2

j
dw

~ ~~ '~~~i~Pi(w')j~ d~ (~_13)

where w m cos 0 and w'm cos 0'. We can obtain a relation between w and w' by expanding
/ in equation (D, lo) in powers of the small deviation R,

w'=w+ j~ (~R+ ~~(2R~+B)+. jdw" (D.14)
ro 2r~

Using equation (D.14), the gradient term is expanded as a power series in C
I.

The expression

of G~(I ) in equation (4.16) is then found to be

~ =

~
+

2
+ ~~ ~~

~~
2)) I 11)~

( i (I
+ I )(I ~i + 1~ ~ ~ ~~~j

l
~

4
(

4 f~(f
+ 1)2

)
~~ ~ )~ 8 f (f

+ 1) +

) /(2j~~
~

(D, is

In a similar fashion, the coupling energy is

F~
=

A H AY'(0) /d0 dp
=

A H AY"(0'(0)) /d0 dp (D.16)

Using equations (D.7), (D. 8) and (D. lo), the coupling energy F
~

results in equation (4.18) by a

straightforward but tedious calculation. The explicit expression of s~(I) in equation (4.18)

turns out to be

s~(I )
=

(
(12(I + 1)2 + 8 I (I

+ 1) 4) ij°i(I

~

~~/

~ ~~
(f~(f + 1)~ + 4 f(f

+ 1) 8) ii~(f )

+
~

f~ (f
+ )~ 4) (D.17)

8 (2 f
+ 1)

We also calculated G~ and s~ for n =

5 and 6 and confirmed that these terms give insignificant
contributions to the phase diagram.
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