
Physica A 204 (1994) 1-16 

North-Holland PllMcll lil 
SSDI 0378-4371(93)E0394-T 

Polymer adsorption at liquid I air interfaces 
under lateral pressure 

Vered Aharonsona, David Andelmana, Anton Zilman”, 
Philip A. Pincusb and Elie Raphael” 
“School of Physics and Astronomy, Tel Aviv University, Raymond and Beverly Sackler 
Faculty of Exact Sciences, Ramat Aviv, Tel Aviv 69978, Israel 

bMaterials and Physics Departments, University of California, Santa Barbara, CA 93106, 
USA 

‘Laboratoire de Physique de la MatiPre Condenste, URA no 792 du C.N.R.S., 
Collige de France, 75231 Paris Cedex 05, France 

We present calculations of surface tension of absorbed polymer solutions at the liquid/air 

interface. Lateral changes in the area per monomer on the surface are induced by changing 

the surface pressure (lateral compression), while keeping the total surface excess fixed. 

Lateral compression of the adsorbed layer immersed in a good solvent results in an increase in 

the surface monomer concentration and surface pressure up to a critical area per monomer 

value where the compressibility of the system vanishes. Our mean-field model is not 

appropriate to describe more compressed states. Calculations are repeated in theta and bad 

solvent conditions, and yield similar behavior of the isotherms. 

1. Introduction 

Interfacial properties of polymer systems close to solid and liquid surfaces as 
well as at liquid/liquid interfaces have been investigated in many recent studies 
[l-lo]. Various experiments [ll-131 established the existence of an adsorption 
layer for polymer solutions in the vicinity of an attractive interface, and 
investigated its dependence on parameters such as monomer concentration, 
chain length and flexibility, adsorption energy and polymer-solvent inter- 
action. The adsorption layer was interpreted as a self-similar “fluffy carpet” 
extending up to large distances from the wall in the form of loops and tails [2]. 
This self-similar structure accounts well for many observed features of ad- 
sorbed polymer layers like surface excess and surface tension. 

Theoretical studies of polymer solutions at interfaces are based on several 
different calculational methods. One of the principal approaches used to obtain 
surface tension in semi-dilute polymer solutions [6] is a modification of the 
Cahn development [14] for interfacial energies. This treatment, put forward by 
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de Gennes, gives a qualitative description (on a mean field level) for the 
interfacial free energy and profiles of the polymer concentration close to the 
interface. In some related works [3,13] an augmented mean-field theory using 
scaling arguments (as was applied by Widom for binary liquid mixtures at 
interfaces [15]) has been extended to polymer solutions. This approach gives 
more accurate scaling exponents e.g., for the dependence of surface tension on 
concentration [ 11. 

Surface tension and concentration profiles of polymer solutions at liquid/air 
interfaces have been studied theoretically and experimentally as a function of 
solvent quality: good [7], theta [8] and bad [16,17] solvent conditions. The 
dependence of these surface properties on the polymer bulk concentration has 
been established and the surface tension of the solution has been measured for 
different molecular weights and different monomer-interface interaction 
energies. When the interface-monomer interaction is attractive, an adsorbed 
polymer layer is formed with a concentration larger than in the bulk. For large 
(small) values of this interaction, the difference between the surface and bulk 
concentration of the polymer is also large (small). These two limits have been 
treated theoretically. As the interface-monomer interaction becomes less and 
less favorable, at some point, the surface becomes neutral to polymer 
adsorption. Further reduction of the interface-monomer interaction results in 
a depletion layer created at the interface. Measurements of surface tension of 
polymer solutions [18] sought this critical attractive-repulsive transition, known 
as the “special transition”. However, in the following we will consider only the 
adsorbing (attractive) case. 

Polymer adsorption was also considered experimentally and theoretically at 
solid/liquid interfaces [l,lO]. In addition, forces between two polymer layers 
adsorbed on solid surfaces can be measured and compared to theoretical 
calculations [9,16,17] as a function of the spacing between the two plates. 

We review now the thermodynamics of polymer adsorption on a single flat 
liquid/air interface (located at z = 0). The monomer volume fraction Q(z) can 
then be assumed to depend only on the distance z from interface. The bulk 
monomer volume fraction is defined as CD,, = @(z -+ 00) and the interfacial free 
energy y (per unit area) for semi-dilute polymer solutions (above the chain 
overlap concentration @*) can be written as 

where y0 is the surface tension of the sure solvent, yi > 0 is the local interface- 
monomer interaction energy per unit area and the volume fraction of the 
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polymer at the surface is GS = @(z = 0). The interface interaction term -r,QS is 
taken negative since we consider an adsorbing interface. The stiffness function 
L(a) represents the energy cost of making local changes in the polymer 
concentration [6,7] and for small polymer concentration can be written as 

(1.2) 

where a is the monomer size, k, the Boltzmann constant and T the 
temperature. The last three terms in the integral of (1.1) come from the bulk 
free energy of mixing (per unit volume) F(Q), the bulk chemical potential k 
and the bulk osmotic pressure 7~~ as defined below, 

k,T @ 
F(Q) =- 

a3 ( 
$og@++@=++w@3+... (1.3) 

where N is the degree of polymerization. In the following, we neglect the first 
term in (1.3) (translational entropy term), as we will take the limit N P 1. The 
second and third virial coefficients are u (usually temperature dependent) and 
W, respectively. For good, theta or bad solvent conditions u is positive, zero or 
negative, respectively. The chemical potential k and the osmotic pressure rb 
are related to the following derivatives of F(Q) taken at CD = G+,: 

(1.4) 

Eqs. (l.l)-(1.5) entirely define the polymer concentration profile Q(z) and its 
surface value QS as function of the bulk concentration @,, and the surface 
interaction parameter ‘yl. In the following we will refer to this state as the 
equilibrium reference state. 

The surface excess r is defined as the total amount of monomers per unit 
area which belong to the adsorbing layer, 

P 

l- = 
I 

[@p(z) - Q,] dz . (1.6) 

The total surface excess is defined as the product of the total surface area 
occupied by the layer times r. 

In this work, we study the effect of a lateral surface compression in analogy 
to surface pressure-area isotherms of insoluble Langmuir monolayers of 
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surfactant or lipid molecules spread at the liquid/air interface. We apply a 
surface pressure (which reduces the total surface area occupied by the 
adsorbing layer) while keeping the total polymer surface excess constant. The 
justification of keeping this quantity constant is that the system goes through a 
process of compression by local rearrangement of the monomer configurations 
of the adsorbed layer. For polymer systems, the exchange time scale between 
the adsorbed layer and the bulk is much longer than the time scale of 
rearrangement within the layer. 

In order to conserve the constraint of fixed total surface excess, we define 
within the Cahn-de Gennes mean field approach (1. l), a new functional 

g = y - -y. + A(kB Tla3)r = -Ii!, + h(k, Tla3)T ) (1.7) 

where the Lagrange multiplier A will ensure the conservation of the surface 
excess, and I& = 7/o - y is the surface pressure. In agreement with the 
discussion above, the equilibrium reference state is achieved by setting h = 0. 

In addition to the surface-monomer interaction, the type of solvent is 
important in determining the profile and other features of the polymer 
adsorption layer. We present our results for the good solvent condition in the 
next section. Theta and bad solvent conditions are considered in sections 3 and 
4, respectively. The different solvent conditions are taken into account by 
choosing the appropriate expression for the bulk free energy F(G). All our 
calculations are done on a mean-field level in the semi-dilute regime. Conclud- 
ing remarks follow in section 5. 

2. Good solvent 

In this section we investigate the response of the system to a lateral pressure 
of an adsorbed polymer layer in the vicinity of an interface in good solvent 
conditions. The polymer solution is considered to be in the semi-dilute regime 
and the interface is an adsorbing one. The free energy density F(@) in good 
solvent conditions is dominated by the effective two-body repulsion, so one can 
set in (1.3) w = 0, leaving only a positive second virial term, u > 0. 

2.1. Zero bulk concentration: @,, = 0 

For clarity, we first considered the limit of vanishing bulk concentration 
Qb = @(z = ~0) = 0. This simplifies considerably the calculations, as the bulk 
chemical potential (1.4) and osmotic pressure (1.5) in the Cahn-de Gennes 
functional (1.1) can be set to zero, enabling us to obtain simple expressions for 
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the system profile and surface tension under compression. A vanishing bulk 
concentration is compatible with the semi-dilute expression for F(G), as the 
adsorption layer concentration is always in the semi-dilute range and it is this 
layer which contributes the most to the interfacial free energy. The more 
general case of a non-zero bulk concentration follows at the end of this section, 
where some of the integrations are carried out numerically. 

Substituting Gr, = 0 in (1 .l)-( 1.7) while remembering that in this case h and 
7r,, are also zero, we obtain for the functional g, 

g = -~l?Pf + ~jdr[j,‘($)‘+@P4+PP2], 

0 

(2.1) 

where !P = fi is defined as a convenient order parameter. In a dimensionless 
form, the functional g” = g/y, is 

(2.2) 

where the distance from the surface z was normalized by the correlation length 
5 = a/V% and the new dimensionless integration variable is r) = z/e. The 
constant a-i = - k, T/6-y1a5 is the dimensionless adsorption coefficient and 
i= 2hlu. The functional minimization of g with respect to W(n) gives the 
Euler-Lagrange equation 

d2’P 
-=2?P3+h”ly. 
dn2 

(2.3) 

A first integration of (2.3) yields 

$-VTW, (2.4) 

while a second integration gives the polymer concentration profile @p(n) = 

*2(77)> 

W(n) = 
fl 

sinh[fin + sinhP*(fi/?Vs)] ’ 
(2.5) 

Further minimization of the functional (2.2) with respect to 9s gives a 
relation between the Lagrange coefficient i and the monomer surface fraction 
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A”=cr2-lp~=&@~. (2.6) 

Inserting this relation into the constraint (1.6) yields the expression of QS and h” 
in terms of the resealed (dimensionless) area per monomer &: 

sc’=r/~ ) (2.7) 

h”/&(l-@-‘&x-*)2, (2.8) 

@Ju2 = 1 - (1 - (7-l& -I>2 = 1 - h”/cJ2 . (2.9) 

Note that although the Lagrange multiplier enters into the functional g, the 
surface pressure IIS, even in presence of the constraint (1.6), is always equal to 
y0 -7, eq. (1.7). Inserting (2.4) into (2.2), while substituting h” from (2.8), the 
surface pressure can be evaluated analytically as an integral over W, 

fi+p:,-‘/ dW [2W(W2 + h”)“2 - A;y?P2 + ,)-I”, 
0 

(2.10) 

The dependence of QS,, h” and I?, on GZ~ are plotted in fig. 1. 
The region of & > cr PI in fig. 1 corresponds to an experiment where the 

surface undergoes an expansion beyond its equilibrium reference state, ti = 
(T -l, and its isotherm is given by eq. (2.10). When ~2 is large, the Lagrange 
multiplier h” is constant, equals to u2, eq. (2.8), and decreases with diminishing 
surface area, while the surface pressure (2.10) varies as l/d similar to an ideal 
gas isotherm. As ~4 decreases, deviations from an ideal gas behavior are 
noticed. Moreover, as the equilibrium reference state ti = (T-I is reached, the 
Lagrange multiplier vanishes and the surface fraction QS has a maximum. 
Concurrently, the surface pressure saturates at a maximum value with vanish- 
ing slope, leading to a zero compressibility. 

Below the equilibrium reference state, the solution of eq. (2.9) ceases to be 
physical as Pf < 0. Therefore, compression of the film (good solvent condition 
and Q$ = 0) beyond the reference state cannot be described by our model. 

2.2. Nonzero bulk concentration: cI+ > 0 

The above considered case (@,, = 0 together with the constraint of fixed total 
surface excess) may be too limiting. Therefore, we have also studied the more 
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Fig. 1. The surface concentration @$/u2, Lagrange multiplier A”/a* and surface pressure &la* are 
shown as function of the resealed area per monomer US!. See also eqs. (2.7)-(2.10). The solvent is 
good and the bulk concentration Q, is set to zero. 

general case of finite bulk concentration cJ+, (keeping the constraint of fixed 
surface excess). The functional g”, with a normalized order parameter y2 = 
@(z)/@$, can then be calculated from (1.1). One obtains 

-&=-y~+~-1~d~[(~)z+(y2-l)‘+ri(y’-1)], 
b 

0 

(2.11) 

where the correlation length 5 depends now on gPb, 5 = a/$&&, 77 s z/c is the 
dimensionless integration variable, 6’ = k,T/6y,at is the dimensionless 
adsorption coefficient and h” = 2h luGb. 

It is now straightforward to obtain the integral forms of the other quantities: 
IIS and d = t/r from eq. (2.7). By repeating the same procedure of taking the 
functional derivative with respect to the polymer profile and its surface value 
(as in the @,, = 0 case) we obtain 

YS 

_L g - y;+2& _-_ - 

@b %@b 
dy ji(y* - l)(y* - 1 + h”> , 

1 

(2.12) 

(2.13) 
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and from the boundary condition 

h”= +$(y:-l). 
s 

(2.14) 

(2.15) 

Because of the complexity of the integrals involved, &,(a) and y,(d) are 
evaluated numerically in the following way. First &(y,) and A(y,) are 
evaluated from (2.14) and (2.15), respectively for a given value of (T - the only 
remaining free parameter. Then, those functions are substituted in (2.12) and 
(2.13) in order to obtain QS(Se) and the isotherm Z&(d) can be seen in figs. 2 
and 3, respectively. The isotherm shown in fig. 3 is quite similar to the one for 
zero bulk concentration (fig. 1) as the pressure saturates (with zero slope) at 
the equilibrium reference state (h” = 0). No further compression is allowed 
within our model below this point. Note that the limit of zero @,, can be 
obtained formally from eqs. (2.12)-(2.15) by looking at the limit of (T+ m of 
properly resealed variables. 

Hence, a non-zero bulk concentration does not change the main features of 
the process of lateral compression discussed above. In particular, the compres- 

J 

Fig. 2. Surface value of @, normalized as as,/@,, = y: vs. resealed area per monomer L&D~ for 

nonzero 4, good solvent conditions and u = 2. The inset shows the region close to the equilibrium 

reference state (h”= 0), beyond which there is no solution to our isotherm equation. See eqs. 
(2.12)-(2.15). 
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Fig. 3. Surface pressure, normalized as fiS/S = II,M+,,y, vs. resealed area per monomer Z&Z&, for 
nonzero Gj,, good solvent conditions and (T = 2. The inset shows the region close to the plateau 
(equilibrium reference state) beyond which there is no solution to our isotherm equation. See eqs. 
(2.12)-(2.15). 

sion below the reference state cannot be described by our model. Physically, it 
is quite likely that below the equilibrium reference state, the polymers in the 
adsorbed layer are extended in a manner somewhat similar to “polymer 
brushes” (grafted polymers) [ 191 or “pseudo-brushes” (irreversible adsorption) 
[20] with many anchoring sites. However, such extended states are beyond our 
simple mean-field approach. 

3. Theta solvent 

We now turn to the case of theta solvent conditions following the general 
formalism of section 1. A positive w term in (1.3) is used, because the 
monomer-monomer repulsion vanishes (u = 0) in theta conditions, yielding a 
different calculation than for the good solvent case (u > 0). 

3.1. Zero bulk concentration: dJ, = 0 

In the case of Qi, = 0, the bulk chemical potential (1.4) and osmotic pressure 
(1.5) are both zero and the functional g”, defined in the last section, is simply 

-1jdn[(~)2+@+~Tz], 
0 

(3.1) 



10 I/ Aharonson et al. I Polymer adsorption at liquidlair interfaces 

where F = V@ is the order parameter, 5 = a/v% is the appropriate correlation 
length, and 77 = z/t. The dimensionless Lagrange coefficient here is h” = 6hlw 
and (+-I - = k,Tl6y,a( is the dimensionless adsorption coefficient. 

Minimization with respect to W gives the profile equations 

d2W 
-=3?t++h”ly.. 
dn2 

(3.2) 

Integrating the above equation twice yields the polymer profile Q(q), 

@(rl) = 
dr 

sinh[267 + sinhml(fl/QS)] ’ 
(3.3) 

The other relations take the following forms: 

QS = u tanh(2& -‘) , (3.4) 

i= cr2 - @f = a2[cosh(2C1)]P2 (3.5) 

and 

fiS = $g tanh(2&--‘) , (3.6) 

where ti is defined by eq. (2.7) with 5 = a/G. These relations are plotted in 
fig. 4. 

From eq. (3.6) and fig. 4 it is apparent that the pressure reaches a “plateau” 
at zero area per monomer. This should be compared with the good solvent 
case, where a similar plateau is reached for a finite value of ti (the equilibrium 
reference state). The reason of this plateau at zero ~4 is the following. For the 
theta solvent, the equilibrium reference state (h” = 0) occurs exactly at ti = 0 
since the integrated surface excess r has a logarithmic divergence (as long as 
@,, = 0) as can be seen from eq. (3.3). Hence, a compression of the monolayer 
is possible till A? = 0 (the equilibrium reference state). 

3.2. Nonzero bulk concentration: Q+, > 0 

Repeating the previous analysis for non-zero bulk polymer concentration 
Qr, > 0, we obtain for the surface free energy 
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6 

Fig. 4. The surface concentration QS/a, Lagrange multiplier i/a* and surface pressure fi$,ia are 
shown as function of the resealed area per monomer 1. The calculation is done for a theta solvent 
using eqs. (3.4)-(3.6) for zero bulk concentration (Qb = 0). 

g” g __=- 
@b %@b 

=-~;+a-’ dq 
i 

2 + (y’+ 2)(y2 - 1)2 + A”(y2 - I)] ) (3.7) 
0 

where y and y, are the dimensionless order parameters defined in the previous 
section, the correlation length and Lagrange multiplier are 5 = U/V’%&, and 
A”=6hlw@i, respectively, and u-l = k,T/6y,a~. 

As in the good solvent case, the isotherm and related quantities can be 
obtained from the following expressions: 

YS 

+-)?;+2(f1 I dy v(y” - l)(y4 + y* - 2 + h”) , 
b 

1 

(3.8) 

(3.9) 

@@bb)-’ = 1 dy ix 

1 

(3.10) 
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Fig. 5. Surface pressure, normalized as Ll,lobyI, vs. area per monomer &?I+, for theta solvent 

conditions with a general value of Qb and (T = 2. The inset shows the plateau region close to the 

equilibrium reference state (i= 0) beyond which there is no solution to our isotherm equation. 

See eqs. (3.8)-(3.11). 

and 

(3.11) 

A numerical calculation of the surface pressure as a function of area per 

monomer is shown in fig. 5. Unlike the case of theta solvent with zero bulk 

value, here the plateau in the isotherm is reached for a finite value of .sJZ. 

However, as in the good solvent case, the limit of zero @,, can be obtained 

from eqs. (3.8)-(3.11) by looking at the a-+~ limit. 

4. Bad solvent 

The most obvious feature for bad solvents is that the bulk free energy is 

bi-stable, as the system is composed of two coexisting phases: one rich in 

polymer and another one which is poor in polymer. In bad solvent conditions, 

the bulk free energy density expansion F(Q) in (1.3) contains a negative 

second virial coefficient u = a(T - T,) < 0 which is stabilized by a positive third 

virial coefficient w > 0. 

The phase diagram, fig. 6, presents the coexistence curve u(Q) which 

separates the single phase region from the two-phase one. The two branches of 
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Fig. 6. Flory-Huggins phase diagram for a polymer-bad-solvent mixture, where v is the second 
virial coefficient and @ is the polymer volume fraction. The coexistence curve u(Q) separates the 
one-phase from the two-phase region. The values of the volume fraction on the dilute and 
semi-dilute branches of the coexistence curve are @? and QCq, respectively. 

the coexistence curve are the very dilute branch, at, where the osmotic 
pressure can be set approximately to zero, and the semi-dilute one, QCeq. The 
semi-dilute volume fraction Qeeq can be estimated by equating the osmotic 
pressures and chemical potentials in the two coexisting phases [10,16,1’7] 
yielding 

314 @eq =z 

and 

9r eq -0, 

For @$, > @!, the free energy functional f = g/y, is given by 

(4.1) 

(4.2) 

(4.3) 

where q = z/t with 5 = a(3/2u&)“*, and y = v@l&. For @,, > Qeq, there is no 
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phase separation and & is equal to the bulk value, Qr,. On the other hand, for 

@t’e@lJ<@eeq, the coexistence of two different phases in the bulk (fig. 6) 
introduces a second interface in the system. For an adsorbing liquid/air 
interface, one may consider here that the more concentrated phase lies closer 
to the interface. If this phase can be considered as macroscopically thick, we 
can set & = @ eq, assuming the second, more dilute, phase to have no influence. 

The isotherm of surface pressure vs. area presented in fig. 7 is very similar to 
the one for the theta solvent case. It is obtained from numerically solving the 
following equations: 

$=-y:+2& 
I dy V(Y’ - l)(y4 -Y* + h”) , 
1 

fin - s_ _-+= _$+g-l(&&)-lh; 
aJ Yl@ 

(4.4) 

(4.5) 

(4.6) 

Fig. 7. Same as fig. 5 but with F(a) chosen for bad solvent conditions where & is replacing the 
bulk value @b and C-J = 2. See eqs. (4.3)-(4.7). 
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and 

A”= OYs 
$+(Yf-Y?). 

s 
(4.7) 

A more complicated case arises when the bulk concentration is dilute, 
@b < Qt. In this case the concentration in the vicinity of the liquid/air interface 
passes through an unstable region. This problem was previously discussed 
[16,17] and is beyond the scope of the present work. 

5. Concluding remarks 

In this work we have investigated surface pressure of polymer solutions at a 
liquid/air interface under lateral compression. We have presented mean field 
calculations based on the Cahn-de Gennes formalism [6,14]. The important 
qualitative feature of this work is seen in the isotherms: surface pressure 
plotted vs area at constant temperature. 

The system is found to be characterized by two parameters. One is the 
strength of the attractive polymer-interface interaction energy x, measuring 
the degree of adsorption. The other is the bulk volume fraction @,,, which can 
take different values, according to the preparation of the solution. It is the 
ratio of these two parameters that appears in the dimensionless adsorption 
coefficient (~-l = T/6ay,t - (Tla2yl)@~, where p = l/2 for good solvent 
conditions and /3 = 1 for the theta case. A large 3/I or a small @b corresponds to 
a large adsorption coefficient. 

In all solvent conditions our model does not allow compression beyond the 
equilibrium reference state for which the system compressibility is zero. Mean 
field calculation does not provide an insight in the nature of the possible 
compressed adsorbed polymer layer (beyond the equilibrium reference state). 
It may be interesting to use other theoretical methods, such as scaling 
arguments in order to understand better all the possible states of the adsorbed 
polymer layer. Another extension of our work can be to study the properties of 
adsorbed polymers on heterogeneous surfaces such as surfactant monolayers 
[21-231 under lateral compression. 

Experiments to verify our finding can be carried out using a Langmuir trough 
where a horizontal float applies lateral pressure on the polymer adsorbed layer. 
The polymer solution can then be washed off, fixing the bulk concentration to 
zero, thus preventing the adsorbed polymers from moving to the other side of 
the float. Another method is to add a surfactant to the area swept by the float, 
thus creating an asymmetry in the surface area (one part of it being occupied 
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by polymers only, while the other by surfactants and polymers). Yet, another 

possibility is to use a conic trough instead of a float [24]. As the solution is 

pumped out of the trough, the surface area decreases and no exchange of 

polymers with the bulk takes place. It will be interesting to verify some of our 

findings using such experimental set ups and possibly others. 
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