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We investigate the linear stability of two- and three-dimensional closed form vesicles
which are composed of a partially miscible mixture of two amphiphiles. The shape of
such vesicles is strongly influenced by the inplane phase separation of the amphiphiles.
When the inner pressure of the vesicle is higher than the outer one, an instability
of the vesicle shape occurs below the critical temperature due to a local spontaneous
curvature induced by the coupling between the local curvature of the vesicle and the
local composition of the amphiphiles. In addition, in two dimensions and within mean
field approximation, we obtain equilibrium phase diagrams for temperatures close to
the critical temperature 7..

PACS numbers: 46.30.-1, 82.70.Kj, 64.60.Cn

In most existing theories of lamellar phases and vesicles, the membranes have been
treated as an interface without any internal degrees of freedom. Recently, an increasing
- number of works have been devoted to the investigations of membranes with internal
degrees of freedom such as the relative composition of mixtures of amphiphiles{1-4], the
orientational order of the tilt angle of the amphiphiles with respect to the membrane
plane[5], and quenched impurities embedded in a tethered membrane[6).

In this paper we investigate, within mean-field theory, the linear stability of two-
and three-dimensional vesicles composed of a mixture of two-component amphiphiles,
and obtain equilibrium phase diagram for the two-dimensional (2d) case. A vesicle in
2d can be represented by a closed contour line L in 2d space. The position vector r of
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a point on L is specified by a parameter u that labels the contour point r=r(u). The
total free energy functional H of such 2d vesicles can then be expressed as a sum of
four terms(1-3): H = H; + H, + H3 + PA. The first term is the so-called Helfrich free
energy coming from the rigidity of the membrane[7].

H, = %n/cz ndu (1)

where c is the curvature, 7du denotes a line element of the membrane, « is the bending
elasticity and the integral is taken over the entire contour[8]. The second term, Hy, is the
Ginzburg-Landau free energy expressed as a functional of the local relative concentration
per unit contour length, ¢ = ¢4 — ¢p, where ¢4 and ¢p are the concentrations of the
“A” and “B” species of the amphiphiles, respectively;

o= [ {35V + £9) Jnd (2)

and f(@) = (a2/2!)¢? + (aqs/4!)¢* with a; = a(T — T.), a and a4 being positive
constants. Note that this expansion is also valid for the case where f(¢) is asymmet-
ric with respeci to the exchange of ¢4 and ¢p[9]. Depending on the sign of a, the
homogeneous phase will be stable (a; > 0) or unstable (a; < 0). The third term, Hg,

accounts for the coupling energy between the local curvature and the local composition
of the amphiphiles|2];

: Ho =& [ ¢ondy (3)

where A is the coupling constant. This term corresponds to an induced ¢-dependent
local spontaneous curvature. Finally, we introduce a pressure difference P = P,,¢ — Pi,,
between the outer and the inner regions of the vesicle, which results in the last term
of H, that is, PA. This term couples the pressure difference P with the total enclosed
inner area of the vesicle, 4.

The equilibrium state of the vesicle is determined by minimizing the total free en-
ergy H under the following two constraints. The total contour length of the vesicle
is constant, as is required by the condition of incompressibility of the membrane. In
addition, the integral of ¢ over the contour, which gives the total composition difference
between the two species on the membrane, is also constrained to be a constant in the
absence of chemical reactions or exchange of matter between the vesicle and its sur-
roundings. We choose the polar coordinate, r(u) = (r, 6), to specify a position on the
membrane, where 6 is the polar angle and r(6) is the radial distance from the origin.
In this representation 7 and |Vé| can be expressed as n = (2 4 72)1/2 and |Vd|= ¢/,
. respectively, where the dot denotes the derivative with respect to §. The curvature ¢
is given by ( 2¢#2 + 7% — 77 )/(#2 + 72)%2, where we choose the sign of the curvature c
to be positive when the vesicle is convex towards the external side. The total area A
inside the vesicle is given by A = 1 [72df. The total contour length L of the vesicle
and the total amount of the matter M on the contour are given by I = [ df = const.,
and M = [ ¢ ndf = const., respectively.
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In what follows we limit our treatment to shallow temperature quenches close to
T. (T <T.), where both the concentration difference ¢ and the shape deviation of the
vesicle from a perfect circular shape are small. Namely, if we define »(0) = ro + R(6),
where 7g is the radius of a reference circle, then the deviation R(6) is much smaller than
70[10]. One of the interesting questions is how a homogeneous distribution of A and B
amphiphiles becomes unstable due to the coupling with the vesicle shape. To investigate
the onset of such an instability it is enough to retain terms up to second order in both the
deviation R(6) and the order parameter ¢ in the above expressions for H, L and M. In
particular, we will include only quadratic terms in f(¢) for the linear stability analysis.
As L and M are kept constant, we obtain the relations: [ R df = —(1/2r¢) [ R?d6 and
J¢df =—(1/ro) [ R d0 + M, respectively. The terms in H which are linear in R and

¢ can be eliminated using these relations. The resulting expression for H is quadratic
in ¢ and R as follows

s K =, kK 1 _y.0 b ., 1 s, A =
H= /{ PYRO 4+ g5y = (5 PV R+ 50+ Jasrod ——r—o-¢(R+R)}d9
(4)
where we have omitted an irrelevant constant term. Since all the variables depend
on R and ¢ which are 2w—periodic functions of 8, it is convenient to express H and
the other quantities as sums over the discrete Fourier modes of R and ¢: R(0) =
Z;[cn cosnf + s, sinnb] and ¢(8) = 3 [Pen cos nf + ¢,, sinnb], where E' means that
the n=1 term is omitted since it gives rise only to a translation mode of the vesicle
as a whole. In addition, the n = 0 term is also omitted from these Fourier series and
similar expressions hereafter, since it is already second order in the small deviations R
and ¢ mentioned above, and contributes only to higher than second order in H [eq.(4)].
Substituting the Fourier series of R and ¢ into eq.(4) we find

H= 30 D+ ) + Bt d) + S = Dleaden +ndn) |1 9

with D, = (n? = 1)[(x/78)(n? = 1) — P] and E,. = (b/r0)n? + azro.
A linear stability analysis can now be performed on (5). Two cases should be distin-
guished:

(a) Dp>0foralln>1

In this case the circular vesicle shape is stable when the coupling between curvature
and composition vanishes (A = 0). The condition D,, > 0 is satisfied for all pressure
differences P = P,,; — P;, smaller than a threshold value 3x/r3. On the other hand, if
there is nonvanishing coupling (A # 0), an instability of the shape can take place. Such
an instability is investigated by minimizing the free energy H in (5) with respect to c,

and s,; i
H=23 Tu(¢h+ 65 (6)

with T, = E, — (A/70)*(n? — 1)?/D,,. In this case we find that the instability occurs
for all integer values of n satisfying I', < 0.
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(b) D, <0 for some n

In this case the circular shape is unstable even when the coupling term is zero (A = 0).
This implies Prg/x > 3 and the instability occurs for all integer n satisfying 4 < n? <
1+ Pr3/k.

Whereas it was enough to retain only quadratic terms in ¢ for the study of the
instabilities of a homogeneous circular vesicle shape, actual phase transitions can be
calculated by re-including the quartic term (a4/4!)¢* in f(#) and looking for the state
with the minimum free energy among different modes. Here we assume that the equilib-
rium state is a pure state with a single n-mode. Namely, R(6) = co+c, cos nf+ s, sin nf
and @(0) = Peo + Pen cos nl + @, sinnb (n # 0), where co plays the role of a Lagrange
multiplier which guarantees the condition that the total contour length is conserved.
Using such an assumption, the relevant part of H is expressed as

a47To

16

H= g{Dn(ci+si)+En(¢Zu+¢3n)+ (¢3n+¢3n)z+%(n2_1)(c,,¢m+,,,¢m)},

(7)
As mentioned above ¢.o = [ $df is given by a sum of products of ¢;, () and ¢en (dun)-
Terms of order two or higher in ¢.o give higher-order couplings in H, and thus can be
neglected.

In case (a) mentioned above, where D, > 0 for all n > 1 (Pr3/x < 3), we can obtain
an equilibrium state by minimizing the free energy H with respect to the variables
CnySnyPen and ¢,,. The minimized free energy is then found to be H = ——27rI‘i/apo
for T, <0, and H=0 for T',, > 0. In case (b), Pr3/x > 3 ( or equivalently D,-, < 0),
and the circular shape is unstable due to the effect of pressure even without the coupling
term(11]. A complete analysis of the shape stability is complicated since it requires the
inclusion of 4th order terms in c, and s,, and will be presented elsewhere[12].

We show the calculated phase diagrams in Figs. 1 and 2. For Pr}/k < 3, equilibrium
shape deformations with n > 1 occur and the bare T, is renormalized upwards by
A?/ak (1] as is shown in Fig. 2. As the dimensionless coupling coefficient (A%72/xb)!/2,
expressing the effective softness of the vesicle becomes larger, higher modes are selected
(Figs. 1 and 2). The mechanism of such mode selections will be described in our
forthcoming paper(12]. Note that the n = 1 mode found in Fig. 2 is rather special
having an inplane phase separation of the A/B amphiphiles while preserving the circular
vesicle shape, since the n = 1 mode of the vesicle shape (c, and s,) only gives rise to a
translation of the circular vesicle as a whole.

We also investigate the stability of 3d vesicles with spherical topology[13]. The term
PA in the free energy for 2d vesicles is replaced by PV, V being the volume inside
the vesicle. The line element ndu appeared in the integrals of H is replaced by an
area element ,/gdu, where u = (u',4?) is an arbitrary parametrization of the two-
dimensional membrane and g is the determinant of the metric tensor. Note that in 3d
we can neglect the Gaussian curvature term in eq. (1) due to Gauss-Bonnet theorem,
as long as we focus on vesicles with spherical topology. Hence, it is enough to retain
the mean curvature c in eq. (1). We choose u to be u! = 6, u? = ¢, where 6 and ¢ are
the polar and azimuthal angles, respectively. Expanding the free energy up to second
orders in R and ¢ and using spherical harmonics as the basis set of the expansion, the
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relevant part of the free energy is

oo l ,
=2, 2 { (Coml? + 5 ({14 1) = 2)Cim—rs + LTIV 2070 |¢:ml"} (8)
=1 m=

with D; = (rc/47-02) ([(1+1)=2Pre®/k][ I(I+1) — 2], where Ci,,, and ¢y, are expansion
coeflicients of R(8, ) and ¢(6, ), respectively. The results of the linear stability analysis
for 3d vesicles exhibit almost the same features as those for the 2d case. The only
important difference is the occurrence of an instability of the higher modes (n > 2)
even for P = 0 (no pressure difference) when the dimensionless coupling coefficient

(A272/kb)1/? is large(12].
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Fig. 1. Phase diagram for 2d vesicles plotted for the dimensionless pressure Prd/x
versus the dimensionless coupling coefficient (A272/xb)!/? at the bare critical temper-
ature T' = T. (a; = 0). The numbers indicate the values of the n-mode characterizing
the shape deformation. The region above the dashed line corresponds to the unstable
case (b) discussed in the text.

Fig. 2. Phase diagram for 2d vesicles plotted for the dlmensmnless temperature
ayx/A? versus the dimensionless coupling coefficient (A272/xb)'/? at a pressure Pr/x =
—1. The numbers indicate the values of n.
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