
EUROPHYSICS LETTERS 

Europhys. Lett., 19 (l), pp. 57-62 (1992) 

1 May 1992 

Equilibrium Shape of Two-Component Unilamellar 
Membranes and Vesicles. 

D. ANDELMAN(*)(**), T. KAWAKATSU(**) and K. KAWASAKI(**) 
(*) School of Physics and Astronomy, Tel-Awiv University 
Ramat Awiv 6997'8, Tel Aviv, Israel 
(**I Department of Physics, Kyushu University 33 - Fukuoka 812, Japan 

(received 3 September 1991; accepted in final form 30 March 1992) 

PACS. 87.20C - General theory of interfaces. 
PACS. 82.70K - Emulsions and suspensions. 
PACS. 64.60C - Order-disorder and statistical mechanics of model systems. 

Abstract. -We show that a strong segregation of a two-component surfactant system coupled to 
the local membrane curvature has a pronounced effect on the shape of unilamellae or closed 
vesicles. For an average flat lamella, the preferred periodicity in the local composition as well as 
the lamellar shape is calculated and depends on the ratio between surface tension and bending 
modulus. In the case of a closed visicle with a futed total area, there is no selected periodicity in 
contrast to the unilamellar case. For vesicles subjected to positive or negative inner pressure, we 
calculate their shape numerically, whereas when there is no added inner pressure, the shape is 
found analytically to be composed of circular sections. 

One of the most common structures formed when amphiphiles such as phospholipids or 
surfactants are dissolved in water is a bilayer membrane[1,2]. Such membranes are 
arranged either as a lamellar stack of bilayers that are planar on average or as closed-form 
vesicles [3-lo]. Recently, an increased number of studies has focused on two-component 
surfactant solutions [11-18]. In some cases [ll-131, vesicles can form spontaneously upon 
mixing surfactants with two oppositely charged head groups. In other cases [17,18], mixing 
lipids with surfactants can induce a transition from a bilayer structure (either multi lamellar 
or vesicular) to a mixed micellar one. 

Motivated by the above-mentioned experiments, we investigate in this paper the 
interplay between a heterogeneous composition of a membrane composed of two surfactants 
(amphiphiles) and pronounced changes in the vesicle or unilamellar shape. We employ a 
phenomenological coupling [lo] between the local composition (of the two species) and the 
local curvature in the strong segregation limit of the two species. For example, this limit is 
achieved by a deep temperature quench far from the critical temperature. Results are 
obtained for unilamellae as well as for closed-form vesicles, for which large deviations from a 
spherical shape are calculated. Throughout this paper, we employ the mean-field 
approximation, where the thermal fluctuation effects are neglected. For simplicity, we look 
only at a two-dimensional geometry where the membrane fluctuates around a reference line 
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(flat case) or forms a closed curve. In the dilute-solution limit, only one such interface is 
considered and all inter-membrane interactions can be neglected. 

Consider first a single lamella whose out-of-plane undulation with respect to a reference 
plane is Z(x), x being the coordinate along a reference plane. The total free-energy functional 
can be expressed [lo] as a sum of three terms, F = F1 + F2 + F3: 

where 0 is the surface tension, K is the rigidity modulus and c is the local curvature, which can 
be well approximated by c = d21/dx2 in this almost planar case. The second term in F is a 
Ginzburg-Landau expansion of the local order parameter #(x): 

F2 = \ [ i b ( V # ) 2  +f(#) - ,U# dx + ... , 1 (2) 

where f(#) = (112) #2 + (1/4) a4 d4 and ,U is the chemical potential. For an amphiphilic 
monolayer separating two solvents like water and oil, #(x) is defined as 4(x) = #A (x) - dB (x), 
#A and dB being the concentrations of the A and B species, respectively. On the other hand, 
for lamellae or vesicles composed of bilayer membranes, #(x) should be read as the 
composition difference between the two sides of the bilayer. 

Finally, the coupling between the two degrees of freedom #(x) and I($) is a coupling 
between the local membrane curvature c and the local composition 

F3 = A\&c)c(x)dx + ... . (3) 

Note that when #(x) is a constant as in the single-component case, F3 is nothing else but the 
energy contribution of the average spontaneous curvature of the fdm, eo = - A # / K .  

Since in our approximation F contains terms only up to  second order in Z(x) and its 
derivatives(l), it is possible to minimize F with respect to Z(x) or even more conveniently to 
go to a Fourier representation where 2, = Z(x) exp [iqx] dx is the Fourier transform of Z(x). 
Requiring 6F/6Zq = 0, we can express I, in terms of 9, = J ~ ( x )  exp [iqx] dx and substituting 
the relation back into F yields 

and 

where the correlation Length ( is conveniently defined as < E qic/o. 
Beside an upward shift of the critical temperature proportional to A2/21c, the coupling 

term (3) introduces a mechanism of stabilizing modulated phases (.meso-phases.) such as the 
Pa. phase (so-called ripple phase). It is instructive to investigate (4) in two limits. For a 
shallow temperature quench (2' S T,) an expansion of (5) in powers of q yields [ 101 a modulated 
structure [19-241 with #(x) = #,cos qx and Z(x) = L,cos qx. The preferred q value is q* = 

(I) For simplicity, we neglect other terms in F that are considered in ref. [lo]: A(V2q5(x))2 and 1V4Z(x). 
They do not affect our results in any major way. 



D. ANDELMAN et al.: EQUILIBRIUM SHAPE OF TWO-COMPONENT UNILAMELLAR ETC. 59 

= V ( A 2  - ba)/2A2 t2 and a necessary condition for the modulations is a negative coefficient of 
the q2 term in (4), i.e. A2 - ba  > 0. 

We focus now on the other extreme limit of a deep temperature quench (T<< Tc),  where 
strong segregation occurs between A domains of concentration do and B domains of 
concentration - do. For simplicity, only the symmetric 1 : 1 mixture is considered for which 
the A and B domains have the same length. Instead of looking at the low-q expansion of the 
free energy, all q-modes must be retained in (4) in order to capture the behaviour at short 
distances due to the sharp domain walls between A and B domains. 

The curvature-induced interaction of the membrane can then be simply expressed as 

where T(x) = (A2 / 4 ~ < )  exp [ - I x I /Q. Assuming an alternating arrangement of n domains of 
A and n domains of B, each of length D, eq. (6) can be integrated exactly yielding a 
free-energy density f = F/2nD: 

(7) 

where Q = ( A 2 t / 8 ~ ) ( A d ) 2  and d = D/< with Ad = 2d0. The frst term in (7) expresses the 
domain wall energy y, while the second and third terms account for the intra- and 
inter-domain contributions from the effective long-range interaction, eq. (5), respectively. 
The optimal domain size D* is obtained by the condition af/ad = 0. 

In the limit of large correlation length (large bending modulus), D << < and y << 52, D * = 
= t (6y /Q) ' /3 ,  whereas for small correlation length (small bending modulus) D >> <, y/52 + 1, 
D* = <log I 1 - y/2Q 1 .  For any configuration of d(x), the shape profile Z(x) can be calculated 
from its Fourier components using the relation between I ,  and 4, as 

f= 5 Y n  + E ( e x p [ - d ] + d - l ) -  252 -exp[-d/2]sinh-tgh-, d d  
D 2 2  

Let us consider a periodic arrangement of alternating A and B domains, dA (x) = do for 2nD S 
S x S (2n + 1) D and d B  (x) = - do for (2% + 1)D S x S (2n + 2) D. Integrating eq. (8) 
gives 

where Io  = - ( A / K )  t2 40 = - (A/a) do. Similarly, for (2n + l)D S x S (2n + 2) D, ZB (x) = 

= - Z A  (x - 0). Equation (9) has two simple limits: for small bending modulus, < = << D, 
and the lamellar shape follows the abrupt composition change from do to  - do, by changing 
abruptly over a relatively short length < from Io to - lo.  On the other hand, in the limit of 
large bending modulus, < >> D, the lamella has a parabolic profile where AI = Z(D/2) - Z(0) = 

( I o  /S)(D/<)2 is much smaller than lo .  If the total (one-dimensional) area of the membrane is 
fixed, it is more convenient to use a natural coordinate, where each point on the membrane is 
specified by the distance s along the contour, 0 S s S L,  where L is the fixed contour length. 
Then, the curvature at point s can be expressed as de/ds = d(s), where B is the angle between 
the tangent vector and some arbitrary fixed direction. Minimizing the free energy with 
respect to e(s), we obtain the following condition for the membrane shape: 
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Equation (10) is subject to  the topological constraint of a closed shape of length L,  r(L) = r(0) 
and O(L) = O(0) + 2z, where r(s) is the position vector of the membrane element s. Note that 
expression (10) by itself is exact irrespective of whether the membrane is open or closed. In 
addition, eq. (10) should be supplemented by the variation condition of F with respect to the 
composition 4, 6F/64 = 0. 

Under the assumption of a strong segregation (deep quench-far from TJ, #(s) takes a 
constant value do(- #o) in the A (B) domain, separated by sharp domain walls where &(s) 
changes discontinuously. Assuming that the membrane is composed of n domains of A and n 
of B arranged in a symmetrical way, eq. (10) can be solved exactly in the strong segregation 
limit for n 2 2, whereas the case n = 1 is rather special and will be described in detail in our 
forthcoming paper [25]. For n 5 2, eq. (10) simply reduces to 8(s) = 0 within a single domain, 
meaning that the curvature is constant throughout a single domain. Therefore, the 
membrane has an arclike shape in each one of the domains and the discontinuity of 4(s) at  the 
domain walls leads to  a discontinuity in the curvature &s), while the tangent vector O(s) 
remains continuous. Consequently, the global shape of the membrane is composed of 
consecutive arcs of alternating curvatures connected smoothly at the domain walls. 

It can be shown for n 5 2 that F1 and F3 do not depend on the domain configuration but 
only on the total length fraction of the A (or B)  domains. Noting that F2 accounts for the 
domain wall energy proportional to the total number of domain walls, the minimum free 
energy is obtained for the four-domain configuration (two of each species). 

We also calculated the shape of the membrane under the condition that the inner enclosed 
volume is fxed. As we employed mean-field approximation, this can also be done by adding 
an appropriate pressure difference AP = Po - Pi across the membrane, where Po and Pi are 
the pressure outside and inside of the membrane, respectively. This pressure difference AP 
acts as another Lagrange multiplier related to  the constraint on the total inner volume 
enclosed by the membrane. In fig. 1, we show typical examples of a membrane with n = 2 
domains of each species. Negative, zero and positive pressure differences are shown in 
fig. la)-e), respectively. For cases a )  and c), we have to rely on numerical solution of eq. (10) 
subject to the constraint of total inner volume. Case b)  is the unconstrained one and is solved 
analytically along the lines indicated above. When comparing the three cases, it is important 
to recall that the total contour length is constrained to have the same length in all three cases. 
As the inner pressure becomes much larger than the external one, the vesicle shape tends 
towards a circular shape, which has the largest area of all shapes with the same perimeter 
length. Already in case a), the inner area is about 98.6% of a circle with the same perimeter 
length. Any other domain arrangement with n 3 2 has very similar profile shape. 

In conclusion, we have shown that strong segregation of two partially compatible 

a) 

Fig. 1. - Typical examples of a membrane with n = 2 (two domains of each A and B phase). The pressure 
difference AP is negative, zero and positive in a), b) and c), respectively. Solid curves and broken curves 
show A domains [&s) = 4,J and B domains [q5(s) = - 40], respectively. Solid circles indicate the location 
of the A/B domain walls. 
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surfactants leads to very strong shape modification of vesicles and unilamellae. They should 
be compared with analytical calculations and Monte Carlo simulations of single-component 
vesiscles [8,26]. If the total contour length is fured, both open and closed structures will 
separate into four large domains [25]. However, metastable solutions for closed vesicles 
include any number n 3 2 of domains arranged in a symmetric way. For nearly flat but 
undulating unilamellar systems, a selected periodicity of the domain exists even in the strong 
segregation limit. Our results can be tested experimentally, for example, for mixed 
surfactant-lipid systems which couple differently to the local curvature [17,181. We are 
extending the present work to three-dimensional vesicles as well as to the nonsymmetric case 
which is equivalent to a system with an average nonzero spontaneous curvature. 
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