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Abstract : We discuss the adsorption of polymer solutions on chemically
heterogeneous surfaces. Two types of heterogeneities are considered, annealed
and quenched. In both cases, the disorder increases the adsorption. For a same
adsorption strength, the adsorbed amount of polymer is higher on an annealed
surface than on a quenched surface. The adsorption on an annealed surface can
induce a two-dimensional phase transition on the surface.

INTRODUCTION

Polymer adsorption from solution plays an essential role in many applications ranging from
colloid stabilisation to adhesion or lubrication. When the monomers forming the polymer are
attracted by an interface, due to the cooperativity between monomers of the same chain the
polymer chains adsorb strongly and a thick adsorption layer forms. Detailed theoretical
models of these adsorption layers in good agreement with experimental results now exist
based either on a self-consistent mean field theory for not too long chains (Ref.1) or on a
scaling theory in the limit of infinitely long chains (Ref.2). These theories however deal only
with ideal non heterogeneous surfaces (neither rough nor chemically heterogeneous). Many
real surfaces are heterogeneous but the non ideal situations have received very little
theoretical attention (Refs.3-5). In a recent work (Refs.6,7), we have studied the effect of
random chemical heterogeneities on the properties of adsorbed polymer layers, we give here a
short review of some of our important results.

The parameter that governs the adsorption of polymer chains on surfaces is the free energy
‘gained by a single monomer upon adsorption £(p). On an ideal surface this free energy is a
constant independent of the position p on the surface where the monomer adsorbs. On a
chemically heterogeneous surface, the adsorption free energy € fluctuates with position, its
fluctuation characterizes the local concentration of surface impurities. We consider here only
the case where € is a random variable with a zero average. On average, the interface is thus
neither attractive nor repulsive for the polymer molecules and if the surface were
homogeneous, the monomer concentration in the solution close to the interface would remain
constant and equal to the bulk value. The effective attraction or depletion of monomers at the
interface is only due to the heterogeneities.
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As in many problems where impurities play an important role, the properties of the adsorbed
layer depend strongly depend on whether €(p) is a quenched or an annealed variable. The
field e(p) is a quenched variable when the impurities are fixed on the adsorbing surface ; this
is often the case for adsorption on a solid surface. In this situation, one must first calculate the
physical properties of the adsorbed layer and then average them with respect to the
randomness. The heterogeneity is annealed if the impurities are free to move on the interface
and are at thermodynamic equilibrium. As our example of annealed heterogeneity we will
consider in the following polymer adsorption on an air water interface covered by a surfactant
monolayer. The heterogenity €(p) is then in a first approximation proportional to the
surfactant concentration fluctuation and will be referred to as the surfactant concentration
below.

We now briefly discuss the adsorption of a single polymer chain and then the adsorption of
semi-dilute solutions on annealed and then on quenched heterogeneous surfaces.

SINGLE CHAIN ADSORPTION

Although this is a rather academic problem, we first discuss the adsorption on a
heterogeneous surface of a single polymer chain ; this problem can be treated in a very simple
manner and gives some physical insight.

Consider first the annealed case. On average, the polymer chain is not attracted to the
interface and would not adsorb if the surface remained homogeneous. However, locally the
concentration of impurities can be larger than on average. Such a region becomes attractive
to the monomers and the polymer chain adsorbs. The adsorbed state is stable only if its total
free energy is lower than that of a free chain and a homogeneous surface. The total free
energy change upon adsorption includes three terms, a confinement free energy of the
polymer in its adsorbed configuration, an attraction between the polymer and the
heterogeneities and the free energy of the heterogeneity.

FAT = 1/2(R%/D2) - Ne(a/D) + R2 {€2/2A2 + ued/4} a

The polymer contains N monomers and is considered to be Gaussian, its radius is R=N1/2a
where a is the monomer size. The first term in equation (1) is the confinement energy of the
polymer in the adsorption layer of thickness D (Ref.8). The second term is the local attraction
of the interface ; as is usually done in the mean field theory (Ref.9), we have assumed that the
concentration in the adsorbed layer is a constant and that the fraction of monomers in contact
with the surface is a/D. The last term is the increase of the surfactant (impurity) free energy
due to the increase of surface concentration in the area where the polymer adsorbs. We have
written this free energy as a Landau expansion of a free energy density integrated over the
area R2 ; A2 is proportional to the two-dimensional osmotic compressibility of the monolayer
that can in general be adjusted by varying temperature and u is a positive constant.
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If Ais smaller than a, the minimum of the free energy is obtained for e<0 and the polymer
does not adsorb. If A is larger than a, the surfactant monolayer is more compressible and the
minimum of the free energy is reached for a positive value of € ; the surfactant concentration
increases locally and the polymer adsorbs. The transition towards adsorption when A=a is
here second order and above the threshold, the thickness of the adsorbed polymer layer
decreases as

D=u 12 (1-a2A-2y-122 @

A better description of the impurity free energy is obtained if one takes into account the
spatial variation of € and includes in the Landau expansion a term proportional to (Ve)2. This
term is equivalent to a line tension at the edge of the surface where the polymer adsorbs. The
line tension term is however a small correction to equation (1) that does not change
qualitatively the adsorption behavior. A similar behavior is also expected when excluded
volume interactions are taken into account although the values of the adsorption threshold
and of the thickness of the adsorbed layer are slightly modified.

If the impurity is quenched on the surface, the value of € is frozen and the surfactant
concentration cannot increase locally. It was shown however (Ref.10) that due to the finite
size of the chain, the polymer can wander along the interface undl it finds a place where
there is a large enough fluctuation of € to allow for adsorption. For a single chain the
quenched and the annealed problems are then expected to lead to the same behavior. This is
somehow an artefact due to the finite size of the chain in the quenched problem.

ADSORPTION OF A SEMI-DILUTE SOLUTION ON AN ANNEALED

HETEROGENEOUS SURFACE
We now consider the more realistic case of a semi-dilute polymer solution of bulk
concentration cp adsorbing on a surfactant monolayer (an interface with annealed impurities).
As for the adsorption of a single chain, if the osmotic compressibility of the monolayer is
large enough, regions can form in the monolayer where the surfactant concentration is higher
and where the polymer can adsorb. The total amount of surfactant in the monolayer being
constant we expect for large enough values of A a two-dimensional phase separation between
a dense surfactant region where the polymer adsorbs and a dilute surfactant region from
which the polymer is depleted (Ref.12).
In order to study more quantitatively this transition, we write the total free energy of the
solution as a sum of three terms, the free energy of the polymer solution, the free energy of
the surfactant monolayer and a coupling between polymer and surfactant. The last two terms
have the same structure as for a single chain above. Within a mean field approach, the free

energy of a semi-dilute polymer solution can be written as a functional of the so-called order
parameter  related to the local concentration ¢ by c= y2 (Ref.8).
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FpolkT = [dr (a2/6 (Vy)2+1/2 v(y2-y2)2) ®

The first term represents the elasticity of the polymer chains and the second term the excluded
volume interactions, v (~a3) being the excluded volume. The value of the order parameter in
the bulk is yp= cp!/2.

The total free energy can thus be written as

F/KT = [dr (a2/6 (Vy)2+1/2 v(y2-yD)2 + 8(2) [ -aey? + €2/2A2 + uet/4]) Q)

The Dirac 3 function indicates that both the surfactant contribution and the coupling term are
two-dimensional free energies in the plane of the monolayer. The free energy functional must
be minimized with respect to both the polymer order parameter y and the surfactant
concentration that is also an annealed variable.

The minimization with respect to the order parameter gives the concentration profile of the
polymer along the z direction perpendicular to the monolayer

c(z) = cp coth? [(z+b)/E] )

where the bulk correlation length & is defined by &2 = a2/3vcp. The integration constant b is
related to the monomer concentration at the interface cs = coth? b = 2. The minimization

with respect to the surface order parameter Y then yields a relation between s and the local
surfactant concentration €

(Ws¥b)? -1 = (6§ se) / (ayb) (6)

Substituting these two equations into the free energy (4), one obtains the free energy per unit
area of the solution as a function of the sole variable €. For small values of the compressibility
AZ, the second derivative of this free energy at € = 0 is positive and the monolayer is stable.
The second derivative of the free energy vanishes for A2=v€/(2a2) indicating a spinodal

instability of the monolayer and thus a phase transition. The transition is first order and
occurs for a value of the compressibility A2= uv2/ (32 a2) smaller than the spinodal value. The
density in the dense phase is then € = 8afuv and the polymer concentration at the interface cg
= 12e2pv.

The relevant experimental quantity for polymer adsorption is the surface excess

oo

I'= fdz{c(z)-cp}. At low values of the compressibility, the interface is on average neutral for
()

the solution. However, the surface excess does not vanish because of the coupling of the
polymer order parameter to the thermal fluctuations of €. It has a positive value I' = a2AZcp/v.
At the transition, in the dense surfactant phase of the monolayer the polymer adsorbs and I"
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jumps discontinuously to a larger value I'= 16a2/uv2, This surface excess is typically of order
a2 and corresponds thus to a strong adsorption of the polymer by the monolayer.

ADSORPTION OF A SEMI-DILUTE SOLUTION ON A QUENCHED
HETEROGENEQUS SURFACE
In this section we consider the adsorption on a solid surface with quenched impurities. We
first consider a periodic impurity on the solid surface and then give general results for
surfaces with random impurities.
The free energy of the polymer solution is obtained from equation (4) but in the quenched
case, only the polymer free energy and the coupling to the surface must be considered.

F/KT = fdr {a%/6 (Vy)2+172 v(y2-y)? - S@)ae(p)y?) @)

We study a heterogeneity e(p) periodic along one direction of the surface €= ycos gx and
calculate the surface excess in the limit of small heterogeneity. This can be done by
minimizing the free energy with respect to the order parameter y and then expanding y(x,z)
in powers of the surface attraction ¥y up to second order.

The order parameter profile is periodic in the x direction and can thus be expanded in a
Fourier series

Y(x,z)=yp+ yi(z)cos gx +  {y20(z) + y22(z) cos 2qx} ®)

The determination of the surface excess requires only the calculation of y(z) and v20(z). We
find

Y1{2)= yu(n/on) exp -(012/E) ©
y20(z)= yo {nZ/[201(3+q2ED)1] { (qE)%wp exp -(wpz/&) + 37201 exp -Qw12/E) }

where we have defined 11=61&/a and = 4+(ng€)? n being an integer.
The surface excess is then

T =92¢ [(2+q22)/3] (10)

The important result is that eventhough the average attraction by the surface vanishes there is
a positive surface excess due to the oscillations of the interaction.

In the case where the heterogeneity is random we have not calculated in details the surface
excess but equation (10) strongly suggests (by a decomposition in Fourier modes) that a
quenched random heterogeneity with a zero average also leads to a positive surface excess
and thus to an effective adsorption of the polymer.
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The effective adsorption can be understood for very strong heterogeneities from the following
argument. If the heterogeneity has fluctuations of large amplitude kTy and if it is correlated
over a very small distance of order a, the surface can be viewed as a checkerboard with sites
of size a where half of the sites are attractive and half of the sites are repulsive. When one
monomer adsorbs on an attractive site, it gains an energy kTy much larger than kT. The
repulsive site are strongly repelling the monomers that do not adsorb. However in order to
adsorb on the attractive sites, the chains must form loops to avoid the repulsive sites and this
reduces their entropy, the corresponding loss in free energy is of the order of kT and is thus
much smaller than the gain due to adsorption. In the limit where the amplitude of the
fluctuations become very large we thus expect half of the sites on the surface to be covered by
adsorbed monomers. This corresponds to a large surface excess of order I'~ a-2.

In order to check this result and to compare annealed and quenched disorder, we have made
cumulant expansions on the mean field free energy of the polymer solution. This shows that
for the same adsorption strength, the surface excess for quenched heterogeneities is always
positive and that the surface excess for quenched disorder is always smaller than the surface
excess for annealed disorder.

CONCLUSION

The main conclusion of our work is that both in the case of quenched disorder and in the case
of annealed disorder, heterogeneities of the interface always enhance adsorption. This has
been shown here when the average adsorption strength vanishes but we have checked within
the framework of the same mean field theory that it remains true when the polymer feels a
finite average adsorption from the surface.

The correlations between monomers due to the excluded volume are not taken properly into
account by the mean field theory. This is particularly true for adsorption problems where the
concentration profile becomes singular in the vicinity of a solid adsorbing wall ; this effect is
known as the proximal effect. We have investigated the relevance of a quenched
heterogeneity on the proximal effects using a so-called Harris criterion ; however the criterion
amounts for this problem to comparing tiie swelling exponent v of the chains in a good
solvent and the crossover exponent ¢ of the special transition that governs the proximal
effects. The known values of these exponents are equal in three dimensions within the
accuracies of the best numerical estimates (Ref.11), and the Harris criterion is thus not
conclusive. Further theoretical work is needed in order to understand the role of
heterogeneities for polymer adsorption from a good solvent.
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