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We study the effect of electrostatic interactions on the membrane bending energies of weakly charged, 
swollen, lamellar phases of surfactant solutions. We treat the surface charge density of the lamellae as 
a constant and consider only situations where it is low enough so that the distance 2d between lamellae 
is the smallest relevant length scale in the problem. In the presence of salt (the short-distance Debye- 
Huckel regime) we show that the electrostatic contribution to the bending energy of a membrane is in 
general small, in disagreement with a previous result, is proportional to d3, and is independent of ionic 
strength. Identical results are obtained for membranes undulating sinusoidally in phase and for concentric 
cylindrical membranes. The bending constant is also calculated for membranes held at constant electric 
potential and is compared to the constant charge density case. In the absence of salt, continuity arguments 
predict an electrostatic contribution to the bending energy that scales as d3. Furthermore, a direct calculation 
for concentric cylindrical membranes gives exactly the same scaling behavior (including the numerical 
prefactor) as in the presence of salt. 

1. Introduction 
Amphiphilic molecules in solution exhibit many self- 

organizing features.112 Among other mesophases, lamel- 
lar phases consisting of alternating layers of amphiphilic 
and solvent molecules are observed over a wide range of 
surfactant concentrations. The lamellar structure takes 
the form of stacks of surfactant bilayers separated by 
coherent regions of solvent (either polar or nonpolar), and 
as a function of solvent dilution, intermembrane spacings 
up to several thousand angstroms have been o b ~ e r v e d . ~ . ~  
The lamellar phases are stabilized by a variety of repulsive 
interactions between membranes. In particular, individual 
membranes have a very low surface tension and may 
undergo strong thermally induced out-of-plane undula- 
tions; Helfrichs has argued that a repulsive interaction of 
entropic origin results from the confinement of each 
fluctuating membrane between its adjacent neighbors. The 
strength of this steric repulsion is controlled by the bending 
elasticity of the membranes and can be described by the 
bending moduli k ,  and E ,  of mean and Gaussian curvature, 
respectively. Note that kc  is relevant only when the 
topology of the membranes changes. 

In the case of electrically neutral lamellar phases, such 
as those obtained by oil dilution, the bending moduli are 
determined by molecular packing considerations in the 
bilayers and are typically of the order of the thermal 
excitation energy T (in units where the Boltzmann constant 
k~ is set to unity). This implies very flexible membranes 
in swollen lamellar phases. For sufficiently high dilutions, 
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the Helfrich forces dominate over other interactions and 
are responsible for the very large intermembrane spacings 
observeda6 

In the case of water dilution, other interactions become 
relevant. The short range hydration forces, for instance, 
prevent membranes from adhering to one another.' If 
the lamellar phase is made of ionic surfactants, the 
repulsive Coulombic interactions contribute to the stability 
of the structure. The electrostatic interaction combines 
with the Helfrich interaction in a nontrivial way: it 
modifies the bending rigidity of each membrane and can 
thus change the nature of the out-of-plane fluctuations 
that drive the steric repulsions. At low ionic strength (in 
the absence of added salt), if the membranes are highly 
charged, Coulombic interactions between adjacent mem- 
branes are not screened and dominate over the Helfrich 
interactions.6!8~9 The lamellar phase is then formed by 
relatively flat, inflexible membranes with a renormalized 
bending modulus which can be in general larger than the 
intrinsic value. Upon addition of salt, the membranes 
regain their intrinsic flexibility and the intermembrane 
interactions are once again determined by the repulsive 
Helfrich interactions. In intermediate conditions of ionic 
strength and membrane surface charge density, both 
interactions play a role. Recent X-ray scattering exper- 
iments on lamellar phases of surfactant membranes diluted 
by oil, by pure water, and by brine are in qualitative 
agreement with this description.6 

Recent theoretical effort has focused on determining 
the electrostatic contribution to the bending modulus of 
mean curvature 6k, in different regimes of membrane 
surface charge density and aqueous electrolyte strength. 
It is convenient to characterize these regimes in terms of 
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Table I. Scaling Behavior of ak, for the Case of Constant 
Surface Charge Density 

regime region of Figure 1 dk, 

d K-' 
Figure 1. Diagram of membrane bending modulus regimes as 
a function of d ,  A, and K - ~ .  Regions i and ii are the ideal gas and 
short-distance Debye-Huckel regimes, respectively. We find that, 
in contrast to previously reported results, the electrostatic 
contribution to the bending modulus in both these regimes scales 
as 6kc - Td3IA21. Thus, in terms of the scaling of 6kc, the 
distinction between the ideal gas and short-distance Debye- 
Hiickel regimes is somewhat arbitrary, as indicated by the dashed 
boundary separating these regimes. Region iiiis the usual Debye 
Huckel regime with 6kc - T/x3A21. For regions i-iii, the 
electrostatic contribution to 6kc is very weak. Region iv is the 
intermediate regime with 6kc - T / K ~ ,  while region vis the Gouy- 
Chapman regime with 6kc - Tdll. In these latter two regimes 
the electrostatic contribution to 6kc is quite large. 

three characteristic length scales: the mean membrane 
separation 2d, the Debye-Huckel screening length K - ~  = 
(8rn,l)-lI2, and the Gouy-Chapman length X = e/2r la ,  
where n, is the nominal bulk electrolyte concentration, a 
is the (negative) surface charge density per membrane 
side, e is the electronic unit charge, 1 = e2/4newT is the 
Bjerrum length, and ew is the dielectric constant of the 
aqueous solvent (for water, e, N 80, implying 1 N 7 A). 
In Figure 1, we present schematically the different 
electrostatic regimes as function of X and K - ~  for a fixed 
d.  In the limit of high electrolyte concentration (region 
iii) (Kd > 1 and K X  > l), the solution of the linearlized 
Poisson-Boltzmann (PB)  equation for several 
geometrieseJ*l2 all indicate that the electrostatic contri- 
bution to the bending constant 6k, is independent of d 
and given by 

(1) 

An additional linear PB regime a t  short distances (Kd < 
1 but K2dX > 1) has been identified and studied8 (region 
ii in Figure 1); in this short-distance Debye-Huckel regime, 
bk, was found to scale as 

3T bk, = - 
4 r ~ ~ l X '  

m 
1 

K 3 h 2 (  ~ d ) ~  
6k, - 

For somewhat weaker electrolyte or higher surface charge 
densities (Kd > 1 and K A  < 1, called hereafter the 
"intermediate regime"-region iv) the solution of the non- 
linear PB equation gives13-'6 

6k, = T / T K ~  (3) 
On the basis of these results for the Debye-Huckel and 

intermediate regimes quoted above, scaling relations for 
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ideal gasa i Td3/ A21 
short distance Debye-Huckela ii Td3/Xzl 
Debye-Huckel iii T/n3X21 
intermediate iv T/d 
Gouy-C hapman V Tdll 

New results reported in this work. 

the limits of low salt and high surface charge density ( A  
< d < K - ~ ,  called the "Gouy-Chapman" regime-region v), 
and of low salt and low surface charge density (d < X and 
K2dX < 1, called the "ideal gas" regime-region i) were 
proposed, and a coherent picture of the behavior of charged 
lamellar phases was presented.s Subsequent theoretical 
calculations9 confirmed the proposed scaling behavior of 
6k, in the Gouy-Chapman regime 

bk, - T d / l  ( 4 )  

In the Gouy-Chapman and intermediate regimes, eqs 3 
and 4, the electrostatic contribution to the bending 
modulus can be in general larger than the intrinsic value 
and the total bending modulus is larger than T. Strongly 
charged membranes thus have small undulations and may 
be viewed as essentially flat. 

There are, however, several puzzling features remaining 
in the short distance and low charge regimes (regions i 
and ii). For instance, in the ideal gas regime 6k, was 
conjectured to scale as 6k, - TXI1, Le., increasing with 
decreasing membrane surface charge density.8 

In this paper, we re-examine the short distance and low 
surface charge limits of swollen lamellar phases. As in 
our earlier work, this is done a t  the Poisson-Boltzmann 
mean field level, and all nonelectrostatic interactions such 
as van der Waals and hydration interactions are ignored. 
This is justified for relatively dilute lamellar systems. In 
section 2, we give a derivation of 6k, in the short-distance 
Debye-Huckel limit for a stack of undulating membranes 
and show that our result is identical to that computed for 
membranes arranged in a concentric cylinder geometry. 
Then, we briefly compared this result with bk, obtained 
for membranes held a t  constant electric potential. In 
section 3, we give an estimate of 612, for the ideal gas regime 
obtained by an expansion of an exact result for the 
electrostatic potential between concentric charged cylin- 
ders without electrolyte. Finally, in section 4 we discuss 
our results in relation to previous theories, and their 
relevance to experiments. The final results for bk, in all 
regimes for the case of constant surface charge density are 
summarized in Table I. 

2. Short-Distance Debye-Huckel Regime 
2.1. Constant Surface Charge Density. We consider 

a stack of membranes of mean separation 2d and with 
mean orientation parallel to thex-y plane in a polar solvent 
of dielectric constant ew (water) and bulk electrolyte 
concentration n,. We assume that an individual mem- 
brane has thickness t and consists of a bilayer of negatively 
charged ampliphilic molecules separated by a thin layer 
of nonpolar solvent of dielectric constant toil, and that 
each side of the membrane has a uniform charge density 
-u. In the short-distance Debye-Huckel limit, Kd < 1 but 
K2dX > 1, the electrostatic potential between membranes 
obeys the linearized Poisson-Boltzmann (PB) equation2r8 

v24 = K2C#J (5) 
where C#J(i) is the electrostatic potential a t  i. 
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Figure 2. Sketch of a stack of undulating charged membranes. 
Membranes are assumed to have average intermembrane sep- 
aration 2d, and undulations of wavelength 25~1411 and relative 
phase 2dq,. Undulation amplitudes are shown exaggerated for 
effect; actual membranes are assumed to have low amplitude (UO 
<< d ) ,  long wavelength fluctuations (qlld << 1) with small inter- 
membrane phase angle (q ld  << 1). 

This equation is subject to appropriate boundary 
conditions on each membrane surface. In the linear De- 
bye-Huckel regime, one can show17 that if the thickness 
of a membrane t satisfies t >> (coil/cw)d, the energy stored 
in the electric field within a membrane is negligible, and 
the two sides of a membrane may therefore be considered 
as electrically independent. Typically, t , /toil= 40 and t 
= 20 A, so this requirement is not unreasonable for the 
small membrane separations we are considering.'s In this 
case, we may solve eq 5 separately in each int_ermembrane 
region subject to the boundary condition AaV4 = a/c, on 
either surface of each membrane, where A is the local unit 
vector normal to the membrane surface. 

In order to compute the electrostatic contribution to 
the membrane bending moduli, we must solve the lin- 
earized PB equation with the above boundary conditions 
for fluctuating membranes. In analogy with the hydro- 
dynamics of smectic liquid crystal phases, we will consider 
small amplitude, long wavelength membrane undulations 
about the mean membrane positions of the form 

u(x,z) = uo cos (QIlX + (712) (6) 

where we restrict our attention for convenience to mem- 
brane fluctuations with 411 in the x-direction and where we 
assume uo << d, qlld << 1, q,d << 1, and that U(X,Z) is to 
be evaluated at  the mean membrane positions z = 2nd for 
all integers n, as depicted in Figure 2. 

In the smectic description,Ig one considers the lamellar 
phase as a stack of membranes, each having a spatially- 
averaged free energy per unit volume 8 E F/ Vof the formz0 

1 1 2  9 = 9 ,  + ;rK 4 1 4 ~ 0 2  +-B 4,~: + O(U;) ( 7 )  4 
where K and B(q11) are respectively the splay constant and 
the bulk compressional modulus of the lamellar structure. 
Rather than the lamellar free energy per unit volume 8 ,  
we use the free energy per unit area of one membrane '3 
= FIA = 29d 

1 1 3 = 30 + ; j k ,q l I4~ t  + ~ d B ( q l l ) q ~ u o 2  + O(u;) (8) 

where 30 is the q-independent part of the free energy 
density and k ,  = 2dK is the modulus of bending rigidity 
of one membrane. We ignore the effects of Gaussian 
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curvature and surface tension, as is appropriate for 
membranes of fixed genus that have self-assembled from 
solution. 

The general solution to eq 5 between membranes subject 
to the spatial periodicity imposed by eq 6 may be written 
as a Fourier series: 

m 

4(x,z) = [ A ,  exp(q,z) + B, exp(-q,z)l exp(inqllx) 
n = - m  

(9) 

where q n 2  = K~ + and A,  and B, are determined in 
each intermembrane region from the boundary conditions; 
the dependence of 4 on UO, a, d,  and q1 stems from these 
boundary conditions. The free energy per unit area 3 is 
the sum of an electrostatic contribution and of the 
translational entropy of the small ions. It can be shown 
that this free energy per unit area may be written as21,22 

where 21 and 2 2  denote the upper and lower surfaces of 
an undulating membrane, and d S  is the membrane area 
element. Only terms of order uo2 in eq 10 are relevant for 
the determination of the membrane bending modulus. 
Hence, we need only to calculate 4 to order uo2. Fur- 
thermore, only the n = 0, f l  terms in eq 9 are important, 
and we find 

cash ( K Z )  + 
sinh (Kd) 

The desired membrane free energy density is obtained by 
performing the integral given in eq 10 using 4 of eq 11 in 
the limit of Kd << 1, and then expanding the result around 
411 = 0 and q1 = 0. The free-energy may be written in the 
form 

4 [ * ( ~ d ) ~  + K ' ( K ~ ) ~  + O(~d)-~]d 'q :u~)  (12) 

where O(Kd)-' indicates that we have omitted, for the sake 
of brevity, all but the lowest order Kd terms in the 
coefficient of q 1 ~ 0 2 .  

The term in the free energy proportional to q:uo2 gives 
the electrostatic contribution to the compressional mod- 
ulus, while the term proportional to q114~~2  gives the 
electrostatic contribution to the bending modulus in the 
short-distance Debye-Huckel regime 
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Expanding the free energy to order uo2, the q-depend- 
ent part of the free energy can be written ad1 

Figure 3. Sketch of a section of concentric cylindrical charged 
membranes showing three membranes with radii of curvature R + 2d,  R, and R - 2d for d << R. The electric field between 
membranes vanishes on the dashed curves a t  R + dl  and R - d3, 
separating the space between membranes into regions 1 to 4. 

where X = e/2& and 1 = e2/4atwT were defined in section 
1. Note that this result is independent of the screening 
length K-1 or equivalently the ionic strength n,. Further- 
more, this scaling of bk, with d, bk, - d3, differs by six 
powers of Kd from previously reported results,8 612, - d-3, 
quoted in eq 2. This difference is not surprising and can 
be understood from the essentially different nature of 
membrane undulations assumed for each calculation. The 
present calculation treats an entire stack of fluctuating 
membranes in the limit of long wavelength fluctuations 
(qlld << 1) and small intermembrane phases (qld << 11, 
whereas in ref 8 the membrane free energy density was 
obtained for two charged membranes undulating out of 
phase (2qld = a). One expects that in the latter geometry 
the free energy contains contributions from the compres- 
sional modulus in addition to the bending terms. Indeed, 
eq 12 contains the scaling relation of ref 8 as the coefficient 
of a term in qfuo2, indicating that it is a part of a q-de- 
pendent correction bB(ql1) to the compressional modulus 
B(q11) = Bo + mqll) 

where Bo = u2/ew(Kd)2 = T/7rX21(Kd)2 is the average 
electrostatic contribution to the compressional modulus. 

As a check of our result for 6k,, we repeated the 
calculation for fixed concentric cylindrical membranes of 
separation 2d, as shown in Figure 3, in the short-distance 
Debye-Huckel limit. The bending modulus in this case 
is given by the coefficient of the 1/2R2 term in an expansion 
in dlR of the free energy density for a membrane with 
radius of curvatureR >> d. Since the calculation is tedious 
but quite straightforward its details are not given here. 
The resulting expression for bk, is, however, identical to 
the one given in eq 13 for the case of a planar stack of 
undulating membranes. In fact, one can show that these 
two geometries give the same bending modulus for any 
value of Kd. 

2.2. Constant Surface Potential. Another case of 
interest where the bending constant can be calculated is 
the case of two conducting and undulating membranes, in 
which the membranes are kept a t  a constant potential 60. 
The free energy in the linear Debye-Huckel regime for 
two such membranes with well-defined wavevector qll, and 
amplitude UO, and with a relative phase shift B has been 
given." In terms of our notation, B = 2q,d and the 
undulation profiles of the two membranes are uo cos (qx) 
and uo cos ( q x  + 2q,d), respectively. Since the phase 
between the two undulating membranes B = 2qLd is kept 
as a parameter, the electrostatic free-energy and the 
bending constant depend on this phase angle. 

9 = 9 - -cw4:K2ql 1 tanh2 (Kd) (tanh-' (2q1d) + 0 2  
2 sinh-' (2q1d) cos (2q,d))u: (15) 

where 90 is the electrostatic free energy for two flat 
membranes, and q12 = K~ + q1I2. Expanding eq 15 to fourth 
order in 411 and then looking only at  the short-distance 
Debye-Huckel limit (Kd << l ) ,  we obtain the following 
electrostatic contribution for the bending modulus bk, 

2 

bk, = - ( ~ d ) ~ ( 1 6  - 7 cos (2q,d)) 9oK 
The above expression for bk, is positive for any phase 2q ,d; 
i.e., electrostatic interactions always rigidify the mem- 
brane. As in the constant charge problem, the maximal 
rigidity is obtained in the case where 2q,d = a, corre- 
sponding to an out-of-phase mode of the two membranes, 
whereas the minimal rigidity is obtained for the (in-phase) 
undulation mode, 2q1d = 0. 

It is interesting to compare the expression for bk, for 
conducting and insulating charged membranes. In the 
latter, eq 16, bk, - d5, whereas in the former, eq 13, bk, - d3. Hence in the short-distance Debye-Huckel regime 
the bending constant does not scale in a universal way but 
depends on the specific details of the model. Note, 
however, that as Kd becomes large, the constant potential 
and constant surface charge density contributions to 6k, 
have the same scaling behavior.23 Furthermore, it should 
be added that at  a given potential 40, in the short distance 
Debye-Huckel regime, the average induced charge density 
is Qind - 40twK2d. Hence, the electrostatic contribution to 
the bending modulus can be written as bk, - d3Uind2/cw-t0 
be compared with eq 13 for the constant surface-charge 
case. 

3. Ideal Gas Regime 
The limit of low electrolyte concentration and low 

surface charge density is called the ideal gas regime since 
the main contribution to the free energy is dominated by 
the counterion entropy and hence follows an ideal gas law. 
Previous conjectures for the scaling form of bk, in the 
ideal gas regime were made on the basis of consistency 
with known scaling relations: one simply requires the ideal 
gas result to agree with the Gouy-Chapman and the short 
distance Debye-Huckel results a t  the crossover boundaries 
X = d and K2Ad = 1, respectively. The proposed scaling 
form for bk, in the Gouy-Chapman regime has been verified 
in a recent calc~lat ion.~ However, as argued in section 2, 
the form of bk, in the short-distance Debye-Huckel regime 
should be that given by eq 13. A consistency argument 
now indicates that the bending modulus in the ideal gas 
limit should scale as 

d3 bk, - T- 
X 2 1  

i.e., the same scaling form as in the short-distance Debye- 
Huckel regime (bk, being independent of the ionic strength 
in this regime). One can check this conjecture by 
considering once again the concentric cylinder geometry. 
The exact solution of the full PB equation between two 
concentric charged cylinders in the absence of added 
electrolyte has been known for some time.24 This solution 

(23) Duplantier, B. Physica A 1990, 168, 179. 
(24) Fuoss, R. M.; Katchalsky, A.; Lifson, S. Proc. Natl. Acad. Sci.  

U.S.A.  1951, 37, 579. 
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can be used to obtain the free energy per unit area and 
bending modulus of a charged membrane in a concentric 
array of membranes in conditions of low surface-charge 
density, X > d ,  and zero salt concentration, K - 0. The 
calculation closely follows that of ref 9 for the Gouy-Chap- 
man regime, and hence an abbreviated derivation is given 
in the following. 

Consider three membranes of radii of curvature R + 2d ,  
R ,  and R - 2d, respectively, selected from a concentric 
array of weakly charged membranes as shown in Figure 
3. The region between membranes contains only dissolved 
counterions. The potential between two such cylinders is 
radially symmetric, and the electric field vanishes some- 
where near the mid-point between the cylinders. We 
designate the radii a t  which the field vanishes by R + dl 
and R - d3. The positions of the membranes and of the 
zeros of electric field divide the space between the 
membranes into four regions, as indicated in Figure 3. In 
each region, the solution to the full PB equation for 
cylindrically symmetric potentials is given by 

Harden et al. 

( 2 2 )  

(23) 

y (r )  = log [ (*) sin2 ( P  log A r ) ]  (18) 
2P2 

where y = e41 T is the dimensionless electrostatic potential, 
A and /3 are arbitrary constants to be determined by the 
boundary conditions, and ~1~ = nle2/twT, where nl is set 
by the choice of zero of potential. In accordance with the 
convention of ref 24, nl is taken to be the average 
concentration of counterions between two membranes, nl 
= 2aR/e[(R + d1I2 - R21. 

The boundary conditions on the potential in each region 
require the electric field to vanish at  r = R + dl  and r = 
R - d3, and the normal component of the electric field on 
the surface of each membrane to be given by &il = -alew, 
where a denotes the magnitude of the negative surfase- 
charge density. In terms of y ( r ) ,  these_conditions are (Vyl 
= 0 on r = R + d l  and r = R - d3, and Vy.6 = 2/X on each 
side of the membranes at  r = R ,  R - 2d, and R + 2d. 
Consider, for instance, region 1 of Figure 3. Application 
of these boundary conditions on y ( r )  from eq 18 to the 
counterion distribution in region 1 yields 

(19)  

(20) 

In principle, these transcendental equations give PI and 
A l  for any A, R,  and dl .  However, we are only interested 
in their behavior in the limit of small dl/X and d l /R ,  where 
an expansion can reduce these to simple algebraic equa- 
tions. As we want to calculate the membrane bending 
constant, we must expand to order R-2. The expansion of 
eq 19, along with eq 20, gives the value of P1 

1 + P1 cot [P1 log Al(R + d,)l  = 0 

1 + P1 cot [P1 log AIRl = R/X 

+ O(d1/X)3 + O ( d l / R ) 3  ( 2 1 )  

Application of the same procedure in regions 2-4 gives 
analogous expressions for P 2 ,  P3,  and P4. The expression 
for &, for instance, can be obtained from eq 21 by replacing 
dl  and X with -da and -A ,  respectively. The expressions 
for 62 and 0 4  are used to determine the values of dl and 
d3. The requirement of continuity in the counterion 
concentration at  the zero field radii ( r  = R - d3 and r = 
R + d l )  is satisfied if 01 = 0 2  and P 3  = (34; the solutions to 
these equations give 

where c = 112 - dl3X + d2/5X2. 
The free energy per unit area 31 of side 1 of the 

membrane at  r = R is given in terms of the integral of the 
counterion free energy density in region 1. One can show 
that 31 is given in terms of y1 by9 

3, = "[log (:) - y ( R ) ]  - g J R + d l  dr r( $)' (24)  
e 2Re2 

where nt is an arbitrary reference counterion density. An 
analogous expression may be given for 3 3 .  After some 
simple manipulations 31 may be written in terms of P1 as 
follows: 

r 

Tlog(-$[/31'+ e (1-!)'I) (25)  

The expression for 3 3  can also be derived from eq 25 by 
replacing dl  and X with -d3 and -A. Using the expressions 
for 01, P 3 ,  d l ,  and d3 and expanding the logarithmic terms, 
we obtain an expression for 3 = 31 + 3 3 ,  the total free 
energy per unit area of the membrane. The coefficient of 
the leading order term in 3 proportional to R-2 gives the 
electrostatic contribution to the bending modulus; we find 

As expected from the scaling analysis, 6k,  - d3 in the 
ideal gas regime. Furthermore, this expression for 6k,  is 
identical to that given in eq 13 for the short-distance De- 
bye-Huckel regime; this will be discussed in the next 
section. 

4. Discussion 
We have studied in detail the electrostatic contribution 

to the bending modulus of surfactant membranes in the 
limit of small separation between membranes and low 
surface-charge density. Two situations were considered: 
(i) stacks of lamellae undulating in-phase in the presence 
of electrolyte (the short distance Debye-Huckel regime); 
(ii) membranes arranged in concentric cylindrical geom- 
etry, both with added electrolyte (the short distance De- 
bye-Huckel regime) and without added electrolyte (the 
ideal gas regime). In these two regimes, where the distance 
between membranes 2d is smaller than the Debye-Huckel 
screening length K - ~  and the Gouy-Chapman length A, the 
electrostatic contribution to the bending modulus is small 
and can in general be smaller than the intrinsic value of 
the bending modulus. Furthermore, 6 k ,  has been found 
to be independent of ionic strength in these two regimes. 
This is because in these low charge-density limits the free 
energy density of the membrane is dominated by the 
translational entropy of the counterions. However, the 
electrostatic contribution to the bending modulus varies 
strongly with the dilution (measured here by the distance 
between the membranes): 6k, - d3/X2. In fact, we find 
the same prefactor in both the short distance Debye- 
Huckel and the ideal gas limits. 
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(Gouy-Chapman regime). In Figure 4b we show the de- 
pendence of bk, on K - ~  for the high charge density regimes. 
Two successive crossovers in the scaling behavior of bk, 
are noted at  ~ - 1  = X and K - ~  = d. 

In this paper we have considered membranes either with 
constant charge density or at  constant electric potential. 
If the membranes are far apart (in the regimes where the 
electrostatic interactions are dominant), constant charge 
and constant potential boundary conditions lead to the 
same scaling laws for the bending modulus as a function 
of the three relevant length scales. In the short distance 
regimes, the scaling of bk, with d depends on the choice 
of boundary conditions, i.e., constant charge density or 
constant potential. However, in real systems the situation 
is always intermediate between constant charge and 
constant potential and one should certainly include in the 
theory the coupling between charge density fluctuations 
and membrane undulations. In these short distance 
regimes, we have considered only the case of electrostatic 
interactions within the Poisson-Boltzmann mean field 
approximation. When the interlamellar spacing 2d is 
sufficiently small, other types of interactions, such as van 
der Waals or hydration interactions, must be considered. 
One must then go beyond the Poisson-Boltzmann ap- 
proximation and include fluctuations around the average 
concentration profileqZ5 We do not, however, expect these 
complications to be relevant for swollen lamellar phases 
when d is large, even if d < A. 

The theory of the bending elasticity of membranes 
involves two elastic constants, k, and k,. We have focused 
on the electrostatic contribution to the bending modulus 
of mean curvature bk, in this paper since it is most easily 
accessible experimentally. However, the electrostatic 
contribution to the Gaussian bending constant Sk, can be 
directly calculated following an argument of HelfrichZ6 
from an integral of the stress distribution between flat, 
parallel surfaces. Some physical insight into the nature 
of bk, may be obtained by considering the properties of 
bk,. Simple dimensional considerations indicate that the 
scaling of Skc with d ,  A, and ~ - 1  is the same as that for bk, 
in all regimes, including the short distance regimes 
discussed in this paper. Moreover, we find that Sk, is 
negative, favoring the formation of disconnected vesicles. 

No systematic experimental verification of these scaling 
laws for bk, exists. Experimentally, predicted scaling laws 
such as the ones shown in Figure 4 can be checked by 
solvent dilution (at constant electrolyte strength) or by 
varying the electrolyte concentration. In particular, the 
small charge density and short distance regimes can be 
probed by studying mixtures of charged and uncharged 
surfactants with a small fraction of charged  constituent^.^^ 
The Gouy-Chapman length X can then be very large 
(perhaps a thousand angstroms) and hence even with 
swollen lamellar phases one can have d < A. 

Figure 4. Sketch of electrostatic contribution to the membrane 
bending modulus dk, as a function of the Debye-Huckel screening 
length K - ~  at fixed d and A. In (a), we show the case of weakly 
charged membranes, X < d.  With increasing K - ~ ,  dk, first scales 
as K-3 and then crosses over to a constant value for K-I > d .  In 
(b) we show the analogous plot for strongly charged membranes. 
In this ca8e after an initial regime of bk, - K-3, dk, first crosses 
over to a linear regime, dk, - ~ - 1  at K - I >  X followed by a second 
crossover to a constant value for K - ~  > d. 

The modulus bk,  is much smaller than the value 
calculated in a previous work for two membranes having 
an out-of-phase periodic modulation (peristaltic mode): 
bk, - l/d3X2 in the presence of salt (the short distance 
Debye-Huckel regime) and bk,  - X in the absence of salt 
(the ideal gas regime). The peristaltic mode involves not 
only the bending of the membranes but also the nonuni- 
form compression of the ionic solution between the 
membranes. The compression dominates the free energy 
of the peristaltic mode leading to very high values of the 
apparent bending constant bk,. The undulation mode cor- 
responds to the usual short wavelength excitations of lamel- 
lar phases and should thus be used to calculate the 
membrane bending constant bk,. 

With these results, summarized in Table I, a complete 
theoretical picture of the electrostatic contribution to the 
bending rigidity of charged surfactant membranes may 
be given in terms of three relevant experimental length 
scales: d (determined by dilution), K - ~  (determined by 
electrolyte strength), and X (determined by the membrane 
surface charge density). In the usual Debye-Huckel regime 
when K - ~  is the smallest length (region iii of Figure l), bk, - K - ~ A - ~ .  On the other hand, in the weakly charged regimes 
for which d is the smallest of these lengths (regions i and 
ii of Figure l ) ,  bk, - d3. In each of these regimes, the 
electrostatic contribution to the bending energy is small. 
We summarize schematically the dependence of bk, on K - ~  

with d and A held fixed in Figure 4. The case of weakly 
charged membranes (d  < A) is shown in Figure 4a where 
one crossover in the scaling behavior of bk, as a function 
of K - ~  is seen. In the other limit of high charge density 
(regimes iii, iv, and v of Figure l), the electrostatic 
contribution to the bending modulus varies as bk, - K - ~  

if Kd > 1 and KX > 1 (Debye-Huckel regime), bk,  - T / K  
if Kd > 1 (intermediate regime), and bk, - Td if Kd < 1 
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