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Abstract: Although single surfactants rarely form vesicles spontaneously, 
mixtures of two surfactants can lead to spontaneous vesicle formation. By 
considering the curvature elasticity of the surfactant bilayer, we show 
theoretically how the energetic stabilization of mixed vesicles can occur. In- 
teractions between the two species (of the proper sign and magnitude) are 
crucial to stabilizing these vesicles. These interactions lead to composition 
asymmetries and effective spontaneous curvatures of the inner and outer 
layers that are of equal and opposite signs. 
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I. Introduction 

Since vesicles rarely form as the equilibrium 
structure of simple surfactant-water systems, non- 
equilibrium methods, such as sonication of lameUar 
liquid crystalline phases, are usually necessary to 
obtain a metastable phase of vesicles, which may 
reequilibrate back into the multilamellar, liquid 
crystalline structure. Recently, however, Kaler et al. 
[1] have reported a general method for producing 
equilibrium phases of vesicles of a controlled size. 
The vesicles form spontaneously upon mixing sim- 
ple surfactants with oppositely charged head 
groups. Most previous reports of spontaneous vesi- 
cle formation have also involved surfactant mixtures 
[2--5]. Using the charge as a control parameter has 
both chemical and physical advantages since a wide 
variety of head group, counterion, and salt 
chemistries can be prepared and studied. 

In this paper, we use the concepts of curvature 
elastic theory [6] to explain the stability of vesicles 
formed in mixed surfactant systems. In systems 
composed of a single surfactant, the curvature 
energy of a bilayer dictates that the energy of a 
phase of spherical vesicles is never lower than that 
of a multilamellar, liquid crystalline phase [7, 8]. 
This is because the bilayer is composed of two am- 

phiphilic monolayers which, in the single surfactant 
case, have the same spontaneous curvature [6]. 
Since the two layers have curvature of opposite sign 
(e.g., the inner one being concave with respect to 
the water, and the outer one convex), the system is 
frustrated. Small vesicles, where the vesicle radius 
is of the order of the surfactant size, can be of lower 
energy than fiat bilayer, as discussed in [9--12]. 
However, they may be of higher free energy than 
small micelles. In this work, we consider the case of 
large vesicles and discuss their stability with respect 
to lamellar phases; this feature can be compared 
with the experimental phase diagrams [13]. We find 
[7, 8] that the stabilization of the vesicles by surfac- 
tant mixtures only occurs when interactions of the 
surfactants is considered; ideal mixing of the two 
components does not yield vesicles as the ground 
state. These results can be used to see how the in- 
teractions can be exploited to control and stabilize 
the vesicle phase. 

II. Mixed vesicles 

In contrast to the situation for single amphiphiles, 
where large vesicles are usually not energetically 
stable in comparison with fiat bilayers, vesicles 



4 Progress in Colloid & Polymer Science, Vol. 84 (1991) 

composed of two amphiphiles can have lower cur- 
vature energies than fiat films. The curvature 
energy [6--8] per unit area of the vesicle is given by 

fc = 2K[(c + c0) 2 + (c - -c i )  2], (1)  

where K is the bending elastic modulus [7, 8], q 
and c o are the spontaneous curvatures of the inner 
and outer monolayers, and c is the actual curvature 
of the inner layer. For the case of single surfactant 
systems, in the limit of small curvatures, c o = c~. In 
this case, the minimum of fc with respect to c im- 
plies that c = 0; fiat bilayers are the lowest bending 
energy state. For mixed surfactants, constitutive 
relations for effective spontaneous curvatures of the 
inner and outer layers, c i and c o are needed. 

For simplicity, we consider a model where the 
spontaneous curvatures of films composed of each, 
single surfactant are equal, cl = c 2, and define ¢/as 
the volume fraction of surfactant type "2" in the 
system. In addition, we define ¢/~ and ¢/0 as the 
volume fraction of surfactant "2" in the inner and 
outer layers, respectively. The composition differ- 
ence between these two layers is rp = 1/2(¢/0 -- ~i), 
with the constraint of fixed ~, --- 1/2(¢/0 + ~,~). 

We now describe a simple statistical model for the 
surfactant head-head interactions which allows for 
a unified treatment of the free energy of the system 
including both the elastic, entropic, and interaction 
contributions. Our basic assumption is that the in- 
teraction between head groups alone determines 
the spacing between surfactants at the interfaces, 
while the resulting compression of the surfactant 
tails determines the spontaneous curvature of each 
monolayer. (In [11], we shall relax this assumption.) 
In this case, the spontaneous curvature depends 
directly on the mean spacing between surfactant 
head groups as a function of composition, ¢/. 

We first consider a monolayer with a repulsive in- 
teraction +J between like head groups, and an at- 
tractive interaction, - J  between opposite head 
groups. This suggests an Ising model description 
for the energy H of a two-component mixture: 

H = ~ JS~Sj, ( 2 )  

where the sum over (i]) includes only nearest 
neighbor pairs. The constituents are labeled by i, 
and S i = +1 (--1) denotes the presence of surfac- 
tant (2). Furthermore, the attractive or repulsive 

interactions result in a local deformation of the 
bond distances compared to their values for the 
pure surfactants (which are assumed to have the 
same bond lengths). We describe this by a quantity 
Aij, which is the change in the bond length bet- 
ween surfactants at nearest-neighbor sites i and j. 
Finally, there is an elastic-restoring force, with 
spring constant k: 

H = ~. S ~ S j -  B(1 -- SiSj)A 0 + - ~  A . (3) 
(ij~ 

Here, B represents the strength of the coupling be- 
tween the composition and elastic degrees of 
freedom. Equation (3) represents the compressible 
Ising model. 

The mean-field value of (A,) is found by 
minimizing Eq. (3) with respect to (Ais): 

(A~j) = B(1 -- (S~Sj))/k ; (4) 

the resulting expression for the free energy per sur- 
factant h is 

B 2 
h = l ( S ,  - (1  - ( s ,  sj ) 2 . (5)  

In random mixing, the nearest-neighbor correlation 
function (SiSj) can be found by weighting the two 
possible values by the appropriate product of in- 
dependent  probabilities for finding surfactants 1 
and 2 at each site: 

( s i s j )  = (1 - + C - 2 ,(1 - 

= ( 1  - -  2 ¢ / )  2 . (6) 

Simple models for the packing of surfactant 
molecules at a surface yield a spontaneous cur- 
vature which depends linearly on the mean spacing 
between polar head groups. Within the model of 
the previous section, the change in the spon- 
taneous curvature depends on (Aij), and hence on 
I s i s j l :  

/ /  ( 1  - -  ( S i S j ) )  = - -  (7)  - -  c ( 0 )  = 7 

The parameter ]/is of order a -1, where a is a micro- 
scopic length. The precise value of ] /can be obtain- 
ed, although it is somewhat model specific [11]. 



Safran et al., Spontaneous vesicle formation by mixed surfactants 5 

Considering now the propert ies of a bilayer, and 
using the definitions of the composi t ion asym- 
metries discussed above, we arrive at the following 
expressions for the effective spontaneous  cur- 
vatures: 

(8)  

co = 5 ( ~ )  - a ( ~ , ) ~  - ~ ( ~ , ) ~  (9) 

where  

e = C1(1 - -  ~ )  + C2~ + fl¢(1 - -  ¢ ) ,  (10a)  

a = (c 1 - c2) - 8 ( 1  - 2 ~ , ) ,  (10b) 

These formulae are writ ten for the general case 
where  the individual spontaneous  curvatures are 
unequal .  For the case where  q = c 2, the effective 
spontaneous  curvature of the interacting system is 
reduced  (for fl > 0) compared  with q .  This reduc- 
tion is just what  is necessary to stabilize the vesicle 
so that the effective spontaneous  curvatures of the 
inner and outer  layers are equal and opposite,  thus  
relieving the frustration present  in the single surfac- 
tant case. For ideally mixed, or non-interacting sur- 
factants (fl = 0), a vesicle composed  of a single sur- 
factant has an outer  layer which  satisfies the 
spontaneous  curvature, but  a frustrated inner layer. 
Interactions be tween  the two surfactants, however, 
can result in a contribution to the spontaneous  cur- 
vature which  is opposi te  in sign to both q and c 2. 
If more of these pairs are placed on the inner layer, 
one can stabilize the vesicle so that w h e n  c = ci --- 
--c o , the system is at its lowest curvature energy 
state and the frustration is relieved. This is seen 
quantitatively from Eqs. (8) and (9) where  the 
choice 

¢ = + (e/p) v2 (11) 

results in c i = --c 0. Note that this stabilization is 
only possible if the interaction terms are con- 
sidered. 

With this model ,  the curvature free energy of 
Eq. (1) then becomes  

fc = 4K[(c - -  a(o) 2 + (5(q]) --  fl~a2) 2] . (12) 

Thus, the spontaneous  curvature of the bilayer is c 
= a(a. This describes a flat bilayer, unless  (p #0. We 
must  now determine the value (o*, which  minimizes 

the free energy as a function of ¢. When  c = a~o, the 
free energy per surfactant F c is 

F c = 2 K a ( c ( u / )  - -  fl¢2)2 

= 2 K a [ c ( ¢ ) 2  _ 2flc0g)¢2 + fl2¢4], (13) 

where  a is the area per  polar head  group. The con- 
tribution of the interaction terms of Eq. (5) to the 
free energy per surfactant is 

F ~ = / ( 1 - - 2 V )  2 - -  
8B z 

k • 
~ ( 1 -  ¢ ) :  

[ B2 1 + 4J - 8 - -  (1 - 6¢/(1 - ¢])) 
k 

~p2 

B 2 
- 8 - -  # .  (14)  

k 

Similarly, for small values of ¢, the contribution due  
to the entropy of mixing is 

U 

F m = kT  i ~ , l og  ~/ + (1 - -  ~) log (1 - -  ~u) 
i_ 

1 (  1 -)rp2 • 

+ T ¢(1 ¢) 

1 (__~__~ 1 ) ]  
+ _ _  + ¢]4 (15) 

12 (1 - -  ~,)8 • 

The total free energy per surfactant can be wri t ten 
a s  

F = F o --~,~p2 + Acp4, (16a) 

where  

8 
c = 4 K a B c ( ¢ )  - -  4J  + - -  B2(1 - -  6~(1  - -  ~)) 

k 

/ (16b, 
2 ~ , ( 1 -  ~,) 

A = ~ + (1 V/) 3 8 ~- , (16c) 
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and F 0 is independent of ~a. Equations (15) and (16) 
are valid in the high "temperature" limit. This cor- 
responds to interaction terms J and B/k,  which are 
small compared with kT. In this limit, e - ( T  c - -  T )  

and B - T, where T c --- Kaf l c (g] ) .  Then, a spon- 
taneous vesicle phase characterized by ¢ ~= 0 will 
occur below a second order phase transition at T = 
To. This suggests that it will be fruitful to more ful- 
ly examine the case of low temperatures, or the case 
of strong interactions between the constituents [11]. 

III. D i scuss ion  

For e < 0, the minimum free energy state is com- 
posed of flat bilayers where the two monolyers have 
identical compositions (~a = c = 0). When e > 0, the 
free energy is minimized by a non zero value of ~a 
and hence a non-zero curvature. However, the vesi- 
cle phase is limited to a finite region of the phase 
diagram as a function of the relative composition ¢/, 
as well as the absolute concentration of amphiphile 
~s. This limitation arises from the imposition of 
packing constraints on the vesicles. This enables an 
estimate of the phase diagram at fixed values of 
temperature, ]/, cl, and c 2 as a function of concen- 
tration. Neglecting polydispersity, the volume frac- 
tion of the system occupied by vesicles is 

4~ 
¢~ = - -  n R  3 , (17) 

3 

where R = 1/c* is the vesicle radius and n is the 
number density of vesicles. For large vesicles, the 
volume fraction of surfactant is 

Cs = 8 n n r ~ R 2 .  (18) 

Eliminating n, we find that 6r3/R = CJcp. The 
vesicles cannot be overpacked (¢  must be less than 
one); we take the value of ¢ = 1 as the bound of 
stability of the vesicles with respect to the lamellar 
phase where steric constraints are much weaker. An 
approximation to the phase boundary as a function 
of (a s (the total volume fraction of surfactant) and g~ 
(the fraction of surfactant that is type "2") is then 
given by the locus of points which satisfy 

r G = 6~c*(g]) ,  (19) 

where 

c* = a(g~)~a*, (20) 

where ¢*(¢/) is the value of (a that minimize 
Eq. (16). A more detailed discussion of the phase 
diagram can be found in [8, 11]. 

In summary, we have shown how interactions 
between surfactants can stabilize a phase of 
spherical vesicles with respect to a fiat lamellar 
phase. These interactions require that the effective 
spontaneous curvature of the film have a term 
quadratic in the composition. The physical origin of 
this stabilization is the tendency of "1--2" surfactant 
pairs to have a different bond distance from the 
average of "1--1" and "2--2" pairs. It is then possi- 
ble for the effective spontaneous curvature of a film 
composed mostly of "1-2" pairs to be quite different 
(even in sign) from the spontaneous curvature of 
the pure films. In the case where the curvature 
energy dominates, the vesicle is then stable; the 
outer layer, for example, may consist mostly of 
"1--1" pairs and the inner layer of the vesicle may 
be mostly "1--2". The concentration asymmetry of 
the two layers is such that the effective spontaneous 
curvatures of the inner and outer layer are equal 
and opposite; the frustration of one of the layers 
that destabilizes vesicles composed of a single sur- 
factant is thus prevented. 

Even within the context of this model, several 
outstanding issues remain. The first is to explore 
the interactions and mixing effects more generally 
for both the strong and weak interaction case [11]. 
In addition, the case of mixed amphiphiles of long 
and short chains should be studied. Finally, the 
microscopic interactions which determine the dif- 
ferent head spacings in ionic systems should be ex- 
plored so that the interaction parameters fl can be 
related to charge and salinity. 
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