STABILITY AND PHASE BEHAVIOR OF MIXED SURFACTANT VESICLES
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Recent experiments have shown that mixtures of two surfactants can
lead to spontaneous vesicle formation. We show theoretically how the
cnergetic stabilization of mixed vesicles can occur by considering the
curvature elasticity of the surfactant bilayer. Interactions ‘between the
two species (of the proper sign and magnitude) are crucial to stabilizing
these vesicles. These interactions lead to composition asymmetries and , : St
effective spontaneous curyatures of the inner and outer layers that are S e
of equal and opposite signs. The predictions of the ranges of stability

of the various phases as a function of the three concentrations (solvent -

e.g., water - and the two ampbhiphiles) are in qualitative agreement with

recent experiments. LIS
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INTRODUCTION

- Applications of vesicles, such as cleaning, catalysis, and microencapsulation for ©
' drug delivery, depend on a simple and controlled method for the generation of vesi-':
“cles with a well defined average size.. Since vesicles rarely form as the equilibrium ‘
structure of simple surfactant-water systems, non-equilibrium methods, such as

Bii sonication of lamellar liquid crystalline phases, are usually necessary to obtain a
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metasta.ble phase of vesxcles which may re-ethbrate back into the multilamellar,
liquid crystalline structure. Recently, however, Kaler! et al. have reported a gen-
eral method for producing equilibrium phases of vesicles of a controlled size. The
vesicles form spontaneously upon mixing simple surfactants with oppositely charged
head groups. Most previous reports of spontaneous vesicle formation have also in-
volved surfactant mixtures?3:49 Using the charge as a control parameter has both

chemical and physical advantages since a wide variety of head groups, counterions,
and salt chemistries can be prepared and studied.

In this paper, we use. the concepts of curvature elastic theoryS to explain the
stability of vesicles formed in mixed surfactant systems. In systems composed of
a single surfactant, the curvature energy of a bilayer dictates that the energy of a
phase of spherical vesxcles is never lower than that of a multilamellar, liquid crys-
talline phase. This is because the bilayer is composed of two amphiphilic mono-
layers which, in the single surfactant case, have the same spontaneous curvature®,
Since the two layers have curvatures of opposite sign (e.g., the inner one being con-
cave with respect to the water and the outer one convex), the system is frustrated.
If, for example, the vesicle radius is chosen so that the outer layer has matched
its curvature to the spontaneous curvature, the curvature energy cost of the in-
ner layer, with the curvature of the opposite sign, is higher than the correspond-
ing energy cost of a lamellar phase composed of flat bilayers. The only way that
the lowering of the curvature energy by the outer layer can exceed the gain .a en-
ergy of the inner layer is if the outer layer has significantly more molecules than the
inner layer. However, this is not the case for large vesicles, whose radius is much
greater than the surfactant size. Small vesicles, where the vesicle radius is of the or-
der of the surfactant size, can be of lower energy than flat bilayers, as discussed in
Ref. 7,8,9,10. However, they may be of higher free energy than small micelles. In
this work we consider the case of large vesicles and discuss their stability with re-
spect to lamellar phases; this feature can be compared with the experimental phase
diagrams!!. We find that the stabilization of the vesicles by surfactant mixtures
only occurs when interactions of the surfactants are considered; ideal mixing of the
two components does not yield vesicles as the ground state. These results can be

used to see how the interactions can be exploited to control and stabilize the vesicle
phase.

CURVATURE ELASTICITY

We consider a single monolayer at a water/oil interface. In the limit of large

vesicles, with radii much larger than the surfactant sizc, §, the energy to deform the : .3 {

monolayer by shape or size changes can be written phenomenologically as an expan-
sion in the two local curvatures ¢ and cj ; the small parameter in this expansion is

cé, where c is of the order of either ¢jj or ¢ . Keeping terms up to quadratic order
and noting that the curvature energy per unit area, fc must be symmetric in ¢; and

¢ if there is no orientational order of the surfactant in the surface of the film, onc
finds®

1 _
fe= 51\”(6” +c ~ 26’5)2 + K'c”cl. (1)

. This expression accounts for the energy cost for bendmg a surface; deviations

of the average curvature from the spontaneous curvature, ¢, raise the energy of the
' 'system by an amount proportional to K'. The second term in Eq. (1) accounts for
. ‘the energy cost for creating saddle-type deformations (e.g. ¢ > 0, ¢, < 0), and the

‘modulus K’ is termed the saddle-splay modulus.
The spontaneous curva.ture12 describes the tendency of the surfactant film to
" be either water external (¢, < 0 by convention) or oil external(cy > 0). It is taken

— in the absence of long-range interactions — to arise from the competition be-
. tween the packing areas of the polar head and hydrocarbon tail of the surfactant
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molecules. If the interactions between the polar heads (as mediated through the in-
tervening water and electrolyte) favor a smaller packing area than that dictated by
the tail-oil-tail interactions, the surfactant film will tend to curve so that the heads
{and the water) are on the “inside” of the interface. The bending moduli, X' and
K, arise from the elastic constants determined by the head-head and tail-tail in-
teractions. It is ex4pected that these moduli are mostly sensitive to the surfactant
chain ]engthm’]?”1 . )

Since we limit our discussion to spherical and lamellar structures, where' ¢ =
¢ =cy, it is convenient to rewrite the curvature energy as

1 o o
fe=5K(e+eL=2)* + R(ep=c)’, - @

where K, K, and ¢, are related to the standard K’ by: K' = (K + QI?), K =
-4, ¢, = (K/K")es. In this form for fc, the term proportional to the saddle-

splay, K, vanishes for spherical and lamellar structures and cs is the curvature of
the minimum energy sphere.

SINGLE SURFACTANT VESICLES

We now show that from an energetic point of view, large vesicles, composed
of a single surfactant, are always of higher curvature energy than a flat lamellar
phase. By large vesicles, we mean that the thickness of the bilayer, §, is negligi-
ble compared with the vesicle radius, R. Thus, to first order in the small quantity
¢6 = §/R, the curvatures of the inner and outer layers are equal and opposite. The
total bending energy per unit area is:

fo=2K [(c + co)2.+ (c— ci)Q} . (3)

where ¢, and ¢; are the spontaneous curvatures of the inner and outer monolayers
and ¢ is the actual curvature of the inner layer. For the case of single surfactant
systems, in the limit of small curvatures, ¢p = ¢;. In this case, the minimum of f.

with respect to c implies that ¢ = 0, or flat bilayers are the lowest bending energy
state.

Of course, the two layers do not have curvatures that are exactly equal and op-
posite. Such corrections, which scale as §c are of the same order as the higher order
terms in the curvature expansion which are neglected here. They can, however, be
important for vesicles whose size is comparable with the surfactant size, § and their
study depends on a microscopic model for the bilayers7'9. This regime is outside
the scope of the present work and appears unrelated to the recent experiments on
mixed systems, where typical vesicle sizes are > 5004, much greater than § ~ 10A.
In Ref. 15 we show that these large, energetically unfavorable, vesicles can be sta-
bilized by entropy in the extreme dilute limit. The resulting vesicles, however, are
very polydisperse; their typical size increases with the bending energy as exp(K/T),
where temperature is measured in units where the Boltzmann constant is-unity.

MIXED VESICLES A o
A Effective Spontaneous Curvatures

In contrast to the situation for single amphiphiles, where large vesicles are usu-
ally not energetically stable in comparison with flat bilayers, vesicles composed of |
two amphiphiles can have lower curvature energies than flat films.. The curvature. .
energy of the vesicle is given by Eq.(3) supplemented by constitutive relations for
" the effective spontaneous curvatures of the inner and outer layers, ¢; and ¢, respec-
tively. We denote the spontaneous curvatures of films composed of each, single sur-
factant as ¢} and ¢z, and define ¥ as the volume fraction of surfactant type “2” in
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the system. In addition, we define ¥; and ¥, as the volume fraction of surfactant
“2" in the inner and outer layers, respectively. The composmon difference between

these two layers is ¢ = 7 (z/)o %), with the constraint ¥ = 12 (¥o + ¥3).

Since the physical orlgm of the spontaneous curvature is the mismatch in the : :.}
packing areas of the polar heads and hydrocarbon i:ha.inslz, the nearest-neighbor S
bond distances are linearly related to the spontaneous curvatures. In a mean-field o
approximation, one can write that the effective spontaneous curvature in a given
layer is related to the probabilities that a nearest neighbor pair consists of two sur- o
factants of type 1 (“1 1”), or of type “2" (“2- 2”), or a mixed pair “1-2". One N
then finds¥! '

¢ = (1 — z/1:')261 +ofca+(a+e+ AC)¢i(1 - ;). (4) _:f

with a similar equation for ¢o. The first two terms indicate that “1-1” or “2-2”
pairs have the same spontaneous curvatures as films composed of the single am-
phiphiles. If Ac = 0, the last term in Eq. (4) dictates that the spontaneous cur-
vature of a “1-2” pair is the concentration- dependent, weighted average of the two -
spontaneous curvatures. The term proportional to Ac represents the effects of in-
teractions between the two surfactants and the fact that the effective spontaneous
curvature is not simply the average. We can then write:

VRN S SUUT R G

¢ = &($) + a(¥)$ — B(¥)¢? (%)
co = &) — a(¥)d — B(¥)¢” (6)
‘where o o '
e=c1(1 - 9¥) +cap + B¥(1 - ¥), (Ta) -
o= (c1 — ) = (1 — 2¥), (-
B = Ac. (Tc) ’

With this model, we find that £ is the two-body interaction parameter that is inde-
pendent of .

Further insight into the meaning of these expressions is obtained by considering s
the specific case of two surfactants with identical chains, but different head groups. e
A random mixing approximation for the average distance a; between polar heads in
the inner layers yields:

ai = ay(1 - ;) + ag¥? + (1 — 7)(a1 + a2)¥i(1 ~ ;) (8)

with a similar equation for the average distance between polar heads in the outer
layer. In Eq. (8), a1 and ag are the distances between polar heads in monoclayers
composed of only surfactant “1” or “2”, respectively. The term proportional to 4
represents the effects of interactions of the two surfactants 18 which can either in-
crease (y < 0) or decrease (v > 0) the distance between a molecule of type “1”7 . '
and one of type “2”, compared to the average bond distance, (a1 + a2)/2. The case !
v = 0 represents an ideal mixing where the bond distances follow the average, e.g., a3
for the inner layer, a; = aj(1 — ¥;) + ag®;. With the convention that the curvature! ..
. of the inner layer (heads on the inside, tails on the outside) is positive, the sponta-
"neous curvature is proportional to the product of a positive constant and the differ-
ence between the chain packing distances {which are the same for both surfactants
" and hence are composition independent) and a;. This leads to Eqs. (4)-(6), with §
! proportional to v with a posxtive constant of proportionality. If the bond distance :
between the polar heads in a “1-2” pair is smaller than the average of the “1-1" and '+
2-2” bond distances, § > 0 and the interaction term (~ ¢2) in the expression for
: the spontaneous curvature tends to reduce the values of ¢; and co.




This reduction is just what is necessary to stabilize the vesicle so that the ef-
fective spontaneous curvatures of the inner and outer layers are equal and oppo-
site, thus relieving the frustration present in the single surfactant case. Imagine,
for example, that both surfactants “1” and “2” tend to form monolayers that tend
to bend with the water on the outside (c1,co < 0 by our convention that the in-
ner layer, is water internal and has positive curvature). For ideally mixed, or non-
interacting surfactants (§ = 0), a vesicle composed of a single surfactant has an
outer layer which satisfies the spontaneous curvature, but a frustrated inner layer.
[nteractions between the two surfactants, however, can result in a contribution to
the spontaneous curvature which is opposite in sign to both ¢; and cg. If more of
these pairs are placed on the inner layer, one can stabilize the vesicle so that when

¢ = ¢ = —Co, the system is at its lowest curvature energy state and the frustration
is relieved. .

This is seen quantitatively from Eqs. (4) and (5) where the choice

¢ = +(c/B)/* ; (9

results in ¢; = —co. Note that this stabilization is only possible if the interaction
terms are considered. Thus, vesicles of curvature ¢ = ¢; = ¢ minimize the cur-
vature energy when the composition asymmetry is chosen as indicated by Eq. (9).
Within this model, the curvature free energy of Eq. (3) is zero for such vesicles and

is lower than the curvature free energy 4K&(%)? of flat (¢ = 0), mixed (¢ = 0),
bilayers.

Eree Energy

We now describe a simple statistical model for the surfactant head-head interac-
tions which allows for a unified treatment of the free energy of the system includirg
the elastic, entropic, and interaction contributions. Our basic assumption is that
the interaction between head groups alone determines the spacing between surfac-
tants at the interfaces, while the resulting compression of the surfactant tails deter-
mines the spontaneous curvature of each monolayer. (In Ref. 9 we shall relax this
assumption.) In this case, the spontaneous curvature depends directly on the mean
spacing between surfactant head groups as a function of composition, .

In the remainder of this section, we consider two surfactants which have iden-
tical spontaneous curvatures: ¢; = cg. We first consider a monolayer with a repul-
sive interaction, +J, between like head groups, and an attrective interaction, —J,
between opposite head groups. This suggests an Ising model description for the en-
ergy, H, of a two-component mixture:

H= Y JS:S;, (10)
<ij>

where the sum over < ij > includes only nearest neighbor pairs. The constituents
are labeled by 7, and S; = +1 (—1) denotes the presence of surfactant A (B). Fur-
thermore, the attractive or repulsive interactions result in a local deformation of

the bond distances compared to their values for the pure surfactants (which are as-
sumed to have the same bond lengths). We describe this by a quantity, A;j, the
change in the bond length between surfactants at nearest-neighbor sites ¢ and j. Fi-
nally, there is an elastic restoring force, with spring constant, &:

% :

H= Z (JS,‘SJ'—B(l—S;Sj)A,'j+-2-A,2j> . , (11)
<ij>

Here, B represents the strength of the coupling between the spin and elastic degrees

of freedom. Equation (11) represents the compréssible Ising model.
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The mean-field value of (A;;) is found by minimizing Eq (11) with respect to

(Aij):
<A,’j> = B(“l = <5i5j>)/ka (12)

.The resulting expression for the free energy per surfactant, h, is

. B2 ) v
h=J (S,'Sj) - -2—’;-(1 - (S,‘Sj)) . (13)

In random mixing, the nearest-neighbor correlation function, (S,-S j), can be found

by weighting the two possible values by the appropriate product of independent

‘  probabilities for finding surfactants A or B at each site:

(5i7) = (1= 9P 49— 20— ) = (1 - 291 (14)

Simple models for the packing of surfactant molecules at a surface yield a spon-
taneous curvature which depends linearly on the mean spacing between polar head
groups. Within the model of the previous section, the change in the spontaneous
curvature depends on (A,‘j), and hence on (S;Sj): :

) =0 =7 (1 <S 5; 3)) = B4~ ¥).. (15)
S 4,
The parameter i‘s of order a™ , where a is a microscopic length. The precise value
of f can be obtained, although it is somewhat model specific.

- Considering now the properties of a bilayer, we use this model to derive expres-
sions for the effective spontaneous curvatures, given by Eqgs. (5)-(7). The curvature
free energy of Eq. (3) then becomes

fe=4K [(c - ag) + (e) - ﬂqs?)z} : (16)

Thus, the spontaneous curvature of the bilayer is ¢ = a¢. This describes a flat bi-

layer, unless ¢ # 0. We must now determine the value, ¢*, which minimizes the free

energy as a function of ¢. When ¢ = a¢, the free energy per surfactant, Fp is

F. =2Ko (c(‘(,b) - ﬂ¢2)2 = 2Ko [c(1,b)2 ~ 28c($)4? + ﬂ2¢4] . (17)

where ¢ is the area per polar head group. The contribution of the interaction terms
of Eq. (13) to the free energy per surfactant is

o
Fi= 20207 - 220 [ -85 (- ewa w55t 9

Similarly, for small values of ¢, the contribution due to the entropy of mixing is

Fm:T[¢1o§¢+.(1—¢)§o§(1 V)+3 (Tﬁﬁ_l—zf)>¢ 5 (rbli‘ (1 —1¢)3>(f;}

. i
N ¢

The total free energy per surfactant can be written as

I F=F—ep + A4, (20a)
¥ i .

4

! Y
T i

4
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where b -.‘u‘,

e = 4Kafe(y) —4J —32(1—6¢(1—¢)) ((1 ¢)) (200)

Ti/1 ‘% 1 B2"“ '
=”‘($ a ¢)3) SR <2°C)

and F() is independent of ¢. Equatxons (19) and (20) are valld in the high * temper—
ature” limit. This corresponds to interaction terms, J and 'B/k, which are small
compared with T'. In this limit, ¢ ~ (T = T) and B ~ T, where Te ~ KofBc(¥).
Then, a spontaneous vesicle phase characterized by ¢ # 0 will occur below a sec-
ond order phase transition at T' = T. This suggests that it will be fruitful to more
fully examine the case of low temperatures, or the case of strong 1nteractlons be-
tween the constituents®. :

STABILITY OF MIXED VESICLES

For ¢ < 0, the minimum free energy state is composed of flat bilayers where -
the two monolayers have identical compositions (¢ = ¢ = 0). When ¢ > 0, the
free energy is minimized by a non-zero value of ¢ and hence & non zero curvature,
However, for this to happen for values of B < J, the product 3¢& should be posi-.
tive. Thxs condition, together with the requ1rement that the composition asymme-

try not exceed the actual composition, ¢? < 2, constrains the allowed ranges of
the parameters cj, cg,ﬂ and 3. For example, if ¢) = ¢ < 0 (that is, the surfactants
tend to form micelles in water), then 8 must be positive, implying that attractive
interactions are necessary to stabilize vesicles. This occurs because the attractive
interactions tend to decrease and even reverse the sign of the effective spontaneous
curvature. For negative values of ¢| and ¢g, putting more pairs on the inner layer
would tend to relieve its frustration with respect to the bare sponta.neous curvature,
which prefers water-external monolayers

The constraints for the stability of the vesicle phase, ¢"2 < 11)2 and € > 0, re--
strict the values of the parameters of the model. In addition to these constramts
one requires that the expansion for small curvatures be applicable — i.e., ¢* <<
1/6 where 4 is a molecular size related to the thickness of the bilayer. The allowed
range of interaction strengths has § < 0 in agreement with the previous discussion.
In addition, the interaction strength is bounded from above.

In addition to these constrmnts on the allowed values! oﬂ the interactions, pack-
ing constraints on the (unilamellar) vesicles restrict the allowed values of both the
relative (¢) and total (¢s) concentrations of the surfactants. This enables an esti-
mate of the phase diagram at fixed values of temperature, 3, ¢1, and c2 as a func-
tion of concentration. Neglectmg polydispersity, the volume fract;on of the system
occupied by vesicles is b

t?
e

 (21)

where R = 1/ c* 1s the veslcle radms and n is the- number-densxty of veslcles For
large vesnc]es, the volume fractlo!n of surfactant is - Sl o
CoL. i : o Vi : A .‘ i" e : ¥
' 0 gy=8wméREL - o 1(22)

Eliminating n, we find that 66/R = ¢s/®. The vesxcles ca.nnot be overpacked (<I>
must be less than one); we take the value of ® = 1 as the bound of stability of

the vesicles with respect to the lamellar phase where steric constraints are much °
weaker. An approximation to the phase boundary as a function of ¢s (the total vol-
" ume fraction of surfactant) and 3 (the fraction of surfactant that is type “2”) is

~ then given by the locus of points which satisfy

¢s = 66" (‘b), o ‘ 5(23)

}
i
i
i
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where .
&= ()t - (@8
. and ¢»"‘(1,b) is the value of ¢ that minimizes Eq. (20). The resulting phase diagram

_is shown in Fig. 1. It indicates that the vesicle phase is only stable within a finite

range of compositions, 3. In particular, when ¥ = 1/2, the vesicle phase is unstable
to a lamellar pha.se L

" DISCUSSION -

We have shown how interactions between surfa.cta.nts can stabilize a phase of
spherical vesicles with respect to a flat lamellar phase. These interactions require '
+ that the effective spontaneous curvature of the film have a term quadratic in the o
. composition. The physical origin of this stabilization is the tendency of “1-2” sur- , - ..
factant pairs to have a different bonc{ distancé fr rh the average of “1-1” and “2- 2“

- pairs. It is thén' pohblble for'the effective épor tanedusicurvature 6f a filin composed F
: mostly of “1-2” pairs to be quite dlfferent’(evpn in‘'sign) from the, spontanecus’ cuf: : % i
.- vature of the pureifilms. In the case wheré the curyature energy dommates, the ' "]
* vesicle is then stable; the outer luyer, for éxample, may consist mostly of “1-1” pairs o
- and the inner layer'of the vesicle may be mos tly 41.9". The concentration asymme-

! try of the two layers is such that the effectivejspontaneous curvatures of the inner
. and outer layers aré equal and opposite; the frustration of one of the layers that
: destablllzes vesicles’ composed »f a single surfdctant is thus prevented.

: Even within the context of this model, several butstanding issues remain. The
. first is to explore the mteractlons and mixing! leffects more generally for both the ,
: strong and weak interaction case®. In addition, the case of mixed amphiphiles of ‘ %

i

. long and short chains should be studied. Fmally, the microscopic interactions which
determine the different head spacings in ionic systems should be explored so that
: the mteract:on parameter § can be related to cha.rge and salinity.

H
i
i
i
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; Flg 1. Stability- boundary for the vesmle ph as & function of the composition
asymmetry ¥ dnd the water volume fraétion Curves are shown for three values
“of the interaction p:irameter B. For 51mplxc1ty,r’\)ne have taken J = B = T = 0. The
figure is 'drawn for he case where the |spontanl=:ous turvatures of the two surfactants '
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