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We study the conformation of thin liquid films on rough or heterogeneous solid substrates.
The liquid-substrate interaction dominates for sufficiently thin filins, and heterogeneity roughens
the liquid interface. As the film thickens, surface tension becomes increasingly important, and
the liquid interface flattens. A gencial equation for the equilibrium interface shape is derived.
Analytic results are obtained in the limit of weak disorder for rough or self-affine surfaces as
well as chemically heterogeneous sclids. The effect of disorder depends strongly on the wave
vector. Fluctuations at scales smalier than the film thickness or a “healing length” & produce
little roughness. At larger wavelenygihs, the film conforms to the local fluctuations. Exact
numerical solutions of the general equaiion are presented for surfaces with square grooves. These
confirm the qualitative predictions of the analytic theory, and are in quantitative agreement
when the depth of the grooves is small. The variation of roughness with film thickness, as
well as the calculated adsorption isotherms, are compared to recent experimental results. We
show that previously measured isotherms can be reproduced by corrugated surfaces with a
single characteristic length scale, and do not necessarily imply that the surfaces studied were

self-similar.

I. INTRODUCTION

Studies of interfacial phenomena generally focus on
ideal flat and homogeneous surfaces.!~* However, most
surfaces of experimental or technological interest are both
rough and chemically heterogeneous. This disorder can
have dramatic effects on various physical processes.

For a liquid partially wetting a solid surface, i.e., show-
ing a finite contact-angle between the solid surface and
the liquid-vapor interface, heterogeneity is known to pro-
duce contact-angle hysteresis.’>' Namely, the measured
contact angle depends on the history of the liquid inter-
face. The surface heterogeneity is analogous to a random
field” that pins the solid-liquid-vapor triple line, causing
it to have many metastable states.8—10

In this paper we discuss the other limit of complete
wetting where the liquid spreads on the solid surface and
forms a thin but continuous film with an average thick-
ness in the mesoscopic range (a few angstroms to a mi-
crometer). At these scales the long-range component of
molecular interactions must be included explicitly. Het-
erogeneity and roughness of the solid surface induce fluc-
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tuations in the liquid interface above it. We present gen-
eral equations describing these fluctuations, and analytic
and numerical solutions for specific cases.!1:12

Three examples of experimentally realizable wetting
films are illustrated in Fig. 1: (i) a thin liquid film in

“equilibrium with its undersaturated vapor [Fig. 1(a)];

(i) a liquid film on a horizontal plate located at height
h above a liquid reservoir [Fig. 1(b)]; (iii) a nonvolatile
liquid whose total volume is conserved [Fig. 1(c)]. In the
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FIG. 1. (a) A liquid film on a horizontal plate in equili-
brium with its undersaturated vapor. (b) A liquid film at a
height k above a reservoir. (c) A nonvolatile liquid drop of
constant volume spreading on a solid.
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last two cases the vapor phase could instead be another
immiscible liquid. Other wetting situations to which our
study can apply are precursor films formed ahead of ad-
vancing liquid fronts, or even liquid films ascending on a
vertical plate (Rollin films).* _

Several recent experiments have measured the effects of
roughness and heterogeneity on thin liquid films.**=" In
one experiment by Garoff et al.,’® x-ray reflection from a
synchrotron source was used to analyze thin wetting films
on glass surfaces which were neither ideally flat nor chem-
ically pure. The measured rms roughness of the glass
substrate was 7.2 A. The roughness of the water-air in-
terface decreased from 5.2 A in 14-A-thick films to about
3.6-4.2 A in 70-100-A films. In contrast, the thermal
roughness of a bulk water surface!® is only 3.2 A and de-
creases with film thickness.!® Studies of the diffuse scat-
tering showed conclusively that the additional roughness
of the water-air film was correlated with the roughness
of the underlying substrate.'®

In another experiment, Beaglehole!® has studied the
wetting of polydimethylsiloxane (PDMS) drops on etched
glass, fused silica, and mica surfaces by the ellipsome-
try technique.!® With a special technique of microscopic
imaging ellipsometry, the average thickness and local
fluctuations in the liquid thickness were measured in the
precursor film close to the edge of the advancing PDMS
drop. Furthermore, it was reported!® that these thick-
ness fluctuations were roughly inversely proportional to
the local film thickness. ‘

Finally, information about the structure of non-
ideal solid surfaces can also be obtained from adsorp-
tion experiments.!® Recently deviations from adsorption
isotherms on flat surfaces were used to infer that flash-
deposited Ag films have fractal surface structure.!?

The layout of our paper is as follows. In Sec. II we
develop the theoretical formalism needed for the calcula-
tion of the equilibrium film profile. In Sec. III we discuss
wetting of rough solid surfaces within a linear response
theory and a local Deryagin approximation. Then, in
Sec. IV, we present numerical results for periodically
corrugated solid surfaces which confirm our analytical
findings. Surfaces which are rough on all length scales—
self-affine or self-similar surfaces—are discussed in Sec.
V. The use of adsorption isotherms to identify such sur-
faces is critically reviewed. Finally, we discuss wetting of
heterogeneous solids in Sec. VI. Two types of heterogene-
ity are considered in detail: layered and columnar mate-
rials. Conclusions and connections with experiments are
presented in Sec. VII.

II. EQUILIBRIUM INTERFACE SHAPE

We derive the equations for a liquid-vapor interface
(called the liquid surface below) and then discuss how
they are modified for a liquid-liquid interface. As shown
in Fig. 2, the coordinate system is oriented with the
z axis perpendicular to the undeformable solid sur-

face. We consider rough or self-affine surfaces without
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FIG. 2. A continuous liguid film covering a rough solid
surface. The liquid and solid surfaces are at height {r(p) and
¢s{p), respectively, above the z = 0 reference plane.

overhangs.20 Hence the solid and liquid surfaces can be
represented by single-valued functions (s(x) and (r(x)
of the position x in the z-y plane. The origin in the z
direction is chosen so that ((s) = [d*z{s(x) = 0.

The wetting film can coexist with undersaturated va-
por because the extra attractive potential from the solid
lowers the chemical potential of the liquid near the solid.
This attraction is frequently expressed as a positive dis-
joining pressure Il on the liquid interface.!~* Following
such treatments we express Il in terms of two-body in-
teractions ury(r;r’) which equal the interaction energy
between unit volumes at r and »’ of phases I and J. Here
I =S8, L, and V denote solid, liquid, and vapor phases,
respectively. If the phases are homogeneous (Secs. III-
V), urs(r,r’) only depends on |r —r'|. In Sec. VI we
consider the case of heterogeneous solids where usy de-
pends on both coordinates.

If the vapor is much less dense than the liquid, its in-
teractions with the other phases can be neglected. The
solid-liquid interaction lowers the liquid chemical poten-
tial per unit volume at a point r = (x,{r(x)) on the
liquid interface by ‘

s, o) = [ e, m

where w(r,r’) = urr(r,r’) — urs(r,r’) and the integral
is over the entire solid region. On a flat, homogeneous
solid, I is independent of x and the constant equilib-
rium value of ¢z is determined by equating Il to the
chemical potential difference Ap between unit volumes
of liquid and vapor phases. One can interpret Il as the
pressure confining the liquid. The larger the chemical
potential difference, the larger 14 is, and the thinner the
film. ‘

The surface of constant disjoining pressure above a
disordered solid will be curved to reflect the variations
in attraction from regions of different height or chemi-
cal composition. The liquid surface does not follow this
curved surface exactly because of the surface tension 7.
There is an extra Laplace pressure drop across a curved

interface, y(x1 + k2), where k1 and k2 are the principal
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curvatures. In the context of liquid-vapor coexistence,
the Laplace pressure reflects the fact that liquid con-
denses more readily in concave regions of the interface
(x < 0) than at convex regions because concave regions
are surrounded by more liquid. Combining the Laplace
pressure with the disjoining pressure, we find the general

equation for the equilibrium interface profile:

y V2 (x)
[1+ V¢ (x|

where we have written the curvature explicitly in terms
of gradients of (.

The form of the chemical potential difference Ay in Eq.
(2) is different for cases (i) ~ (jii) illustrated in Fig. 1. For
case (i), Ap = —pkpT In(p/psat), where p is the density
of the liquid phase, p is the vapor pressure, and peqy is the
saturated pressure. For case (ii), Ay = p gh reflects the
hydrostatic pressure where g is the gravitational acceler-
ation. Finally, for case (iii), Ay is a Lagrange multiplier
associated with conservation of the total liquid volume.

Consider now the more general case where a second
liquid L' replaces the vapor phase. The main difference
is that above we have ignored the shift in the chemical
potential per unit volume of the vapor phase because
its density is generally negligible compared to that of
the liquid. This is not possible if the phase is a second
liquid. Subtracting the shift in the chemical potential of
this liquid we get the same expression for Iz, but with

+ (e, L(x) =2, (2)

w(r,r’) = urp(r,r’) + ugr(r,r’)
~upp(r,r’) — usr(r,x’). (3)

For two-liquid systems the chemical potential difference
may correspond to a Lagrange multiplier maintaining
constant liquid volume, or to the chemical potential dif-
ference of a phase segregating out of a binary mixture.

We now specialize this result to several interesting
cases. In Secs. III — V we consider rough surfaces where
the only disorder is in {s. In this case the solid is homo-
geneous and w(r,r’) = w(|r —r’|). Then, in Sec. VI we
consider heterogeneous solids with flat surfaces: (g = 0.
Here the disorder is in w.

III. WETTING OF ROUGH SOLIDS

A. Linear approximation

As noted above, w only depends on the relative dis-
tance between two points. We change to cylindrical co-
ordinates writing ¢’ — r as (p, z). Then the integral over
r’in Eq. (1) is an integral over all p and over z between
—o0 and {s(x+p)—{r(x). Using the spherical symmetry
of w we can write .

e, (o) = [ a2 /< dru(pz).  (4)

L(x)=¢s(x+p)

400

In this section we simplify the expression for II; by
expanding about a flat interface. The mean thickness
of the film £ = ({1, — {s) = ((z), since the coordinates
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were chosen so ((s) = 0. We expand Egs. (2) and (4)
assuming [¢r(x)—(s(x+p)—£|/£ and |V(L(x)] are small.
The zeroth-order term gives a relation between the mean
thickness and the chemical potential difference:

() = Ap, (5)

where 119 is the disjoining pressure for a flat substrate.
The linear term gives

£22¢5(x) = Cp(x) — £ — / G K(x—p)is(o),  (6)

where £(£) is a surface-tension- and thickness-dependent
healing length,

£()? = ——1—o, (7)
f dpw(p, )

and the kernel K(x,4) is
w(x, {)
/ d?pw(p, )

Equation (6) is readily solved by Fourier tranéforming to
flq) = [ &z f(x)e™***. One finds**

55(‘1) K (a)
T ©)

Several general conclusions can be drawn from these
equations. From Eq. (8) it is apparent that K (0) = L.
Also, since w is a decreasing function of p, K will de-
crease with increasing q. Thus for sufficiently small g
the liquid surface will follow the rough solid surface be-
cause the Lorentzian fall off is negligible and K(g) ~ 1
[Eq. (9)]. For larger q, the response of the liquid surface
is attenuated. The attenuation in Eq. (9) comes from
two sources. The Lorentzian fall off with characteristic
length £ comes from the smoothing influence of surface

K(x,£) = (8)

éL(Q) =

‘tension. The decrease in K for large q reflects the non-

local nature of the interaction. A point on the liquid
surface is nearly equidistant from the crests and troughs
of deformations (g with wavelength much smaller than
£. There is little energy to be gained by following such
fluctuations.

As a specific example we consider the case of van der
Waals interactions. van der Waals interactions are of fun-
damental importance in wetting phenomena because they
occur universally and fall off more slowly at large dis-
tances than other interactions. For simple surfaces, the
full Lifshitz theory of van der Waals interactions is well
approximated by an inverse power-law pair potential.t:22
Thus, throughout the paper we will focus on inverse
power-law interactions,

,;A 1 2m4-2
=% (1) (10)

and in particular on nonretarded van der Waals interac-
tions which correspond to m = 2. The factors of = in Eq.
(10) are chosen so that A is the conventional Hamaker



constant.! In this case the integral over z in Eq. (4) can
be calculated analytically:'?

84 [d (. _1p Bnp°+31°p
Hd(CL):'é?r—z/_p—s_ (tan 0 3P+n)?)’

(11)
where p = |p| and 5(x, p) = {1(x) — (s(x + p) is intro-
duced for convenience. As a check, it is easy to verify
that when both interfaces are planar and parallel, Eq.
(11) reduces to the usual result

A
0= 12
e = Grpp (12)

Making the linear approximation for inverse power po-
tentials we find

k@)= 7 (%)m Kn(e) , €= (Z22)" o,

(13)

where K, is the modified Bessel function of the second
kind of order m and I' is the Euler T function. For van
der Waals interactions, we insert m = 2 in Eq. (13) and
obtain ' '

22 A 1/2
{=— a—("ﬁ) : (14)

Here a is a microscopic length determined by the rel-
ative strength of the surface tension and the interac-
tion potential. Typical liquid-vapor surface tensions are
7 ~ 20~70 dyn/cm and Hamaker constants for insulator-
liquid-vapor systems are of order kg7, giving a ~ 1 _Z\: at
room temperature.l»? For liquid-liquid interfaces both A
and v are smaller, but a is of the same order. For metal
substrates, the Hamaker constant may be more than an

order of magnitude larger.?® Taking numbers for the ex-

perimentally studied'? nitrogen on silver system we find
e=12AatT=T7K.

At large ¢f, the modified Bessel function K, in Eq.
(13) decays as Km(gf) ~ (q€)~/%exp(—qf). Thus,
roughness at wavelengths less than £ is cut off exponen-
tially,

E(@)/Cs(a) ~ g~ H20-5/ exp(—gt). (15)

The relative size of & and £ determines whether surface
tension or film thickness acts first in cutting off long-
wavelength surface fluctuations. From Eq. (14) we see
that £/£ = £/a for m = 2. Thus for molecularly thin
films, £ < a, £ is less than £ and the exponential domi-
nates the damping of solid roughness. However, many of
the approximations made in Sec. II break down in this
limit.2* For thicker films, £ > a, ¢ is greater than £. The
roughness is then damped by the Lorentzian for ¢§ > 1
and the exponential factor only becomes important for
larger ¢ when ¢£>> 1.

The power-law potential just discussed has no intrinsic
length scale. Thus £ is the only length which can appear

in K. Two examples of potentials with intrinsic scales,
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exponential and Gaussian interactions, are treated in the
Appendix. The same qualitative behavior is observed.
The only difference is that the length scale of the poten-
tial enters in the expressions for £ and K.

B. Deryagin approximation

A number of recent papers'’»?~?7 have calcu-
lated the interface configuration in the Deryagin
approximation,3:28:2° where the disjoining pressure at
each point x is assumed to equal II§ for a smooth sub-
strate with film thickness ¢z, (x)—{s(x). We now consider
when such an approximation is valid, by comparing with
the results obtained from the linear approximation.

Making the Deryagin approximation in Eq. (2) does
not change the zeroth-order term in the roughness, Eq.
(5). However, the linear term simplifies:

£V (x) = (o(x) - £ — (s(x). (16)

Thus, at this order, the Deryagin approximation is equiv-
alent to setting K equal to a Dirac é function.'?30 This
in turn implies that K = 1 for all ¢ in Eq. (9), so that the
film thickness determines the smoothing only through the
dependence of the healing length on the thickness, & o< £2.

Comparing to our results for power-law and exponen-
tial potentials, we see that the Deryagin approximation
is not accurate for ¢£ >> 1 where the nonlocal expressions
produce exponentially decaying K(q). This failure may
not be crucial if ¢ > £ (the usual case), and if {s(q) is
relatively large at ¢¢ < 1. In this case, the Lorentzian
damping in Eq. (9) substantially eliminates the small-
wavelength fluctuations and the liquid roughness will be
dominated by the fluctuations at ¢§¢ < 1. However, if
the dominant undulations of the solid are at ¢£ > 1, the
Deryagin approximation is never accurate as shown in
the following section.

Before turning to our numerical results we consider the
effect of higher-order terms in the weak roughness expan-
sion within the Deryagin approximation. The second-
order term is just the second derivative of IIS times half
the squared fluctuation in thickness. The mean of this
term changes the relation between thickness and chemi-
cal potential. Eq. (5) becomes

150) (146 £ 6 g T =

M0(2)  de?
(17)

where ((¢z — £ — {s)?) can be evaluated approximately
using the linear approximation [Eq. (9)].

In the case of wetting films, the disjoining pressure
is positive. Its magnitude decreases more slowly as £ in-
creases, so the second derivative is positive definite. Then
from Eq. (17) any roughness of the solid substrate acts
to decrease the value of TI9(¢) at fixed chemical potential
and thus increases the average film thickness. This result
is easy to understand. Because of the sharp falloff in IIJ,
the extra attraction from “higher” pieces of the surface is
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larger than the decrease in attraction from “lower”_ p@gggs
of the surface. T

IV. NUMERICAL SOLUTIONS
FOR PERIODICALLY CORRUGATED
SURFACES

The approximations described above break down as
the-solid roughness increases. We have solved Eq. (2)
numerically to determine when errors become significant,
and whether the qualitative predictions of the linear ap-
proximation are generally valid. To simplify the calcula-
tion we specialize to one-dimensional corrugations of the
solid surface. If the  axis is chosen so that (s = (s(z),
the integrals over y and 2z can be evaluated analytically
for power-law potentials.?! We only quote the result for
van der Waals interactions (m = 2):

dz’ n(3z"% 4 2n?)
/4 (2 - (2 + n?)3/2 >’ (18)

where 7 = (z(z) — {s(z + «’). The final integral over =’
can be done analytically for some model surfaces, includ-
ing the case where (s is piecewise quadratic.

As a model surface, we consider a periodic square wave
corrugation with period D and peak to peak amplitude
H (Fig. 3). For power-law potentials, the solution for the
interface only depends on the dimensionless parameters
D/a, H/a, and £/a. Figure 3(a) shows numerical solu-
tions of Eqs. (2) and (18) for D/a = 100, H/a =5, and
Fig. 3(b) for D/a = 10, H/a = 5. As expected from the
linear approximation, the liquid interface gets smoother
as D decreases (g increases). In both cases the roughness
of the interface only becomes comparable to that of the
solid when & = £2/a < D/2. For deep narrow grooves,
Fig. 3(b), the film remains quite flat, {; & £, until the
film thickness on the crests of the square wave reaches
a well-defined value. Then there is a rapid change of
shape. This occurs when the disjoining pressure on the
crests is of order 2v/D, the capillary pressure required
to penetrate the troughs. -

One easily accessible experimental quantity is the
coverage.t® This is measured by weighing the film, and
dividing by the projected surface area times the density.
Since we consider surfaces without overhangs, the cov-

e o(2) =

erage is proportional to the mean film thickness £. In

experiments, the coverage is controlled by adjusting the
pressure of an undersaturated vapor phase. The coverage
exponent ¢ is defined by3?

Ap~ L%,
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For a flat surface Ay = IIJ = A/(67£%) [Eq. (5)], hence

The variation of Ap with £ for several geometries is
shown in Fig. 4. As expected, the rough surface result
approaches the flat surface one for films much thicker
than the roughness. To estimate the leading correction
to Au from Eq. (17) we note that for large ¢, (L ~ £
and (({r — (s — £)?) ~ (¢Z) = H%/4. For van der Waals
interactions, Ap ~ H3(€)(1 + 3H2/2¢%). As shown in
Fig. 4 (dashed line), this approximation works well at
large £. For thin films, £ < D/2, the film follows the
substrate and {({z — (s ~— £)?) < (¢Z). Thus, from Eq.
(17), Ap also approaches the flat substrate solution in
this limit. However, the effective surface area is larger
than the projected area by a factor (D + 2H)/D. The
coverage is larger by the same factor as shown in Fig. 4
(dotted lines).

At large D the crossover between thin and thick film
behaviors is smooth (Fig. 4). At smaller D there is a
sharp rise in Ay followed by a saturation. The rise oc-
curs while the interface remains nearly flat (Fig. 3). Here
the value of Ay is mainly determined by the thickness
of the thin regions above the crests of the square wave,
£— H/2. Thus, Ap changes rapidly with small fractional
changes in coverage. When the disjoining pressure ex-
ceeds the capillary pressure for penetrating the square
grooves, there is a rapid decrease in £ at nearly constant

In recent measurements of Ng adsorption on rough Ag
substrates, an apparent coverage exponent of ¢ = 4.3 was
observed. The increase in ¢ over the flat interface value
(¢ = 3) was interpreted as evidence for fractal character
of the substrate. However, scaling was only obtained

I T T T 1 rl Tt T [ -1 1 1 l T
M "A“ A
'. '“Qﬁﬁu“% b
N 0+ ""-!,- : . s ~—
L . . . J
L ] \a
5l S :
-2 |- -
=
© |l & i
= o
- R N
. i} ) T
S L J
—4 -
(19) IS W S S NS TR TN ST S Y S SO RV |
= 0 0.5 - 1 1.5
e - logyo(t/a)

£
= (b .
(@) |« 50a - T -] 5a |«

FIG. 3. Calculated liquid surfaces at several mean thick-
nesses for (a) Dfa = 100, H/a = 5 and (b) D/a = 10,
H/a =35. : o

FIG. 4. Chemical potential vs mean thickness for a flat
surface (solid line), D/a = 100 and H/a = 5 (squares), and
D/a =10 and H/a = 5 (triangles). Dotted lines indicate the
limiting thin-film behavior for each case. The dashed line is
the Deryagin approximation given by Eq. (17) with H/a = 5.
Note that 6ma®Ap/A = (a/lo)®, where Iy is the equilibrium

“thickness at Ay on a flat substrate.



over a factor of 3 in coverage. Our numerical results
for simple corrugated (nonfractal) surfaces (e.g., Fig. 4)
can be fit to power laws with similar exponents over a
comparable range of coverage. Thus, one must be careful
about concluding that substrates are fractal. We discuss
this issue further in the next section.

Figure 5 compares the first and second Fourier com-
ponents of the numerical solution with results from the
linear and Deryagin approximations. By symmetry, the
Fourier transform of the solid profile (s(g) only contains
odd harmonics: ¢; = 2mj/D with j odd. Linear and
Deryagin results for odd j were obtained by multiply-
ing these harmonics by K(g)(1 + ¢%¢2)~1 [Eq. (9)] and
(14 ¢%%)~1 [Eq. (16)], respectively.

Sufficiently thin films follow the underlying solid at a
nearly constant distance and {1 & {s. In this limit the
Deryagin and linear approximations agree well with nu-
merical results. At large film thicknesses, the Deryagin
approximation breaks down as discussed above. How-
ever, this failure may not be relevant since the liquid
surface is already nearly flat in this limit.

The linear approximation fits the numerical data for
odd harmonics extremely well when the height is much
smaller than the period. When H is greater than or of or-
der D, the linear approximation reproduces the qualita-
tive features of the data but consistently underestimates
the roughness. Note that the calculated second harmonic
is significant when £ is comparable to H/2. Like the shift
in mean film thickness discussed above, a nonzero sec-
ond harmonic results from the leading quadratic correc-
tion to our linear approximation.3® The second harmonic
is also most noticeable as H/D increases. Care should
be used in applying the linear approximation on solid

43 THIN LIQUID FILMS ON ROUGH OR HETEROGENEOUS SOLIDS
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surfaces where changes in height are comparable to the
wavelength.

V. SELF-AFFINE AND SELF-SIMILAR
SURFACES

The rough solid considered above had a well-defined
period. Solid surfaces may also have roughness over a
large range of length scales. One class of such surfaces is
self-affine surfaces where

(I¢s(x+p) = Cs(x) = 0|2 (20)

Iﬁ
with b a characteristic length scale for the roughness and
B the roughness e}':ponent.f4 The Fourier spectrum of
such a surface scales as {|(s(q)|?) ~ ¢~%~¢, where d
is the dimension of the projected surface (d=2 in three
dimensions). '

In Sec. ITT A we showed that the liquid interface only
followed Fourier components of the substrate at ¢ < £=*
and ¢ < ¢!, Since self-affine surfaces have roughness
at all length scales, only the lower of these two cutoffs
is important in determining the dominant features of the
interface. For £ > a, this corresponds to ¢ < £~1. The
Deryagin approximation gives this cutoff correctly and we
use it to simplify the following discussion. A full treat-
ment produces the same conclusions.

We first consider when our expansion about a flat in-
terface converges. Equation (17) gives the quadratic cor-
rection to the film thickness at fixed chemical potential.
To test for convergence we compare the size of this correc-
tion with I1. Using the power spectrum for a self-affine
solid surface given above, Eq. (20), and the Deryagin

| I
> [aV) o

1|0g10|7T§L(qJ')/H\

| |

0O 10 20 30 40 O

t/a

FIG. 5.

S 10 0

t/a

5 10
t/a

Calculated variation of ¢r(g;) with £/a for (a) D/a = 100, H/a = 5 and (b) D/a = 10, H/a = 5. Numerical

results for the first and second harmonics of the solid periodicity are indicated by triangles and circles, respectively. The linear
(Deryagin) approximation for the first harmonic is indicated by a solid (dashed) line. Both approximations give zero for the
second harmonic. In (c) numerical results for the first harmonic are compared to the linear approximation derived for columnar

heterogeneity [Eq. (31)], for D/a = 10, H/a = 5.
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approximation for (L / s we find

4407 ¢ 12
¢z~ Cs = 0%) ~ / d% z(f%g%)ﬁz

§2ﬂ/dd u4—2ﬁ ¢
(1+

For long-ranged power-law potentials [Eq. (10)], €% ~
2mB and §2115/60% ~ TY/¢2. Thus, the ratio of the
second-order correction to the first term in Eq. (17)
scales as £2™F=2_ For B < m™}, the correction vanishes
in the limit of thick films and the linear approximation
is valid. Surface tension dominates at large £ and the
relation between Ay and £ approaches the flat interface
result. For § > m™3, the correction dominates at large
£, and the linear approximation breaks down. In the fol-
lowing we will specialize to d = 2, and van der Waals
interactions, m = 2. B

Kardar and Indekeu?® recently derived similar equa-
tions based on the asymptotic form of the energy of a
rough surface, and identified the small and large rough-
ness exponent regimes as “weakly” and “strongly” fluc-
tuating, respectively. In the strong-fluctuation regime,
roughness remains important in the thick-film limit.
Fluctuations with height less than £ will be smoothed
out, but larger fluctuations will not. The characteristic
length of these fluctuations is £1/# so their curvature is
£(1=2/B) . Equating the chemical potential difference to
the sum of surface tension and van der Waals terms we

find -

A
wei(G) T+ E

In the strong-fluctuation regime, the surface-tension term
dominates at large £ and the coverage exponent ¢ =
2/8 — 1. In the weak-fluctuation regime ¢ = 3.

(21)

(22)

If we consider instead the coverage on self-similar frac-

tals, the exponent ¢ can be determined from analogous
arguments.'?»25:27,35,36 The volume occupied by a film
on the exterior of a fractal (i.e., the coverage) scales as
thickness to the power 3 — Dy, where Dy is the fractal
dimension. As noted above, surface tension dominates
when the film thickness is larger than a. In this limit,
the thickness scales as y/Apu because smaller features are
filled in. The coverage exponent is ¢ = 1/(3 — D). For
thin films (£ < a), surface tension is negligible compared
with van der Waals interactions. The thickness of the
film scales as Ap~1/3 and the coverage exponent changes
to ¢ =3/(3 — Dy).

Pfeifer et al.'” have interpreted recent experimental
measurements of Ny adsorption on Ag as evidence for
fractal structure. They found that log-log plots of chem-
ical potential versus coverage lay on straight lines with
¢ = 4.3 over a factor of 2 or 3 in coverage. They inferred
a fractal dimension of Dy = 2.3040.02 from this value of
¢, and the relation ¢ = 3/(3—Dy) valid in the absence of
surface tension. The straight-line behavior occurred over
a range of Ap corresponding to film thicknesses from

B ,s,elf-afﬁne
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8 A to at most 45 & on flat surfaces.

This interpretation of the experiments is troubling for
several reasons.?® The first is that Pfeifer et al used
the expression for ¢ which neglects surface tension. This
expression is only valid for film thicknesses less than a =
12 A, yet experimentally studied thicknesses were larger.
If instead the relation ¢ = 1/(3 — Dy) valid at large film
thicknesses (surface-tension-dominated regime) is used,
one finds Dy = 2.77 which is unreasonably large.?®+35

In addition, we remark that coverage curves for non-
fractalsurfaces, e.g., simple corrugated surfaces like those
studied in the previous section, fit equally well to straight
lines with slope greater than 3 (see Fig. 4). Note that
scaling is observed over at most a factor of 3 in cover-
age in the experiments (200-600 ng/cm?), while we find
apparent scaling over a factor of 3-10. The simple Derya-
gin approximation valid for any rough surface, Eq. (17),

_shows a similar straight-line region with ¢ > 3 (Fig. 4).

" "Both our numerical results and the measured coverage
curves show a crossover to a less steep region at small £.
This crossover was identified by Pfeifer et al. as the lower
length scale cutoff in fractal scaling. Our results suggest
that instead it corresponds to the scale where pores are
first penetrated. As discussed in the previous section,
there is a steep region, ¢ > 3, at slightly larger £ due to
the filled pores and a less steep region, ¢ < 3, at smaller £
where the pores empty. The crossover becomes sharper as
the ratio of the height of the roughness to the wavelength
increases. The effective exponents above and below the

. crossover become larger and smaller, respectively. At

very small £, ¢ — 3 once more. This regime would only
be observed experimentally if all roughness was at scales
greater than the thickness of a monolayer.

Given that the observed scaling can be reproduced by a
simple corrugated surface, one cannot conclude from the
adsorption experiments that the surface is self-similar or
Independent scanning-tunneling-microscope
results®” indicating a fractal dimension Dy = 2.3 + 0.1
over the range 5-50 A were also cited as supporting evi-
dence. Such measurements cannot reveal overhangs and
thus cannot describe self-similar surfaces. Interpreting
the measured Dy as the local fractal dimension of a self-
affine surface one finds § = 3 — Dy = 0.7. Since this is
in the strong-fluctuation regime,?® the coverage exponent
at large £ should equal 1.9 which is far from the experi-
mental value. It remains to be seen whether adsorption
isotherms can be measured over sufficiently large ranges
of coverage to definitively identify fractal scaling.

VI. WETTING ON HETEROGENEOUS
SOLIDS

We now consider the case of a solid with a flat interface,
¢s{x) = 0, but with heterogeneous composition, i.e., spa-
tially varying potentials ugy, ugy. If these fluctuations
only affect the strength of the coupling rather than its
functional form, we can write w(r,r’) = e(r') wo(r — x")
where ¢(r’) describes the solid composition at point r'.
The normalization of the average interaction wyp is chosen



so that (e(r’)) = 1.

A general linear approximation can be derived follow-
ing Sec. IIT A. We specialize to two simple geometries: (i)
layered systems where € only depends on 2; (ii) columnar
systems where €(r’) — 1 = ¢(x')f(2') is separable.?® As
before we present detailed results for van der Waals in-
teractions where variations in ¢ correspond to fractional
changes in the Hamaker constant.

A. Layered solids

The layered geometry is -appropriate for artificially
structured materials grown by deposition. Recent ex-
perimental techniques allow precise control of the com-
position along the growth direction to achieve desired
electronic, magnetic, and mechanical properties. Sym-
metry requires that the surface of a liquid wetting such
a structure be flat, {f = £. However, the layered struc-
ture will change the variation of II; with £, and hence
the equilibrium thickness £. From Eq. (1)

a(x,¢r(x)) = /_w dz’ e(2') /dzp wo(p, £ —2').
(23)

For nonretarded van der Waals interactions, wo(p, z) =

Aogm~2(p?42%)73, and the final integral can be evaluated
for any given ¢(2'):

i 3e(2)  _ Aem
Ta(f) =5 e‘o’/ /0t = 68

The effective Hamaker constant Aeg at a given film thick-
ness is thus Ay times a weighted average of ¢(z’). The
weighting function, (3/£)(1 — 2’/£)~*, falls off rapidly for
z/ < —£. If the first layer of the solid is thicker than £,
one may to a good approximation ignore successive lay-
ers. If £ is larger than the size of layers, one must include
all layers.

Suppose that the solid consists of consecutive layers
of uniform Hamaker constant A; which terminate at suc-
_cessive depths ¢; below the surface. Then integrating Eq.
(24) yields

_ 1 A]_ Az - A1 A3 - A2
Ha(t) = g7 (zs tarne T Ly > '

(24)

(25)

The first term represents the chemical potential for a uni-
form solid of Hamaker constant A;. The second term
represents the correction for a solid which changes to
Hamaker constant A4, for z/ < —¢;. Subsequent terms
represent similar corrections.

B. Columnar solids

If A varies along the solid surface, the liquid interface
roughens.®® In practice, such surfaces could be made from
cross-sectional slices through the layered structures just

discussed. We consider the more general case where the
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fluctuations are separable, e(r’) — 1 = ¢(x’)f(2’). Then
the disjoining pressure [Eq. (4)] becomes

M, (o0) = [ / 42" wo(p, 2)

X[L+¢(x+0)f(¢r -2
(26)

As in Sec. IITA we expand about a flat interface solu-
tion, (¢z) = £. To first order in |{z(x) — €| and e — 1

Ma(x, ¢z (x)) = T%() + / dp $(x + p)Wo(p)

—[¢e(x) — 4] / Pouo(p,l),  (27)

where

Wo(p) = /loo dzwe(p, 2) f(£ ~ z). (28)

The average thickness £ is given by Eq. (5), and the
fluctuations of the liquid interface satisfy

£V =0 - L [ FpGx-p)de),  (29)

where the kernel G is
Wolx)  _
[ @pwo(p,?)

As before, the linear equation is solved by Fourier
transformation and we find

4(g) G(a) G(q)
Sy (31)

G(x) =

Wo(x). (30)

{ele) =

Note that £ plays the same role as in Sec. IIT A. Changes
in the solid composition ¢ on wavelengths smaller than
¢ are strongly attenuated. The form of G is somewhat
different from K, in particular it has units of length and
G(0) # 1. Notice that it can be written as a weighted
average of the kernel found for rough solids:

60 = 7 | T a2 R0, -2 (32)

To determine G’s role we consider the case of van der
Waals interactions where the variation in the solid com-
position is only along the x direction: f(z) = 1. For
nonretarded van der Waals interactions, K is given by
Eq. (13) with m = 2. Since K(¢g = 0)=1, Eq. (32) yields
é—'(O) = £/3. In the limit of large £ the asymptotic form
K ~ (q€)*/* exp(—q£) can be used. Integrating Eq. (32)
then yields G ~ #(q€)*/? exp(—g¥) at large g¢. Hence
Fourier components at wavelengths smaller than £ are
exponentially damped. As before, a Deryagin approxi-
mation would leave out this nonlocal term.

The square corrugation treated numerically in Sec. IV
can also be described as columnar heterogeneity. The
solid surface (2=0) is defined to coincide with the crests
of the square wave. The function ¢ is then zero over the
crests of the square waves and —1 over the troughs, and

f(2) is the Heaviside function ©(H + z). Thus Eq. (32)
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yields

Glg) = 3% /

gl

o(e+H)
du w2 Ky (u) . (33)
For small ¢H and H/{ this kernel reduces to that ob-
tained in Sec. IITA. In Sec. IV we saw that the rough
surface approximation differed from the numerical results
for large H/D. Since ¢H = 2jmH/D for the jth har-
monic of the square wave, this result is no longer surpris-
ing. The small parameter in the chemical heterogeneity
expansion (;, — £ is intrinsically smaller than that in the
rough surface expansion [(r(x)—£—(s(x+p)|. Asshown
in Fig. 5(c) the chemical heterogeneity results for the
first harmonic are indistinguishable from the numerical
results for £/a > 4.

VII. DISCUSSION

In this paper we have developed equations for the equi-
librium conformation of thin liquid films wetting rough or
chemically heterogeneous solid surfaces. These equations
were solved numerically for van der Waals interactions on
simple corrugated surfaces. Linear approximations were
derived for general interactions and disorder.

One important length scale which emerges from the
analytic and numerical results is the healing length, £. Tt
embodies the competition between the long-range attrac-
tive potential w(r,r’), which favors following the solid
surface on wavelengths larger than £, and the surface
tension v, which has a smoothing effect for smaller wave-
lengths. Since the potential falls off with distance, ¢ in-
creases with film thickness. In the linear approximation,
the ratio of Fourier components of the liquid surface to
those of the solid heterogeneity falls off as a Lorentzian
for wavelengths ¢ > £~1.

The healing length is the only scale that arises in the
Deryagin approximation, where the disjoining pressure
is approximated by a function of the local film thickness.
Nonlocal effects included in the full linear theory lead to
additional smoothing for wavelengths less than the mean
film thickness £. For power-law potentials, an entire re-
gion of the surface with size £ contributes nearly equally
to the disjoining pressure at each point. The effect of
heterogeneity at smaller wavelengths ¢ < £~! is expo-
nentially damped. Other potentials show similar or even
faster damping and are considered in the Appendix.

Heterogeneity of the solid surface will only be followed
by the liquid film at wavelengths larger than both ¢ and
£. The larger of the two lengths plays the dominant role
in smoothing the film. For any potential, £ is the larger
length at small film thickness and £ becomes larger for
thick films. For power-law potentials, this crossover oc-
curs at the microscopic length a. The Deryagin approxi-

mation may provide an adequate approximation for thick

films in some cases.

QOur prediction for the correlations between the struc-
ture of the solid surface and the liquid-air interface can
be verified most directly by x-ray reflection and graz-
ing incidence diffraction techniques.!®:** The major ex-
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perimental results reported so far are independent val-
ues for the total rms roughness of the substrate and
liquid interfaces. The rms fluctuation of the liquid in-
terface was found to be intermediate between the solid
roughness and the thermal roughness of the bulk fluid.
As predicted above, the liquid roughness was larger in

“thin films (¢=14 A) than in thick films (¢=70-100 A).

The predicted correlation in the phase of Fourier com-
ponents of the solid and liquid interfacial roughness [Eq.
(9)] was confirmed qualitatively with off-axis scattering
measurements.*® The advantage of scattering measure-
ments for future studies is that each Fourier component
of the liquid interfacial roughness can be independently
compared to the corresponding component of the solid
roughness. Thus, our Eq. (9) can be tested experimen-
tally.

Microscopic imaging ellipsometry has also been used
to examine local fluctuations in the film thickness for
PDMS liquids. It was observed that the rms fluctuation
of the liquid surface varies as 1/£, where £ is the local
film thickness.!®> We have verified®® that the linear the-
ory (Sec. IIT) predicts that the liquid surface roughness
scales in this manner in the limit of weak roughness. Ad-
ditional experiments can be done on precursor films of
advancing liquid drops. In such a setup, the average film
thickness is a smoothly varying function of position and
the dependence of the local roughness on this parameter
can be tested as well.

Experiments have also probed the effect of solid het-
erogeneity on adsorption isotherms where the coverage is
measured as a function of the vapor pressure or chem-
ical potential. We have studied the effect of roughness
on isotherm measurements through exact numerical so-
lutions and an extension of the Deryagin approximation
to second order, Figs. 3-5. For the case of attractive
potentials considered here, roughness increases the film
thickness at fixed chemical potential. Even the coverage
exponent ¢ relating the film volume (thickness) to the
chemical potential may increase in the extreme cases of
self-similar fractal surfaces or strongly fluctuating self
affine surfaces. ‘

Recent measurements of Nj adsorption on flash-
deposited Ag showed!” an apparent change of the cov-
erage exponent, which was interpreted as evidence of
fractal structure. An important conclusion of our work
is that care must be taken in making such interpreta-
tions. Even nonfractal surfaces with a single character-
istic length scale show an apparent increase in ¢ over up
to an order of magnitude in coverage. Similar deviations
from the simple Ay ~ £-3 power law may occur for any
irregular (nonfractal) surface.

Several important issues have not been discussed in
the present paper. One is the effect of thermal fluctu-
ations on the liquid interface.!®:4%4! Such fluctuations
clearly provide a lower bound on the measured rough-
ness. The smoothing of the interface with increasing film
thickness described above will only be observable when
the disorder-induced roughness is appreciable compared



to the thermal roughness.

We have also neglected the discrete nature of the lig-
uids. For example, the film thickness cannot be less than
a monolayer. At molecular scales the form of interatomic
forces also becomes more complicated and a continuum
theory as the one employed here breaks down. Depend-
ing on the form of the potential one may either find that
at least a monolayer covers the surface, or that the film
ruptures.

Rupture is even more important in the case of repul-
sive long-range interactions which was not treated here.
If the potential w is negative at large distances, £2 may
be less than zero. This leads to singularities in our lin-
ear approximation when ¢¢ is of order unity [Eq. (9)].
The mean film thickness at fixed Ap will be decreased by
roughness (Sec. IIIB). These changes reflect the inher-
ent instability of nonwetting films which must eventually
lead to rupture. Note that negative values of w do not
necessarily imply that the liquid is nonwetting, there may
be a very strong short-range attraction.*? A rich variety
of behavior may occur when the potential changes sign.
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APPENDIX: LINEAR RESPONSE
FOR EXPONENTIAL AND GAUSSIAN
POTENTIALS

The power-law potential discussed in Sec. ITT A has no
intrinsic length scale. Thus £ is the only length which
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can appear in K. As one example of a potential with an
intrinsic length we take an exponential

w(r) = Cexp(—~r/b). (A1)
From Egs. (7) and (8) we find
. a’t ¢
C=15rp® (3) ) (A2)
=« /T+(gh)?+b
KO = @i+ aypr
X exp (—g[\/ 1+ (qb)? _.1]) ; (A3)

where o’ = (y/27C)'/# is now the relevant microscopic
length. Thus, £ is nearly constant for £ < b and in-
creases exponentially for £ >> b as the potential rapidly
decreases. For gb > 1, K(q) ~ exp(—g£)/(gb)*. Thus
the exponential cutoff at large ¢ is the same as for power-
law potentials. For £ > b there is an intermediate range
€71 < g < b~ where K(q) ~ exp(—3q%¢b).
Similarly, the integrals for a Gaussian potential,

w(r) = Cexp(—r?/b?), (A4)
are readily evaluated to yield
7 £
£ = Onpp &P <-b—2> , (A5)
K(q) = exp{~3(ab)"] - (A6)

Note that for this special case the cutoff at large ¢ no
longer depends on the film thickness.

Two general features are indicated by these results.
The first is that the more rapidly the pair potential falls
off, the more rapidly & increases. Thus the crossover to
the surface-tension dominated regime occurs at smaller
film thicknesses. The second is that steeper potentials
lead to a more rapid decay of K (g) at large q.
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