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ABSTRACT

Recently, modulated phases of insoluble monolayers of fatty acids and phospholipids
spread on the water/air interface have been observed by fluorescence microscopy experi-
ments. We propose a theoretical explanation of this observation by including electrostatic
(dipolar) interactions in the total free energy calculation for the monolayer. Dipoles can
originate from two sources: neutral amphiphiles have a permanent dipole and charged am-
phiphiles have an induced one. Modulated phases are found to be stable in two different
limits: close to the liquid-gas transition and at low temperatures. Several phases with
stripe and hexagonal symmetry are predicted and the phase transitions between them are
calculated.

INTRODUCTION

Most of the research on insoluble amphiphilic monolayers at the water/air inter-
face [1-2] has been conducted either on fatty acids such as pentadecanoic, myristic, oleic,
arachidic and stearic acids, or on phospholipids such as DPPC and DPMA. Insoluble
monolayers (so-called Langmuir monolayers) have been studied using several experimental
techniques such as: isothermal measurements of surface pressure as a function of area per
molecule [3-13], surface potential [14-16], reflection and diffraction methods of X-rays from
a synchrotron source [17-19], spectroscopic methods like second harmonic generation [20],
viscoelastic measurements [21], and fluorescence microscopy [22-26]. Several reviews on
the experimental situation exist in the literature [3-7, 27].

Except for being studied as simple but realistic models for natural biological cell
membranes (phospholipids), Langmuir monolayers have several appealing advantages as
models for two-dimensional systems: (i) unlike other quasi two-dimensional systems, they
are composed of only one molecular layer bounded on the flat water surface. (ii) The
interaction with the liquid subphase is quite homogeneous since there are no preferred
adsorption sites as on solid surfaces such as graphite. (iii) Lateral movement and diffusion
are possible. (iv) By changing the surface pressure, various phase transitions can be
induced in analogy with the gas-liquid-solid transitions in the bulk.

On the other hand, the main disadvantage of amphiphiles as two-dimensional mod-
els has to do with their molecular complexity. Unlike simple spherical molecules, am-
phiphiles have a flexible hydrocarbon tail and a polar head and thus, ordering can occur
also in the perpendicular direction.

ELECTROSTATIC INTERACTIONS IN LANGMUIR MONOLAYERS

Neutral Monolayers

Recently, it has been shown [14, 28-31] that electrostatic interactions are of im-
portance in neutral and charged monolayers. For neutral amphiphiles, we consider [29-30]
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only the case where the average dipolar moment points along the perpendicular ~z-direction,
< ~µ >= µz. The dipole-dipole interaction is long-range and repulsive (all dipoles are forced
to have their polar head in the water) . Since the dipoles are restricted to stay on the flat
water/air interface, an inplane density wave of the dipoles will reduce the overall repulsive
dipolar interaction, Fel:

Fel = −1
2

∫
~P (ρ) · ~E(ρ) d2ρ = −1

2
ε0

ε(ε + ε0)
|q|µ2φ2

q (1)

where ~P (ρ) = ~µφ(~ρ) is the two-dimensional polarization, φ(ρ) = φ0 + φq cos(~q · ~ρ) is the
amphiphile density, and ε (ε0) is the water (air) dielectric constant.

In (1), the dipoles are assumed to be immersed in the water and the interaction is
screened by approximately ε2 for ε >> ε0. However, since the polar moieties lie very close
to the water surface, the effective dielectric constant, ε∗, felt by the dipoles is expected to
be smaller than the bulk value, ε = 80. In addition, if the aliphatic tail of the molecules
also contributes to the molecular dipole moment, then some of the dipolar interactions are
not screened. The linear dependence of Fel in (1) on the modulation wavevector |q| is a
consequence of the long-range character of the dipolar forces. In general, an algebraically
decaying interaction, Fel ∼ 1/r(d+σ), where d is the spacial dimension, will have a Fourier
component with a |q|σ dependence. For dipoles, d + σ = 3, d = 2, hence, σ = 1.

Charged Monolayers

If the amphiphiles are charged and an electrolyte is added to the water, the electric
potential can be obtained from the Poisson-Boltzmann (PB) equation. Here, we restrict
ourselves to the linearized version of the PB equation.

∇2V (~r) = κ2V (~r) z < 0

∇2V (~r) = 0 z > 0 (2)

where κ−1 is the Debye-Hückel screening length. We solve the electrostatic problem (2) for
a modulation in the surface charge density eφ(~ρ) = eφ0+eφq cos(~q ·~ρ), with the appropriate
boundary conditions at z = 0.

The electrostatic energy is then given by

Fel =
1
2

∫
σV (z = 0) d2ρ =

e2φ2
q

2(εκ1 + ε0|q|) (3)

where in (3) we omit the average electrostatic contribution depending on φ0 and κ2
1 =

κ2 + q2 is the effective screening length for the q-mode. For strong ionic solutions, the
Debye-Hückel screening length is small, κ >> q. Expanding (3) in powers of q/κ, equation
(1) is recovered. In this case, the counter ions together with the surface charges form
effective dipoles at the water surface with a moment

µ =
e

κ

√
1 + ε0/ε ' e/κ for ε >> ε0 (4)
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Strong dipoles can be obtained by changing the ionic strength in the solution and reaching
κ−1 ' 10Å

In the opposite limit of weak electrolytes, q >> κ, the electrostatic interactions are
almost unscreened and the interaction is Coulombic ∼ 1/r. We will not discuss further this
case but note that similar two-dimensional colloidal systems tend to form Wigner crystals
[32].

MODULATED PHASES AND PHASE TRANSITIONS

Simple models of condensation (e.g., van der Waals models) predict a condensation
from a more expanded phase (gas or liquid-expanded) to a more condensed phase (liquid
or liquid-condensed) [2, 5, 33]. The condensation occurs as the attractive interaction
between molecules starts to dominate over the entropy of mixing. In a Langmuir trough,
the transition is induced by increasing the surface pressure. For a range of temperatures,
a first-order transition characterized by a jump in the surface area per molecule occurs.
This is nothing else but a direct analog to the bulk liquid-gas transition. The first-order
coexistence curve in the temperature – density plane terminates with a critical point. For
temperatures higher than the critical one, there is no discontinuous jump as a dilute gas
condenses at constant temperature.

Electrostatic interactions modify the above mentioned liquid-gas transition. They
tend to stabilize phases with modulated density. Phase diagrams incorporating the pos-
sibility of modulated phases were calculated within the frame of the mean-field approxi-
mation in two cases: (i) Close to a critical point where only the most dominant q-mode is
considered, and (ii) at low-temperatures where entropy is neglected.

Landau Theory Close to Tc

Close to the critical point T = Tc, the free-energy can be written phenomenologi-
cally [28-29] as an expansion in the order parameter,

ψ(~ρ) = φ(~ρ)− φc (5)

The expansion contains only even terms in ψ

∆F0/kBT =
1
2
α(T − Tc)ψ2(~ρ) +

1
4
uψ4(~ρ) (6)

where the coefficients, α ∼ T − Tc and u > 0, can be obtained from an expansion of
the monolayer free-energy of mixing. Since the electrostatic interactions prefer spacial
modulations, we have to consider also the energy gain and loss as an inplane modulation
of the two-dimensional concentration is created. The gain will be in the electrostatic energy

Fel/kBT = −1
2

∫
~P · ~E d2ρ =

1
2

∫
ψ(~ρ)g(~ρ− ~ρ′)ψ(~ρ′) d2ρd2ρ′ (7)

where g(ρ) = kBTb3/2πρ3 and b3 = µ2ε0/[ε(ε + ε0)kBT ].
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The modulation energy loss is the interfacial line energy between domains in a
two-dimensional geometry. For small density variations, the line energy is written as the
lowest order in a gradient expansion

FI/kBT =
1
2
Σ2

0

∫
(∇ψ)2 d2ρ (8)

with Σ0 being the compact area per molecule. In Fourier space, eqs. (7)-(8) can be
expressed as

(Fel + FI)/kBT =
1
2

∑
q

(Σ2
0q

2 − b3|q|)ψ2
q (9)

where ψ(~ρ) = ψ0 +
∑

q ψq cos ~q · ~ρ. The most dominant q-mode is the one minimizing the
ψ2

q coefficient in (9).

|~q|∗ = b3/2Σ2
0 (10)

Close to a critical point, it is a good approximation to consider only modulations
with magnitude q∗ in addition to the homogeneous (q = 0) solutions: ψ(~ρ) = ψ0 and
ψ(~ρ) = −ψ0 for the dilute and condensed phases, respectively.

Two types of spacial modulation of the two-dimensional density are considered [29,
34-35]

(i) a stripe-like phase, ψS(~ρ) = ψ0 + ψq cos q∗x (see Fig. 1)
(ii) a hexagonal phase, ψH(~ρ) = ψ0+

∑3
i=1 ψq cos(~ki ·~ρi) , with |~ki| = q∗ and

∑3
i=1

~ki =
0.

FIG. 1. The stripe phase is shown schematically, where the stripes are chosen to be in
the x direction. Domain walls (which are sharp only at low temperatures) separate denser
liquid (L) from dilute gas (G).
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The phase diagram can be calculated by comparing the homogeous with the tripe
and hexagonal solutions.

FS =
δ

2
M2

0 +
1
4
M4

0 + M2
q (δ − 1 + 3M2

0 ) +
3
2
M4

q

FH =
δ

2
M2

0 +
1
4
M4

0 + M2
q (3δ − 3 + 9M2

0 + 12M0Mq) +
45
2

M4
q

F0 =
δ

2
M2

0 +
1
4
M4

0 (11)

where,

δ = 4α/η2, M2
0 = (4u/η2)ψ2

0 , M2
q = (u/η2)ψ2

q , and η2 = b6/Σ3
0 (12)

FIG. 2. Phase diagram in the (M0, δ) plane where δ ∼ T−Tc is the reduced temperature
and M0 ∼< φ > − φc is the reduced concentration. The two isotropic phases, liquid (L)
and gas (G), are separated by the hexagonal (H), stripe (S), and inverted hexagonal (IH)
phases. Two-phases coexistence regions are also indicated.
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In Fig. 2, the phase diagram in the reduced temperature δ – reduced average
concentration, M0 ∼ < φ > − φc plane is shown. The usual coexistence region between
liquid and gas regions, M2

0 = δ is largely modified. A novel critical point at M∗
0 = 0, δ∗ =

1, is the termination point of five distinct phases: gas (G), stripe (S), hexagonal (H),
inverted hexagonal (IH), and liquid (L). The gas and liquid phases are two isotropic dilute
and dense phases, respectively. All the transition lines below the critical point (M∗

0 , δ∗)
are first order. Consequently, four regions of two-phase coexistence exist between the
phases. At low enough temperatures below δ∗, the stripe (S) and the hexagonal phases
(H, IH) disappear, as seen in Fig. 2. We believe that this is a defect of the single mode
Landau-Ginzburg expansion employed here. In the next section, a direct calculation of the
free energy of the modulated phase at low temperatures will show that these phases are
expected to be stable even at low temperatures over a range of concentrations.

Modulated Phases at Low Temperatures

It is of interest to compare the relative stability of the modulated and homogeneous
phases at low temperatures [29, 31] since our treatment of the previous section is valid only
close to Tc. For simplicity, only the stripe phase with sharp domain walls is considered.
The stripe phase is formed from a periodic arrangement of stripes of the dilute phase of
size DG and dense phase of size DL. The electrostatic free energy of the stripe phase is

Fel/kBT =
b3

πa
[xφ2

L + (1− x)φ2
G]− b3

πD
(φL − φG)2 log

(
D sin πx

πa

)
(13)

where x = DL/D = DL/(DL + DG) and a ' √
Σ0 is a microscopic cutoff. The first

two terms in (13) represent the overall average contribution to the electrostatic energy
and are independent of the periodicity D. The third term is an exact summation of the
intra- and inter-stripe electrostatic interactions [36]. An additional contribution to the
free energy difference ∆F between the stripe and the homogeneous phases with the same
concentration comes from the line tension γ associated with every domain wall separating
a G domain from an L one. The total free energy difference is thus

∆F = −kBTb3

πD
(φL − φG)2 log

(
D

a

sin πx

π

)
+

2γ

D
(14)

The equilibrium periodicity D∗ of the stripe structure is given by minimizing (14) with
respect to D

D∗ = a(
π

sinπx
) exp β (15)

where

β =
2πγ

kBTb3(φL − φG)2
+ 1 (16)
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The exponential dependence of the periodicity D∗ on the ratio between the line tension γ
and the dipole interaction coefficient b3(φL − φG)2 makes it difficult to give an accurate
estimate of D∗ since neither γ nor b are known accurately from experiments. However,
b can be changed in a controlled way by tunning the electrolyte strength for a charged
monolayer and (15) can be verified experimentally. In addition, it has been found that
cholesterol [22-25, 31] reduces the line tension γ causing thinning of the domains in accord
with the theoretical predictions [29-31].

CONCLUSIONS

At thermodynamic equilibrium, dipolar interactions tend to stabilize modulated
phases. Here we studied two such phases: a stripe-like and a hexagonal one, and show
that close to a critical point as well as at low temperatures the modulated phases are
stable. In experiments, the stable domains that are seen close to the liquid expanded
– liquid condensed or the liquid-solid transitions may also arise from out of equilibrium
growth. Hence, spinodal decomposition and nucleation in presence of dipolar interactions
may be of relevance and has been studied separately [37].

One promising possibility of checking quantitatively the effects of electrostatic in-
teractions is to consider the charged monolayer. The strength of the effective dipoles can
be tuned by changing the amounts of the added electrolyte in the aqueous solution.

Finally, in addition to the perpendicular component of the electric dipole, the
inplane component may also induce shape transitions and has been studied experimentally
and theoretically [37-40]. Of particular interest will be to find an explanation to the spiral-
like shape of domains formed as a condensation of chiral phospholipids occurs [22-25, 37-40].
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(1986).
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