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Ve analyze the role of thermal fluctuations in determining
the phase equilibria and structural properties of
microemulsions. In the dilute limit, where the microemulsions
are globular, the effects of thermal fluctuations are reviewed.
To treat the case where the amounts of o0il and water are
comparable, a lattice model is used; each cell of size ¢ is
filled with either pure water or oil. Surfactant molecules are
presumed to form an incompressible fluid monolayer at the oil-
water interface. The monolayer is characterized by a size-
dependent bending constant K(£), which is small for £ 2 fK' the
de Gennes-Taupin persistence length. The model predicts a middle
phase microemulsion of structural length scale £ = €y which
coexists with dilute phases of surfactant in oil and surfactant
in water. (These phases have £ = a, a being a molecular length.)
On the same ternary phase diagram, we find also two regions of
two-phase equilibrium involving upper- and lower-phase
microemulsions that coexist with either almost pure water or
oil. At high temperatures and/or low values of the bare bending
constant, KO-K(a), we find a first-order transition between the
random microemulsion and a lamellar phase as_the surfactant con-
centration is increased. For low temperatures and/or high
values of the bare bending constant, the middle-phase
microemulsion may be entirely precluded by separation to a
lamellar phase.
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I. INTRODUCTION

A. Microemulsions

Microemulsions are thermodynamically stable, fluid, oil-water-
surfactant mixturesl. The surfactant volume fraction is typically low (~5%);
most microemulsions contain i}so co-surfactant (alcohol) and/or salt. A
characteristic feature of microemulsions, as opposed to simple liquid
mixtures, is that the oil and water remain separated in coherent domains,
typically tens or hundreds of Angstroms in size. Because of their
amphiphilic character, the surfactant molecules prefer the interfacial
environment to either that of water or oil. This results in an extensive

oil-water interface.

The configuration of the oil and water domains varies with composition.

For small fractions of oil in water or of water in oil, the structure is

2,3,4

that of globules whose colloidal properties are well understood®.

"~—However, when the volume fractions of oil and water are comparable, one

7 structures to forms'g'lo. Of course, under

expects tandom6, bicontinuous
appropriate conditions (particularly when the volume fraction of surfactant .
is higher than a few percent) various ordered structures, such as lamellae,

may also atisell.

A characteristic feature is the presence of two- and three-phase
regions in the phase diagram. In the two-phase regions there is coexistence
between an almost pure phase (surfactant in oil or surfactant in water) and
a microemulsion (lower- or upper-phase, respectiveiy)lz{ In the three-phase
region, a middle-phase microemulsion coexists simultaneously with almost

pure water and almost pure oil.

In special cases, the phase diagram is oil-water symmetric. This -
balance point is achieved under variation of a parameter such as salt
concenttationlo. Such a‘parameter may be tuned so as to alter the

spontaneous curvature of the surfactant film; it is commonly believed>:13

that at the symmetric (balance) point there is no preferred curvature of the
monolayer. In addition, at the balance point, the middle phase microemulsion r-
shows very low interfacial tensionsl® (o ~ 1073 - 107 dyne/cm) with both
of the phases (which are nearly all water or oil) with which it coexists;

this results in a variety of technological applications, for example, in

chemically enhanced oil redoveryls. Crudely one can argue that o -'T/€2

where £ is a structural length scale of order of the domain size and T is
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the temperature. Since £~100 A, o is much smaller than the interfacial

tension between two molecular fluids.

There have so far been two differing approaches to the construction of
thermodynamic models for microemulsions. In this paper we follow the

"phenomenological" approach, which was initiated by Talmon and Prager6

, and
further developed by de Gennes and coworkersl®:'17 and Widom!®. In this
approach one regards oil and water as continuum liquids; the interfacial
surfactant layer is treated either as a flexible sheet, or in a microscopic
manner siiilar to that of insoluble Langmuir monolayerslg. The presence of
salt and/or alcohol is not directly treated, but enters through the energy
parameters of the interfacial sheet. The strategy is to fix the volume
fractions of oil, water, and surfactant, and to then calculate the free
energy of a hypothetical homogeneous phase of this composition. This
genefates a free energy surface as a function of composition, from which the
phase diagram can be determined. In calculating the free energy, it is often
convenient to describe the oil and water domains in terms of a coarse-
grained lattice; in this procedure, the lattice spacing remains comparable
to the domain size, which is usually much larger than a molecular length
scale. l

The second approach is based on the construction of "microscopic”
lattice models, in which a cell of the lattice contains only a small number

of molecules. This approach was initiated by Wheeler and Widomzo; and has

21 and others22. This microscopic approach,

recently been extended by Widom
though of undoubted fundamental interest, may be more difficult to implement
than the phenomenological one23. In particular, a microscopic model of
microemulsions must produce structural organization on a length scale (the
-.domain size) much larger than that of the _lattice. It may,.therefore, be .
argued that the microscopic approach is better suited to the description of
long-range ordered mesophases, which occur at higher surfactant
concentrations, thay the description of random, bicontinuous structures,

such as middle-phase microemulsionsZ®,

B. Thermal Fluctuations and Globular Microemulsions

The effect of thermal fluctuations on the properties of spherical4 and
cylindrical3 microemulsions was calculated in the context of a continuum
model of a surfactant monolayer at the oil/water interface. This is

appropriate for globules whose size is much greater than a typical
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surfactant dimension. The oil and water regions are assumed to be
surfactant free, while the surfactant monolayer, which typically has an area

per chain of ~2042, s assumed to be in the incompressible liquid

25,19

state The total energy is the sum of the curvature or bending energy

of the individual droplets. The bending energy of a single globule is

writtend:4:26 as

2 2
J ds (c1 + c2 - co) +

J ds (c1 - c2) a.n)
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In Eq. (1.1), the integral is over the globule surface S. The spontaneous
curvature, c, positive or negative, describes the tendency of the surfactant
monolayer to bend towards either the water or the oil respectively. The
first term favors structures whose average curvature (c1+c2) is equal to the
spontaneous curvature; deviations from this minimum energy state incur an
energy cost parameterized by the bending elastic constant K. When the
saddle-splay elastic constant >0, the second term favors structures with

equal radii of curvature in the two orthogonal directions.

—

For a system with a fixed amount of surfactant, the total surface area
of all the globules (whose number density must be determined as part of the
calculation) is fixed by the incompressibility assumption. In addition, the
total volume enclosed by the globules is fixed by the concentrations of the -
internal water or oil. It is the competition between the tendency to make .
globules with the spontaneous curvature ¢, and the necessity to satisfy the
incompressibility constraints which leads to the variety of structures that

are predicted.

The phase &iagram has been presented in Ref.3, where regions of
stability for spherical, cylindrieal, and lamellar phases are predicted as . A
functions of the concentrations, the spontaneous curvature c,, and the ratio 7?
of K/K. 1In the derivation of this phase diagram, it was assumed that all '
the globules are identical. However, the entropy of the surfactant
monolayer results in an ensemble of globules whose sizes and shapes depart
from the simple monodisperse set of spheres, cylinders, or lamellae
calculated through the minimization of the bending energy. The probability
that an arbitrary deformation of the globules will occur in thermal
equilibrium is proportional to the Boltzmann factor exp(-AF,), where AFy is
the change in the bending energy due to the deformation. The magnitude of

thermal fluctuations in the globular systems can then be calculated.
For spherical globules, the main effect of the thermal fluctuations is
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polydispersity in size and shape fluctuations which are dominated by £=2
spherical harmonic modes. However, the integrity of the description of the
system as a set of approximately monodisperse spheres is maintained, since
these fluctuations have a magnitude which is on the order of ~20% rms

deviation.

While the effects of thermal fluctuations on the ensemble of spherical
globules is relatively minor, this is not the case for cylindrical or
lamellar microemulsions. For the quasi-one-dimensional cylindrical
structure, the effects of thermal fluctuations are the largest. The
cylinders are only rigid on a length scale £, ~ K/T (the persistence
length). On longer length scales, the cylinder axis wanders randomly in

space.

This random wandering of the cylinder axis suggests a polymer-like
description of the long-wavelength properties of the long, flexible micro-
emulsions. The "molecular weight" of the polymers is self-consistently
determined by the system and is not fixed by the kinetics of preparation as
for simple, molecular polymers. Light scattering experiments have recently
been interpreted with a polymer-like modei for these systemsz7. In
addition, electron micrographs have yielded observations of flexible,

cylindrical structures 28.

Lamellar structures are also affected by thermal fluctuations, as
analyzed by de Gennes and Taupin16. By summing over undulation modes in a
nearly flat sheet of bending constant K and zero surface tension, they
calculated a persistence length defined by

a eAnK/aT

fK - (1.2)

Here a is a numerical constant, which depends on the details of the
calculations. (De Gennes and Taupin set a -'2,‘bﬁt-below we will find it
convenient to use a different value.) In Eq.(1.2), a is a molecular size,
vwhich provides a lower cutoff in the wavelength of the undulations, and T is
the temperature (we set Boltzmann’s constant, kp equal to unity). The sheet
remains flat over distances £ < §; but is crumpled at larger length scales.
Note that the persistence length for lamellae is much larger than the
corresponding £, for cylinders for the same value of K/T, due to the weaker
effect of thermal fluctuations in two-dimensions (lamellae) compared with

one (cylinders). In Ref. 16 it is suggested that the persistence length is
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related to the scale size in bicontinuous microemulsions and that the
entropy of the random structure stabilizes the microemulsions against the
ordered, lamellar phases. These ideas are supported by our calculations
presented in this paper (and elsewherezg) which establish a quantitative
link between the phase behavior and the persistence length of random

microemulsions.

C. Previous Phenomenological Models

As mentioned above, the first phenomenological model of disordered
microemulsion was that of Talmon and PragerG. They considered a subdivision
of space into random (Voronoi) polyhedra, which were filled at random with
either oil or water, according to a probability proportionai to the volume
fraction of each component. The surfactant was presumed to form a monolayer
at the interface between adjacent cells of water and oil; the area per
surfactant molecule was taken as a fixed constant, Z = Z;. The bending
energy of the surfactant film was included (to some extent) by assuming the
interface to be completely flat everywhere except at the edges of the
Voronoi polyhedra. Three-phase coexistence was predicted, but only by
aQ;GEing that the surfactant packing density is changed in the vicinity of
the edges. The energetics of this change are not considered; neither is the
harmonic bending energy used to describe the structures of membranes and
liquid crystals. A further discussion of the Talmon-Prager formulation may
be found in Ref. 17; despite various drawbacks, the model has proved very
valuable as a starting point for improved phenomenological theories.

The first such improved theory was proposed by de Genngs~and Taupinls,
and studied in more detail by Jouffroy, Levinson and de Gennes (JLG)17. The
JLG model drew on a physical picture of undulating lamellae described above.
This model simplified the Talmon-Prager construction by dividing space into
a lattice of cubes (ratherAthan Voronoi polyhedra); the cubes are filled at
“random with oil or watef aécordinéAﬁo their volume fractions. Based ﬁn the
physical picture of the persistence length, they chose the lattice size to
be always equal to {y. Within the random mixing apptoximation,.this requires
that the interfacial area per surfactant molecule, T, depends on composition

as

5o £(1-8) (1.3)
és EK

where ¢ is the volume fraction of water, 1-4 is the volume fraction of oil
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and 4, is the volume fraction of surfactant. It is assumed that ¢.<<¢, 1-¢.

JLG used a free energy contribution per surfactant molecule i

2 2
F -~ A (Z - zo) /zo (1.4)

This represents the preference of the surfactant layer for an optimum
area per molecule, Z;. The bending energy was estimated by assuming the

local radius of curvature of the interfacial film to be everywhere gl

comparable to the lattice size EK' (This improves the original Talmon-Prager

formulation in which curvature is concentrated at the edges of the Voronoi

polyhedra.) i

The JLG model, while appealingly simple, does not predict three-phase
equilibrium. Instead, there is a two-phase region involving equilibrium
between two microemulsions. This is understood as follows: As the surfactant
concentr&tion decreases, a uniform phase of the required composition would '
have T >> Z; {Eq. (1.3)], with a corresponding energy penalty from (1.4)
which can be avoided by phase separation into two phases, each having I =

Iy The line T = I, on the phase diagram, known as the Schulman line16'17

.
is everywhere close to the two-phase boundary. For high surfactant

concentrations, this model predicts 2<<Zo; a pure surfactant phase is not
allowed since it is assumed that the surfactant resides only at the

oil/water interface.

The next development was the theory of Widom!®. He introduced a (cubic) L
lattice of wariable size £, which he then treated as a variational
parameter; the free energy was taken at its minimum over € for each
composition. In his calculation of the bending energy contributions, Widom

essentially followed the formulation of JLG.

. Widom departed slightly from JLG in the manner in which the variable - BN

interfacial area per surfactant, £, was treated. Specifically, he treated

the interfacial layer as an ideal gas of surfactant in two dimensions. In
conjunction with a bare interfacial tension vy between oil and water, this
gives a quadratic minimum in the free energy as a function of the area per
head £. This is basically the same as Eq.(l.4); however, the coefficient A
in that expression is always of order T. Thus Widom's model describes a
highly compressible surfactant film at the oil-water interface. While this

may be appropriate under some conditions, there are other cases in which the

surfactant layer is more like an incompressible two-dimensional liquid. For
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example, measurements on globular and bicontinuous microemulsions“” show
that the interfacial area per polar head remains approximately constant
under a wide range of conditions, even in the presence of cosurfactant;
moreover, measurements on similar surfactants in a Langmuir geometry show
that the £ found directly from studies of microemulsions indeed corresponds

to a relatively incompressible fluid states'lg.

Nonetheless, Widom’s model successfully predicts three-phase
equilibrium involving a middle-phase microemulsion. For sensible choices of
microscopic energy parameters, the predicted structural length scale & for
the balanced middle phase is of order 100 A, in accordance with
experimentss. This middle phase coexists with two phases which are mostly
oil or water, that have £ = a, where a is a molecular cutoff. However, for
K/T>>1, the prediction for £ depends strongly on the bare oil-water surface
tension, 7, but only weakly on the bending constant K of the surfactant
film. This is mathematically unrelated to the expression (1.2) for the de
Gennes-Taupin persistence length, §x; more important, it seems to be at

variance with a range of experimentsl'11

that indicate (albeit indirectly)
that the properties of the middle phase depend very sensitively on the
bending constant K. For example, to make a middle phase at ail one usually
requires cosurfactants such as alcohol, which are expected to reduce K

significantly, while having very little effect on the bare surface tension.

D. The Present Work

Our model and its results have previously been summarizédzg. We follow
JLG and Widom in approximating the oil-water domain structure by a coarse-
grained lattice. Similarly a random mixing approximation is used to
calculate both the entropy of mixing of the domalns, and the extent of the
oil -water interface, it is assumed that all the surfactant re51des at this
interface. We depart from JLG, and follow Widom, in assigning to the lattice
a variable cell size £; however, rather than being a variational parameter,
€ will be determined uniquely by the volume fractions of oil, water and
surfactant. This is because it is assumed that the surfactant layer at the
oil-water interface as an incompressible two-dimensional fluid: I = Zy is a
fixed constant. The volume fraction of surfactant is then proportional to
the total area of the oil-water interface, which is a known function of the
water and oil volume fractions, and £, once the random mixing approximation,

is made (see below).
Our second major departure from the previous formulations lies in the
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treatment of the bending energy. Helfrich30, and Peliti and Leibler31, have
shown that the bending constant K of a flexible sheet of size £ is
renormalized downwards by thermal fluctuations at short length scales. In
first-order perturbation theory, these authors found a size-dependent

effective bending constant, K(§), which obeys
K(E) = K [1-r log(§/a) ] (1.5)

where K, = K(a) is the bare bending constant (denoted previously by K); a
is a molecular length which provides the cutoff wavelength of undulation
.modes [cf. Eq.(1.2)]); and

T = al / 4K (1.6)

Here &Iis a-numerical constant, whose precise value (a = 1, or a = 3)
remains in dispute30'31'32. In the remainder of this article, we will choose
a=1. It is convenient to choose Eq.(l.5) as a definition of the arbitrary
parameter a in Eq.(1.2) for the persistence length, {g- In this case,
Eq.(1.5) becomes v

K(€) = -r K log(&/€y). (1.7)

The downward renormalization of K indicates that it becomes relatively
.easy to bend a sheet of size £ * g, since such a sheet is anyway
spontaneously crumpled. The perturbative reéult (1.5) fails for £ * £y since
mechanical stability requires K > 0. However, for { £ £y the form (1.5)

should give the correct qualitative behavior.

. Our model for microemulsions incorporates the renormalization of the
bending constant by identifying the length scale E 1n.ﬁd.(1.5)'withAthe
lattice constant used in the coarse graining of the oil and water domains.
This captures the- fact that there is little to be gained, in terms of
bending energy, by having domains much larger than {y, the persistence
length of the surfactant film. This is because such a domain has a wrinkled
surface, ana so may as well break up into smaller pieces (thus gaining
entropy of mixing). Of course it was precisely this physical idea that
wotivated JLG to set § = fK in their model; however that turned out to be
too restrictive an assumption to give three-phase equilibrium, since when
the compositions approach those of pure water or oil (as for the phases

with which the middle phase coexists) the domains may be much smaller than
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§x- In our model, we find a middle phase microemulsion for which the
structural length scale £ is indeed comparable to §g as defined by Eq.(1.2);

but this is a result of the theory, rather than an initial assumption.

The organization of this paper is as follows: In section II we present
a phenomenological model which combines features of both the JLG model and
that of Widom. Section III describes extensions of our model to account more
carefully for the properties of the mostly oil or water phases that coexist
with the middle-phase microemulsion. In that section we also discuss the
stability of the microemulsion relative to lamellar phases. Section IV
contains a further discussion of our results. In Section V we present our

conclusions and future prospects.

I1. THE BASIC MODEL

A. Free Energy of a Random Microemulsion

—_—

Vith the assumptions of the previous section, we consider
microemulsions to be ternary mixtures of oil, water and surfactant. Space is
divided into cubes of size ¢ filled either with water or oil. The surfactant
is constrained to stay at the water-oil interface; we divide it equally
between the oil and water domains. Using the random mixing approximation,

the probability ¢ for a cube to contain water is

$ =6, + 6./2
where ¢w and ¢s are, respectively, the volume fractions of water and
surfactant. The probability for a cube to contain oil is 1-¢. The
constraint for the surfactant to fill the water-oil interface allows us to

-.xelate the volume fractions of the components -and the lattice size £ within

the random mixing approximation:

(1-¢) '
$. 5, = zv, i‘—e (2.1)

where z=6 is the coordination number of the cubic lattice; vy is the
molecular volume of the surfactant, and Zy is the surface area per polar
head of a surfactant molecule, which is fixed. Within this approximation
the relation (2.1) gives the lattice size £ at each point of the phase

diagram
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(2.2)
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where a-vs/zo is a molecular length. Note that in our model, the lattice
size € is neither fixed at a constant value (as in the JLG model) nor a
variational parameter (as in Widom’s model) but is determined by the

constraint, Eq. (2.2).

Since the area per polar head is fixed, the free energy per unit
volume, £, has only two terms: the entropy of mixing of the water and oil

domains, f., and the energy of curvature of the interface, fc' The first

term is calculated using the random mixing approximation17
T T
f_ == [¢log(é) + (1-¢)log(l-¢)] = =5 S(¢) (2.3)
s 53 53

The second term fc is calculated as follows. First we associate the
bending energy E. of a cube of water (oil) of size { surrounded by oil

(water) with that of a sphere of diameter’f
' 2
E.=8xK(&) (1-€/0p,)

where Po is twice the spontaneous radius of curvature.(co'1 of Eq. (1.1))
and is defined to be positive for curvature towards the water and negative
for curvature towards the oil. In our model the probability of having a bend
is related to the probability of having an edge. However, we take the radius
of curvature to be comparable to §, rather than presuming the interface to

have a sharp edge. Thus, the total energy of curvature per unit volume is

given by
£, = 8O pa-9? - g%+ $2a0) @+ /07 (2.42)
¢
= 8O a0 11 - 26 1-20)75 ) ] (2.45)

. 53

In equation (2.4b), we have dropped a term linear in ¢ which may be

absorbed into the chemical potential of surfactant.

As explained in Sec. I, we have explicitly incorpotated in our model
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the renormalization of the bending constant by thermal fluctuations. The

bending constant K(§) is then explicitly a function of the lattice size &£,

Eq.(1.4), and is a decreasing function of the lattice size {. The total free

energy per unit volume, f, is the sum of f_, Eq. (2.3), and £, Eq. (2.4b).

We can rewrite the free energy in reduced units, defining

-
1

aT/ (47K,)

a exp(l/r) = a é
x =&/
X = £x/Po
as =¢s 6

)
~
]

Ve also define the reduced free energy f, =~ (EK3/T) £

£ - 5 {s<¢) - 26(1-¢) log(x) (1 - 2xx°(1-2¢))}

b4

Eﬂe constraint given by the Eq. (2.2) becomes

Lo $(1-8)
¢

(2.5a)
(2.5b)
(2.5¢c)
(2.5d)
(2.5e)

(2.6)

2.7

Equations (2.6) and (2.7) define a reduced free energy f.(4,s) as a

function of the two compositions ¢ and 35. This free energy is universal in

the sense that, in reduced units, it does not depend on the value of K.

There is only one parameter: X,, the reduced curvature. All the lengths are

in units of €K and the energies in units of T.

B. Calculation of the Phase Diagram

To calculate the phase diagram, we define the potential:

§(6.8) = £.(6.8) -uyé - p 8

(2.8) °

The equivalent of the common tangent constructibn on fr(¢,$s) is the

minimization of g(¢,35) with respect to ¢ and 35 for fixed values of the

chemical potentials By and Bg- We solve the system of two equations defined

by
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[—"’—5] - 0  and [-a—ﬁ } -0 (2.9)
a¢s 4

The absolute minimum of the function g corresponds to the stable phase
at a given chemical potential. The technical details are explained in Ref.
33. The calculation for xo-O {no spontaneous curvature) leads to the phase
diagram shown in Figure la. It exhibits a one phase region (the
microemulsion phase) and three polyphasic regions: twe two-phase regions
where a microemulsion phase is in equilibrium with a very dilute phase of
surfactant in water or oil, and a three-phase region where a middle-phase

microemulsion is in equilibrium with both dilute phases.

Figure 1lb 'is a ploﬂ of the value of x-{/fK along the two phase
coexistence curve. The structural length § in the middle phase (for ¢=0.5)
is proporcionél to §g (€ = 0.23¢y, for r~0.2) . Moreover, { remains on the
order of £y even far from the middle phase. It is only when ¢ is very close
to 0 or 1 that £ falls rapidly to a microscopic value (£~a). In additionm,

the concentration of surfactant in the middle phase34

scales as exp(-1l/r).
Thus the volume fraction of surfactant can be very small, when £ is large
compared to the molecular length. Consequently, the phase diagram is a

strong function of EK (and therefore of Ko)'

The detailed structure in the corners of the phase diagram is given in
the inset of Figure la. All the tie-lines of the two phase equilibria start
from the boundaries of the phase diagram (water-surfactant and oil-
surfactant sides). The points where the coexistence curves reach the limits
of the phase diagram are critical points. Indeed at these points the
composition of the two phases in equilibrium becomes identica135. It should
be noted, however, that we do not expect our free-energy to be accurate in

_this region of the phase diagram. We will see in the next section that we
can generalize our model to include a more realistic account of the

properties of the dilute phases.

Ve now consider the case of finite spontaneous curvature (x,70) . Ve
choose x,>0; the case x,<0 corresponds to the same evolution of the phase
diagram but with the oil and water volume fractions interchanged. So long as
the spontaneous radius of curvature remains larger or on the order of 137 '
(x°<1) the phase diagram shows a slight asymmetry but the three-phase
equilibrium still exists33. However, when the spontaneous curvature x, is
much greater than 1 (po<<€yg), the three-phase region vanishes (Figure 2).

The phase diagram is then very asymmetric and the two-phase region consists
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Figure 1. (a) Phase diagram for the case of no spontaneous curvature

- (x5 = 0). The numbers denote the number of coexisting phases and
ithe tie-lines in the two-phase regions ;re shown. The inset shows
the details of the tie-lines at small values of the volume frac-

tions. The values r=0.2 and a=l were chosen.

"(b) Variation of x = ¢/€g (the normalized length scale of the- =

microemulsion) along the two-phase boundary of Fig. la.
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of equilibria between a microemulsion phase and a phase that almost all
water. In this case § is no longer proportional to §g. but scales with Pos
indicating that phase separation occurs when the typical domain size of the
cube is of the order of ?o- This result is an indication of the

3

emulsification failure” instability that precludes the formation of globules

with a size larger than p,. It is also interesting to notice that the the
three-phase equilibrium disappears when xo-ex/po is of order unity.

III. EXTENSIONS OF THE BASIC MODEL

A. Generalized Phase Diagrams

The previous section described the phase diagram obtained from a
double- tangent plane construction using the free energy of Eq.(2.6). We
now describe a simplified method for generating the two- and three- phase
coexistence regions. This method relies on the observation that the micro-
enulsion phase% coexist with very dilute phases of surfactant in water or in

oil,

25 T T Y T T T T B Al
1
20 - -
. 15+ 2 -
o
10 d
5 =
ol . . L P y
] 2 4 6 .8 1
[

Figure 2. Phase diagram for finite spontaneous curvature, with x, = 10 and
7 = 0.15. The tie-lines in the two-phase region indicate coex-
istence of a phase which is mostly water with a microemulsion
phase. The three-phase region no longer exists for this value of

Xo.
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Our study of the free energy surface3> showed that the three-phase
equilibrium ifs due to the presence of two deep minima in the model free
energy, in the region of very small surfactant concentration. However our
model, which describes the surfactant as an almost flat monolayer at the
water/oil interface, is not really appropriate in the dilute regime where
these minima occur. It is unreasonable to extrapolate the bending energy to
dilute phases where the surfactant exists in the form of micelles or iso-

lated molecules in solution.

Ve, therefore, introduce a simple model for these dilute phases which
is, in general, not merely an extrapolation of the microemulsion free
energy. Denoting the free energy per unit volume of the dilute phases in

water and oil respectively by ?w and fo' we write

T, - T [zs( log 3, - 1) + szs]/ R3 (3.1)

—

where $s i{s the volume fraction of surfactant in the dilute phase and R3 is
the volume of a micelle. The first term in Eq.(3.1) is the entropy of
mixing and the second term is the energy of surfactant in dilute solutien .
Note that the zero of energy is that of a flat surfactant monolayer. Thus,
if the surfactant free energy is lowest for saturated interfaces, the dimen-
sionless energy x, of the micelle or isolated surfactant in solution is
positive36. It is only the entropy of mixing that stabilizes these dilute
phases with . respect to the monolayer-like microemulﬁion phases. A similar

expression is used for the free energy per unit volume of the oil-rich

~dilute phaseswith ¥+ ¥ and «, > «.

Since we expect37 R~a, we see that the dilute limit of our microemul-
sion free energy, Eq.(2.6) with x,=0, reduces to the form of Eq.(3.1), when
xk>>1, with R=6'/% a, and with x,~87K_/T. The recognition that the dilute
phases cannot necessarily be described by the same harmonic bending energy
as the microemulsion phases is expressed by the introduction of a new energy

k., which is not simply related to K_.
W (J

Recalling the coexistence curves of Figure 1, we now look for an equi-
librium of a three-component microemulsion with a two-componént, dilute
phase. The equations for two-phase equilibrium of the microemulsion with a

dilute phase of surfactant in water are:

o
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Jf af = — w
f+ (1-¢) 5; ¢s 535 -f, - ¢s ;5- (3.2)
s
st 1ae _ N 35.3)
a¢s 2 3¢ dZ '

Equation (3.3) results from the equality of the chemical potential for
surfactant which exists in both the microemulsion and dilute phases. The
second term in Eq.(3.3) arises from the dependence of ¢ in the microemulsion
phase on ¢.,. For a dilute phase of surfactant in water, Egs.(3.1) and (3.3)

determine~the value Zs-éz at coexistence as
* . 1
log ¢, = -« + [a¢ -3 5;] /T (3.4)

Since f in the microemulsion phase is of order T/f&, where

EK/a ~ exp(l/r)>>1, and since ¢s ~ 1/§y in the middle phase, the second temm
on the r;ght hand side of Eq. (3.4) is of the order of 1/5%. Thus, for
large values of {y, the first term on the right hand side of Eq.(3.4) domi-
nates. Equation (3.4) shows that the value of ¢: in the dilute pﬁases is
approximately independent of the value of ¢ or és in the coexisting micro-

emulsion phases.

Similar considerations allow us to neglect the second term on the right
hand side of Eq. (3.2). With these approximations, the above equations

reduce to only one condition:

—~f+(1-¢)’g§*‘¢s'g’§'f:" S € )
s

where now f: - fw(¢:), with ¢: - exp(-nw). The phase boundary for two-phase
coexistence is then found directly by plotting ¢, as a function of ¢ as
given by Eq.(3.5). If the value nw-S«KO/T is used, the results are indist-
inguishable from those of the tangent plane construction (see Figure 1),
except for & region very close to the corners of the phase diagram. Our
approximation is equivalent to having the ends of the tie-lines in Figure 1
meet at a single point. By choosing different values of «x, and x,, we can

generalize the previous results. Note that Eq.(3.1) can be generalized to
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even more accurately model the free energy of the the dilute-phases. For
example, the Inclusion of attractive interactions will further destabilize

the micellar phase.

We have just described a simplified generalization for determining the
coexistence of a microemulsion with dilute phases of surfactant in water or
oil. The independent modeling of the free energy of dilute surfactant solu-

tions introduces two more . relevant energy scales, «, and x_ in addition to

w
K,. Since f: ~ T exp(-x,) /83, we can equally well parameterize the dilute
phases by their values of f: or f:. The coexistence curves are in general
sensitive to the values of these parameters. For example, Figure 3 shows
that if f; »“ f:, the phase diagram is not symmetric about ¢=0.5, even though
the microemulsion phase has no preferred curvature (xo-O). This is because
phase equilibria are sensitive to the global properties of the free energy
surface. Although there is no spontaneous bending of a surfactant film
towards either water or oil, the different free energies of isolated
surfactant molecules or micelles in water-rich and oil-rich environments can
be different. If f:/f: is very different from unity, the three-phase region

can entirely disappear. There are thus two mechanisms which can give rise

—

to an asymmetry of the phase diagram, and in the extreme case, to the dis-
appearance of the three-phase equilibrium: (i) a finite spontaneous curva-
ture, (ii) a difference in the free energies of the surfactant in the
dilute phases (f:, f:).

Figure 3. Phase diagram for no spontaneous curvature (x0 = 0), but with
asymmetry in the free energies of the dilute phases (f: » f:).
* * ’
Here, £, = -15T/p and £ = -15 T/2¢3.
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B. The Lamellar Phase

In this section, we consider the relative stability of random
microemulsions compared with a lamellar phase which consists of an ordered
array of surfactant monolayers dividing adjacent oil and water domains. For
the case of no spontaneous curvature, we show that for values of K, /T that
are not too large, the random microemulsion is more stable than the lamellar
phase at small values of #5- The renormalization of the bending constant to
values of the order of T, allows the energy cost of the random system to be
compensated by the entropy gain from the random mixing of water and oil
regions. At large values of $., the bending constant approaches its bare
value, K,. The énergy cost of the curved interfaces in the random
microemulsion is no longer compensated by the entropy of mixing, and the

lamellar phase dominates.

We compare the free energies of the microemulsion and lamellar

phases38

. .Although the ordered, lamellar phase has no entropy of mixing and
approximately no'Ldrvature energy, it has a finite free energy due to the
steric repulsion of the surfactant sheets39'40. This repulsion reduces the
meandering encrépy of the lamellae from its value in the limit of infinite
separation of the surfactant sheets. The additional free energy per unit
volume has been estimated by Helfrich3’ for a two-component 'system, and can
be approximately generalized to describe the free energy per unit volume of

the lamellar microemulsion, fl'
T 2 1 1
fp= xT [ﬁ][-m][‘z +—z] G-6)
(<) o w . d d
. o w

In Eq.(3.6), d°=2a¢o/¢s and dw=23¢w/¢s are the distances between the
surfactant sheets separating oil and water domains, respectively. The
surfactant volume fraction is given by ¢ = 2&/(d° + dw) = a/d. Ve expect
“Eq. (3.6) to be correct for d<{y. The parameter x in Eq. (3.6) expresses

the uncertainty in the numerical coefficient of Eq. (3.6) which depends on

the details of the short distance cutoff. In our numerical calculations, we .

take x=0.15/x=0.05; if x is taken to be Helfrich’s value of x~0.3, the
microemulsion is more stable than the lamellar phase even at high values of

¢

s°

The phase diagram is obtained from a double tangent construction on
both fz and f as described in Sec. II above. The results are shown in

Figure 4, for a value of r = T/4xK, = 0.2. Since the lamellar free energy
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scales as (TZ/KO) ¢z/a3 and the microemulsion free energy scales as T ¢2/a3,
the free energy difference between them decreases as K, is increases. For
large values of KO/T, the lamellar phase is more stable than the random
microemulsion phase and the middle-phase along with the three-phase
equilibrium disappears. This confirms the suggestion of de Gennes-Taupinls,
that the lamellar structure is more stable than the random microemulsion for

stiff surfactant sheets.

1.0 S
0.8}
0.6
Vs
0.4
Lamellae
0.21-
2 1 ) 2
— | 3 ;4' -
° 0 0.2 04 0.6 0.8 1.0w
L 4

Fig. 4. Phase ‘diagram for microemulsions with no spontarneous turvature.
The region where the lamellar phase is stable is indicated; the
numbers indicate the number of coexisting phases. A value of
r=0.2 was chosen. The tie-lines indicate the coexistence of dis-
ordered microemulsion phases with lamellar phases. The lower part
of this phase diagram is the same as in Fig. la, but with a diffe-
rént vertical scale since Es - ¢s exp(l/r). The phase diagram is
drawvn within the triangle of allowed concentrations: ¢s<¢/2.
¢s<(1-¢)/2, and the corners S$,W, and O correspond to pure

surfactant, water, and oil respectively.
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This comparison of the free energies of the lamellar and microemulsion

phases reveals the crucial nature of the renormalization of the bending
constant. It is through this renormalization that the bending energy in the
random microemulsion phase is reduced so that the entropy gain of the random

structure stabilizes it against the ordered lamellar phase.
IV. DISCUSSION

We now make a few remarks about our resulting phase diagrams and

compare them with previous models:

(1) 1In the symmetric case (x, = 0) the calculated phase diagram, Fig.
1, has four distinct regions: a single phase, two two-phase coexistence
regions (one consisting of a microemulsion in equilibirum with a phase which
is almost all water and the other of a microemulsion in equilibrium with a
phase which is‘almost all oil) and a three-phase coexistence region where
the middle phase microemulsion is in equilibrium with both water and oil.
The surfactaﬂt concentration in the middle phase is inversely proportional
to the presistence length and hence depends exponentially on the bending

constant Ko.

(ii) Deviations from this symmetric picture are observed as we change
the spontaneous curvature x, from zero to a finite positive (negative) value
which reflects a tendency of the surfaptant to bends towards the water (the
0il). As one increases Xq from zero, the middle phase moves towards the oil
corner. Consequently, the extent of the two-phase coexistence with the water

increases while the extent of the two-phase coexistence with the oil.

" decreases until it, as well as the three phase region, completely

disappears, Figure 2, leaving only the two-phase coexistence between the
microemulsion (globules of water in oil) and an excess water phase. This
happens at values of p %£y and is in agreement with the concept of an
"emulsification failure" instability that was previously discussed for

globular microemulsionss.

With the simple expression that we have for the free energy, Eq. (2.6),
py (or xo) is the only parameter that affects the asymmetry of the phase
diagram. In Sec. III, we generalized our model and introduced two additional
Parameters, f: and f:, which are the values of the free energy minima in the
dilute water and oil phases, and are related to the surfactant stability in
those phases. In the generalized model, another way to asymmetrize the phase

diagram, Figure 3, is to increase If*-f:I while keeping both minima below

B1



. : . . *
the microemulsion value. For example, increasing the value of fw with
* . . . :
respect to f  causes a shrinkage of the two-phase coexistence with oil until
this coexistence region, as well as that of the three-phase coexistence,

disappear.

(1ii) Our theory contains several phenomenological parameters such as

f*

* . .
W' and fo which are related to the surfactant structure and chemistry.

xo,

These parameters can asymmetrize the phase diagram; they are experimentally

41 which can

controlled through changes in the hydrophilic-lipophilic ratio
be brought about by changes in temperature (which has other effects as
well), salinity, and the stability of the dilute phase of surfactant in
42
174,

water and oi Since salinity screens the electrostatic interaction in

the water, it can be thought of as decreasing x, in our model. Also our
simplified account of the stability of the water and oil in terms of the two
parameters f: and fz, shows that as the stability of the oil increases, the
oil-microemulsion coexistence region shrinks, until only an equilibrium
with water is left (no three-phase region). The reverse behavior is seen

when the water stability is increased.

-_—

(iv) Another change in the phase diagram occurs as one increases the
* % ok : : *
value of f =f =f" with respect to the microemulsion free energy. For f near

33 to separate into two microemulsions, one being

zero, the system prefers
oil-rich and the other water-rich (with equal amount of surfactant for the
symmetric case x,=0). Consequently, the entire three-bhase region
disappears. This again shows the importance of £f* to the existence of the
three-phase region. A similar two-phase coexistence between two
microemulsions was also obtained by de Gennes and Taupin and by JLG. In
their model, it was not possible to obtain the three-ph;se region because
the cell size was always presumed to be equal to fx, the persistence length;
whereas in our model, the cell size varies from {~{y, near the middle-phase
point on the phase diagram, to a molecular size for the dilute phases. As in
the JLG model, we find33 coexistence between two microemulsions with unequal

amounts of surfactant (oblique tie-lines) by introducing a finite.

spontaneous curvature.

129 18

and Widom'’s result in three-phase

(v) Although both our mode
coexistence, there are several important différences between them. In
Widom’s model the surfactant film is thought of as highly compressible two-
dimensional gas whereas in our model it is an incompressible film. The
stability of the undulating interface in our case is a direct consequence of
the renormalization of the bending constant and we find that the structural

e
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length scale (cell size) ¢ is closely related to the de Gennes-Taupin
persistence length £y. In the middle phase, ¢ is proportional to €x; along
the two-phase coexistence lines, Figure 1b, it deviates strongly from §y
only very close to the corners of the phase diagram. This exponential
dependence of the cell size on the bending constant is not found by Widom.
Rather in his case (for rigid surfactant films, Ky, >> T) ¢ depends18 only
weakly on the bending constant, and exponentially on the water/oil bare
surface tension. This difference between the two theories can be checked
experimentally since (within the random mixing approximation) § is inversely
proportional to 4. the volume fraction of the surfactant. Measurements of K,

versus ¢ will be helpful in comparing these two predictions.

(vi) The microemulsion phase should always be compared in stability to
more ordered structure such as lamellae. This was done in Sec. III with some
simplifying assumptions about the contribution of thermal fluctuations to
the free enefgy qf $he lamellar phase. We find that for K /T larger than a
critical value, the lamellar phase is always more stable than the
microemulsion phase and the three-phase coexistence disappears altogether.
In contrast, for K,/T smaller than the critical value, the microemulsion
phase is more stable than the lamellar pha;e for small ¢g: as ¢, increases,
there is a transifion (always first order in our model because we are
comparing two different branches of the free energy) from an isotropic
disordered (microemulsion) phase at small values of ¢s to a lamellar one at
higher values of ¢,. In the coexistence region, the two phases have diffe-

rent values of ¢ and ¢, resulting in the oblique tie-lines in Figure 4.
V. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we focused on understanding the origin of middle phase

- microemulsions. Within a simple model we calculated phase diagrams>chaC'are

similar to those observed for nonionic surfactant microemulsionSAI. In
addition, our model has a simple physical explanation in terms of the
statistics of the undulating surfactant films separating oil and water
regions. The renormalization of the bending constant of such a film appears
to be crucial to the stabilization of these phases. In the absence of
renormalization of the bending constant, the phase diagram still shows a
three-phase equilibrium, similar to that of Ref. 18. However, in that
model, the length scale of the microemulsion in the middle phase is
unrelated to the properties of the surfactant film (e.g., the persistence
length). 1In addition, the free energy is greater than that of a lamellar

phase.
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Several points deserve additional study:

(i) Our calculation as well as those of Refs. 6,17, and 18 are done
within the random mixing approximation, which does not take correctly into
account concentration fluctuations. For small length scales (smaller than a
cell size), fluctuations were included via the renormalization of the
bending constant. However, one would like to find corrections to the mean
field approximation for large length scales by writing down a lattice model

where the entropy and the bending energy are better approximated.

(ii) In addition, the expression used for K(¢) was derived3o'31 to
first order in perturbation theory for zero surface tension interfaceé.
This expression is not expected to hold for large length scales. Even

30,31,32 ¢ the

within first-order pertubation theory, there is a dispute
present time about the exact value of coefficient e in the expression for
K(£). Changing a has a similar effect on our phase diagram as changing £*
(see Sec. III). Variations in either parameter can case a crossover from
three-phase equilibrium to coexistence between two different microemulsions.
Our model has shown that the fluctuations of a random surface have a
profound effect on the phase stability of random microemulsions. A more

detailed theory of the random surface will enable a more complete appli-

cation of these ideas.
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