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Abstract. - We present a simple model for the anomalous (flow-birefringent) isotropic phase, 
known as LB, that is seen in certain surfactant solutions at volume fractions of a few percent. 
The proposed structure consists of locally sheetlike sections of semi-flexible surfactant bilayer, 
connected up at larger distances into a multiply connected random surface, having a preferred 
structural length scale of order the persistence length of the bilayer. A first-order transition 
between this isotropic sheetlike phase and the nearby swollen lamellar phase is described. 

In certain dilute surfactant systems, such as the nonionic surfactant CI2E5  in aqueous 
solution, an unusual isotropic phase (L3) is found in a small region of the phase diagram at 
surfactant volume fractions of a few percent [l-61. Similar phases of surfactants in oil are 
also seen [7-111; in what follows, for definiteness, we suppose oil to be the solvent. The L3- 
phase is strongly flow-birefringent, and has a large structural length scale, of order 
hundreds of Angstroms [3-5,7-111. These data rule out a phase of small spherical micelles, 
which is what one might normally expect for an isotropic phase at  such compositions. The 
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presence of the L3-phase is associated with strong stability of the nearby lamellar phase 
under dilution; there is usually a weak first-order transition between these two 
phases [6,7,10]. The lamellar phase consists of widely spaced surfactant bilayers in an 
ordered array; these undulate thermally, providing a swelling pressure that favors uptake of 
oil. In these <<unbound. lamellar systems, the coexistence that is finally reached, when more 
oil is added, is not usually with a phase of excess oil [12], but with an L3-phase 1101. 

A possible explanation is that the L3-phase occurs in systems that vigorously oppose any 
strong local bending of the surfactant monolayer (as would be needed to make a compact 
micelle). In this work, we propose that the observed L3-phase can be tentatively identified 
with a certain sheetlike phase that we will call the S-phase. We picture this phase as 
consisting locally of relatively flat pieces of surfactant bilayer, joined together randomly in 
such a way as to avoid all regions of strong curvature. Thus a low bending energy (and 
relatively high entropy) can be achieved at very low volume fractions of surfactant. The 
properties of the surfactant monolayer that favor such a state are i) a relatively high bending 
constant, and ii) no spontaneous curvature[13]. Clearly, the same properties tend to 
stabilize swollen lamellae, with respect to a phase of micelles. 

It remains to be decided whether the dominant configurations of the bilayer consist of 
large isolated vesicles, or some more highly connected random surface (possibly bilayer- 
continuous). We will present a simplified model which allows for both possibilities, and 
indicates that the latter is more stable in a large part of the phase diagram. We find that the 
sheetlike phase S is preferred to the lamellar phase (L) once the system is dilute enough that 
the interlamellar spacing would exceed roughly f ~ ,  the de Gennes-Taupin persistence 
length [14] of the semi-flexible bilayer. We also study equilibria between these two phases 
and an extremely dilute phase of surfactant micelles (or isolated surfactant molecules), 
stabilized by entropy of mixing at low enough volume fraction. 

The proposed S-phase should be contrasted with the isotropic phase of giant wormlike 
micelles which is also seen at  low volume fractions in certain surfactant solutions [151. This 
phase is expected for surfactants whose monolayer has strong spontaneous curvature [161, 
unlike the S-phase which can occur only when a locally flat surfactant film is favored. 
(Correspondingly, we expect the wormlike phase to be found close to an ordered (hexagonal) 
phase of cylinders, as opposed to lamellae.) 

To formulate a model for the S-phase, we construct an ensemble of surfaces (consisting 
locally of surfactant bilayer) characterized by a structural length scale E. We exploit a 
strong analogy with a model previously studied in the context of middle-phase 
microemulsions [17]. As in that work, we assume the surfactant film to be incompressible, so 
that the surfactant volume fraction, and the specific area of bilayer in the system, are 
proportional. We start with a discretized representation (on a cubic lattice of side 0 by 
building up an arbitrary collection of connected surfaces from elementary plaquettes (faces 
of the unit cube). In such a surface, the curvature is concentrated along the joins between 
plaquettes. Under certain conditions, however, the surface can be <smoothed out,, so as to 
have nowhere a radius of curvature smaller than f/2. To achieve this on a cubic lattice, the 
following configurations must be avoided: a) a plaquette edge that is not joined to any other 
edge; b)  a plaquette edge that is joined to two others. The first case corresponds to an edge 
or <<tear>> in the bilayer, with a local radius of curvature of order its thickness a << E. The 
second gives an angled .seam>> between sections of bilayer; this also has a radius of 
curvature of order a along the seam. In contrast, a junction involving two (or four) plaquette 
edges may be interpolated with a surface (or pair of surfaces) having radius of curvature of 
order 5 or less, as shown in fig. 1. 

As regions of high curvature are to be avoided, we insist on the elimination of 
configurations of types a) and b) above. This rule can be enforced by dividing the cells of the 
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Fig. 1. - Construction of a randomly connected bilayer surface as an interface between two fictitious, 
different types of oil, A and B,  drawn for simplicity in two dimensions. 

lattice into two types (A and B) ,  and allowing plaquettes to lie only at the A-B interface 
(which must be completely covered). Consequently, the random-surface configurations of 
the bilayer that we wish to allow correspond to those that represent the interface in a 
mixture between two, fictitious, disfferent types of oil. The relative fractions $ and 1 - $ of 
oils A and B are not determined a priori, since in the real system these two <<species. are, of 
course, identical. We will, therefore, use $ as a variational parameter. It is easy to see that, 
in conjunction with the random mixing approximation for A and B ,  this allows a continuous 
interpolation between a phase of dilute spherical vesicles (+ << 1/2) and one that consists of a 
bilayer-continuous, <<maximally random>> interface ($ = 1/2). 

Adopting this construction for the S-phase, we now estimate its free-energy density Fs. 
We denote the volume fraction of surfactant and oil by +, and 1 - #, respectively, and 
presume $ << 1. We write 1 - # = #A + #B, where $A and +B denote the two different fictitious 
oil species, described above. Defining also $ = +A + #/Z  = QA, we obtain the following 
estimate for the entropy density: 

This is the usual random mixing expression for an A-B mixture. That species A and B must 
finally be set identical, does not affect this result for the entropy of the interface. 

The other contribution to the free-energy density is from the bending energy of the 
bilayer. Following ref. [17], we estimate this heuristically as 

Fbend = (lit3) 8 ~ $  (1 - $1 K ( 8  . (2) 

Here we have assumed no spontaneous curvature of the bilayer, as expected on symmetry 
grounds; the factor $(l - $) counts (in random mixing) the total area of the surface, whose 
radius of curvature is taken to be everywhere of order E .  The (somewhat arbitrary) factor 8 x  
relates the bending energy of an isolated unit cube to a sphere of diameter F. 

As explained below, the effective bending constant K(Q in eq. (2) is taken to be explicitly 
length scale dependent [18]: 
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Here a is a numerical coefficient that we will take to be unity(l), and the reduced 
temperature is 7 T/(47rK0); a denotes the bilayer thickness, a molecular parameter. The 
cell size t: in eqs. (1)-(3) obeys 

This result is found by equating (in random mixing) the specific surface area and volume 
fraction of the interfacial bilayer to  $/a and $, respectively. 

The form (3) for the effective bending constant describes, in perturbation theory [HI, the 
softening of the sheet by thermal undulation modes. The result should be adequate for 
t<  5K = a exp [UT], which is the persistence length [14] of the bilayer. The physical content 
of eq. (3) is that bends in the bilayer on a length scale larger than tK are possible at low free- 
energy cost, since an unbent sheet will anyway be thermally crumpled in this scale. As a 
result, FK is the favored structural length scale for an isotropic phase of random bilayer 
surface. 

The analogy here with balanced oil/water microemulsions is very close. Indeed, in our 
formulation, the description of the sheetlike phase is exactly the same as that of ref. [17] for 
a balanced AIB microemulsion. (A balanced system is one in which the chemical potentials of 
A and B are equal, and there is no spontaneous curvature at  the interface.) The only 
difference is that species A and B are now finally taken to  be identical. This has no effect on 
the mathematics, but does alter its interpretation to give a phase diagram, as will be 
explained below. 

Combining eqs. (1)-(4), we write a free-energy density Ftot(+, $, U, z) = Fbend - TS. Since 
$ is not determined by the constraints, we compute the free-energy density as 

On minimizing over $ (taken <1/2, without loss of generality), we find two regimes: 
12 exp [- ( 1 / ~  + l)]: for these moderate $, the minimum of Ftot over $ occurs 

at  $ = 112, which corresponds to a <<maximally random>> interface. The structural length scale 
t: is given by eq. (4): 5 = 3a/(2$). For + close to 

yields values of 
$ < 112. There is a smooth evolution, as I# is decreased, from the maximally random 
structure, through a state of large vesicles (of radius Y>> a)  t o  small vesicles (Y -- a). The 
latter arise for + = I#2 18 exp [- 2/21 = $f; for + < +2, the variational parameter saturates its 
lower bound $ = @. While the estimate (2) for Fbe-,d is not quantitatively accurate for these 
very small 5('), our variational approach does reflect the possibility of a local minimum in 
the free energy Fs(+), corresponding to a phase of extremely dilute small objects, stabilized 
by entropy of mixing. We refer to these objects as micelles)>, although they could equally 
well be isolated surfactant molecules. 

i) $ > 

5 varies as t: = t ~ .  
ii) $ < +1: at these lower volume fractions, the minimization over 

(') Values of a = 1 and a = 3 have each been proposed. (See ref. [18].) Given OUT lattice expression 
(1) for the entropy of mixing, the resulting phase equilibria do depend on the precise value of a; in 
particular, the coexistence between the sheetlike phase S and the dilute phase D, found below, may 
disappear if a is too large [17]. However, the critical a, at which this coexistence disappears, is itself 
strongly dependent on detailed assumptions of the model, some of which clearly break down in this 
limit of extreme dilution (e.g., the harmonic expression for the bending energy, eq. (2)). Thus there 
remains several open theoretical questions concerning the stability of the D-phase; we hope to return 
to some of these in a future publication. 
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To calculate phase equilibria, it is necessary to estimate also the free-energy density F L  
of an oil-swollen lamellar phase. We adopt the following expression for FL [19,9]: 

Here d = a(1- +)/+ denotes the interlamellar spacing. Equation (6) represents the entropic 
Helfrich repulsion between undulating lamellar sheets [19] (2). Using eqs. (5) and (6) for F s  
and F L ,  the phase diagram was computed numerically, with the result shown in fig. 2. (In 
considering the dependence on the reduced temperature T = kB T/4nK0, note that the bare 
bending constant, KO, depends on the details of molecular interactions, and may itself be 
strongly temperature dependent.) The following features are notable: 

0.6 

0 

Fig. 2. - Phase diagram computed from eqs. (5), (6). The vertical axis is the reduced temperature, 
z = T/(4x&); the horizontal axis is +, the surfactant volume fraction. Regions marked D, S, and L, 
correspond, respectively, to a dilute (micellar) phase, the sheetlike isotropic phase, and lamellae. The 
dashed line indicates the boundary between # = 112 and + < 112. As one moves to the left of this line, 
the isotropic phase becomes gradually more vesiclelike in character; the percolation threshold of the 
bilayer is estimated as # = 0.3 (dotted line). Moving further to  the left one enters the dilute (D) phase 
in which + saturates its lower bound, $12. 

i) At low temperature (T 6 0.16) the lamellar phase L extends down to very small $, 
finally phase separating to an extremely dilute phase, D, consisting of small micelles. This 
D-phase corresponds to volume fractions of order q5 = $2 = exp [ - 2/71. 

ii) At intermediate temperatures, the sheetlike phase (S) is present between the 
lamellar and dilute phases; as lamellae are diluted with oil, separation takes place first to the 
S-phase. Further dilution of this phase leads to a first-order separation t o  the extremely 
dilute phase, D. At the coexistence of L and S, the interlamellar spacing d is of order (K, as 
is the structural length scale € in the isotropic S-phase. Note that the volume fraction 
$ = exp [ - l h ]  in the L-phase at coexistence with S actually increases with 7. This contrasts 
with an earlier theory of lamellar unbinding [12], in which raising T increases the Helfrich 

(') The zero of free energy in eq. (6) is taken at  infinite separation d. With this choice of zero, it is 
arguable that there should be a Helfrich-like term in the free energy of the S-phase. We expect this 
term to be small however[l7], and omit it from our treatment. 
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repulsion, allowing the lamellae to swell further before separation occurs (to excess oil). 
Here since separation is to the entropic S-phase, the temperature trend is reversed. 

iii) At higher temperature (7 3 0.3) the lamellar phase is destabilized and the isotropic 
phase S is the only stable one at moderate +; there remains a first-order coexistence between 
S and the very dilute phase, D. Finally at a reduced temperature 7 of about 0.5, there is a 
critical point, above which the two-phase region disappears (3). 

Also shown in this figure is the dividing line between the region where the variational 
parameter $ takes on the value 1/2, and that where $ < 112. The .maximally random)) 
configuration ($ = 112) is preferred over a large region of the phase diagram, which includes 
all S states that are in coexistence with lamellae. Above the critical point (3), however, the 
continuous pathway from S to D is by way of states containing large vesicles ($ << 1/2) whose 
average size decreases smoothly with #. The line $ = 0.3 is also indicated in fig. 2. This 
denotes a rough estimate, based on our lattice construction, of the percolation threshold of 
the bilayer. To the right of this line, one expects the isotropic phase to be bilayer- 
continuous, although $ remains only a few percent. 

To understand the connection with balanced A/B microemulsions mentioned earlier, one 
should remember that, were A and B to be distinguishable species, all single phases with + < 1/2 would in fact correspond to a symmetric pair for coexisting phases (one with A and B 
interchanged). Thus the S/D coexistence region in fig. 2 would correspond to the well-known 
three-phase equilibrium between a (middle-phase) microemulsion (S) and a symmetric pair 
of dilute phases (D). Similarly the dashed line, # = 112, would divide a region of single-phase 
microemulsion from a region in which two microemulsions coexist. In the present system, 
since A and B are the same, the three phases are reduced to two, and there is no true phase 
transition across the + = 1/2 line. 

The various phase equilibria shown in fig. 2 are in good qualitative agreement with the 
available experimental data [l-111. In general, the L3-phase is indeed found experimentally 
to lie between an extremely dilute phase (D) and a swollen lamellar phase (L), separated 
from each by a first-order coexistence. Moreover, for nonionics in water, the diffusivity of 
the surfactant is measured to be higher, and that of the solvent somewhat lower, than would 
be expected for a phase of finite aggregates [6]. These facts are consistent with a bilayer- 
continuous phase, in which the diffusion of the solvent is reduced by a geometrical factor 
related to the tortuosity of the solvent-filled regions, In the case of oil-based solutions, it is 
often possible to make a stable L3-phase even in the presence of small amounts of added 
water [7-111; this third component should reside in the middle of the bilayer, as it does in the 
nearby lamellar phase(4). For this oil-based (pseudo-) ternary system, there are con- 
ductivity measurements [ 111 which suggest the presence of water-continuous pathways, 
although the volume fraction of water is only a few percent. This is again consistent with the 
idea of a random sheetlike phase S exhibiting continuity of the (water-swollen) surfactant 
bilayer. 

(3) The precise location of this critical point is strongly dependent on model parameters, such as the 
choice numerical prefactor in eq. (2). With the present choice, the critical point occurs at rather large $, 
for which our model free energy is not realistic. Qualitatively, however, the existence of such a critical 
point is reasonable; moreover, for slightly different choices for the numerical factor, it  can occur a t  
much smaller $. 
(4) To account for the presence of a small amount of water, we simply increase the bilayer thickness a 
by a geometrical factor: a + a(1 + So long as one also allows for any explicit dependence (on 
water content) of the bare bending constant KO of the bilayer, the calculation already presented may be 
carried over unchanged. 
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Although these results are encouraging, refinements to our model will be needed before 
the picture is complete. For example, a unified treatment of the S-L coexistence requires 
some smooth interpolation between eqs. (5) and (6) for Fs and FL. Also to be considered are 
corrections to random mixing; a realistic treatment of the dilute phase (D); incorporation of 
Gaussian curvature terms; and a study of polydispersivity effects. Despite these issues, we 
expect many of our qualitative predictions concerning the sheetlike isotropic phase to 
remain valid. A more complete description, in any case, must await a fuller understanding 
than now available of the statistical mechanics of semi-flexible random surfaces with liquid- 
like internal degrees of freedomE201. 
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Erratum 

Random Surface Model for the L3-Phase 
of Dilute Surfactant Solutions. 
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PACS. 82.70 - Disperse systems. 
PACS. 64.705 - Liquid-liquid transition. 
PACS. 82.60 - Chemical thermodynamics. 
PACS. 61.30 - Liquid crystals. 

The authors wish to correct a numerical error in the location of the critical point at $ = 0.7 
on the phase diagram shown in fig. 2, and described in the text following the figure. For the 
model with parameters as chosen in eq. (1)-(4), this critical point in fact lies exactly at $ = 1. 
Thus the dashed line ($ = 1/2) in the figure should be covered by a very narrow finger in 
continuation of the two phase (shaded) region. As discussed already in footnote (9, however, 
the precise location of the critical point is highly model-dependent and with slightly different 
assumptions can occur at $ < 1, as shown. In this case, the dashed line represents the 
spontaneous breaking of an exact ($+ 1 - $1 symmetry and is therefore associated with a 
second-order phase transition. The transition is Ising-like, as has been discussed by HUSE 
D. A. and LEIBLER S., J. Phys. (Paris), 49 (1988) 605; see also MILNER S. T., SAFRAN S. A., 
ANDELMAN D., CATES M. E. and R o u x  D., J. Phys. (Paris), 49 (1988) 1065. 
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