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Middle-Phase Microemulsions ar_ld Random Surfaces
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Corporate Research, Exxon Research and Engineering Co., (
Annandale, NJ 08801, USA I

I. Introduction

A characteristic feature of microemulsions, as opposed to simple liquid
mixtures, is that the oil and water remain separated by surfactant monolayers with
coherent domains, typically tens or hundreds of Angstroms in size [1]. The
configuration of these domains varies with composition. For small fractions of oil
in water or water in o0il, the structure is that of globules [2] whose colloidal
properties are well understood [3]. On the other hand, when the volume fractions
of 0i1 and water are comparable and the surfactant concentration is low, one
expects random, bicontinuous [4] structures to form. The theoretical
characterization of these structures and the predicted phase diagrams are a topic
of current interest.

A common aspect of the phase diagrams of random microemulsions at low surfactant
concentration (=5%), is the presence of two- and three-phase regions [1, 5]. In
the two-phase region, there is a coexistence between an almost pure phase (small
amounts of either surfactant in oil or surfactant in water) and a microemulsion
(Tower- or upper-phase, respectively). In the three-phase region, a middle-phase
microemulsion ceoexists simultaneously with almost pure water and almost pure oil.
At higher surfactant concentrations, there is typically a first-order transition
from the isotropic, disordered, microemulsion to an ordered, lamellar phase (or to
other ordered phases).

DE GENNES and TAUPIN [6] were the first to suggest that at low surfactant
concentration a random microemulsion phase may be favored over the ordered,
lamellar phase. This is because (i) the random microemulsion has a greater entropy
of mixing - first considered by TALMON and PRAGER [7], and (ii) the bending of the
surfactant layer forced by the randomness of the oil and water domains occurs at
the persistence length of the surfactant monolayer defined by

g - 2 Q4nk/aT (1.1)

Here K is the bending constant which parameterizes the "splay energy" of a
surfactant monolayer, a is a molecular length, T is the temperature, and a is a
numerical constant which depends on the details of the calculation. (De Gennes and
Taupin set a=2, but below we will find it convenient to use a different value.)
However, this model did not predict three-phase equilibria,which is characteristic
of these systems [8].

In Refs. [9] and [10] we proposed a simple model! which took into account the
thermal undulations of the fluctuating surfactant interface [6]. The calculated
phase diagrams did show both two-and three- phase equilibria in qualitative
agreement with experiment [5]. An alternate model, which also results in two- and
three- phase equilibria was previously proposed by WIDOM [11] for compressible
surfactant interfaces in microemulsions. 1In our model, the free energy of the
microemulsion consists of the entropy of mixing of water and oil domains, and the
bending energy of the surfactant film, which is assumed to be an jncompressible
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Ec =8 nK(&) (1-¢/p0)2,

where p, is twice the spontaneous radius of curvature and is defined to be positive
for curvature towards the water and negative for curvature towards the oil. In our
model the probability of having a bend is related to the probability of having an
edge. However, we take the radius of curvature to be comparable to ¢, rather than
presuming the interface to have a sharp edge. Thus, the total energy of curvature
per unit volume is given by

f, = §l’§—§ﬂ B(1-0) [ 1 - 26 (1-20)/p, 1 % ... . (2.4)

We have explicitly incorporated into our model the renormalization of the
bending constant by thermal fluctuations, since K{¢) is a function of the lattice
size, ¢. In our calculation of the phase diagram (see Refs. [9] and [10] for
details), we use the expression first derived by HELFRICH [14] and later by
_ perturbation theory [15]

K(¢) = K0 [ 1- v Tog(¢&/a)] + ..., (2.5)

where Ky=K(a) is the bare bending constant, a is the molecular size, and
1=al/(47Kg). The downward renormaiization of K indicates that it becomes
relatively easy to bend a sheet of size & z &, since such a sheet is already
spontaneously wrinkled by thermal fluctuations. The result presented in Eq.(2.5)
is correct for small values of ¢; the extension to larger values of ¢ is discussed
in Sec. III.

B. Phase Behavior and Transition to Lamellar Structure

The phase diagram for the case of zero spontaneous curvature (pg=c) is shown in
Fig. 1. It exhibits a one-phase region (the random microemulsion} and three
polyphasic regions at low surfactant concentration: two two-phase regions where a
microemulsion phase is in equilibrium with a very dilute phase of surfactant in
either water or oil, and a three-phase region where a middle-phase microemulsion is
in equilibrium with both dilute phases. The length scale ¢ in the middle phase is
proportional to k. Moreover, along the two-phase coexistence curve, ¢ remains on
the order of ¢¢ even far from the middle phase. The concentration of surfactant in
the middle phase scales as 1/&k ~ exp{-t); the phase diagram is a strong function
of the persistence length and hence of the bare curvature modulus, Kq.

Fig. 1. Phase diagram for the case of no
spontaneogus curvature (pg-w). The numbers
denote the number of coexisting phases
and the region where the lamellar phase

is stable is indicated. The tie-lines in-
dicate the coexistence of a disordered
microemulsion phase with a lamellar phase.
A value of 1=0.2 was chosen.
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monglayer [2, 12, 13]. The effects of thermal fluctuations on length scales
smaller than the domain size ¢ are accounted for by calculating  the curvature
energy with a size-dependent bending constant, K(¢) [14, 15]. Our simple model
leads to a phase diagram with both two- and three-phase regions; the "middle-phase"
microemulsion, which coexists with both nearly pure o0il and water, is characterized
by a length scale ¢-¢é¢ and by a surfactant concentration, ¢s~1/&. At higher
values of the surfactant concentration, the bending constant assumes its bare
value; the random microemulsion is then unstable to an ordered lamellar phase due
to the high energy cost of bending the surfactant monolayer in a random manner.

In this paper, we review our model and its major results,with an emphasis on the
role of the renormalized bending constant, K(¢). We analyze the role of thermal
fluctuations in the renormalization of the bending constant for a one-dimensional
model at length scales ¢<¢ as well as ¢&>¢g. The analysis suggests that at large
length scales, ¢>¢&k, the free energy cost of a bend saturates at a value of order
T. Finally, we discuss the connection between our microemulsion model and the
general problem of the random surface.

I1. Microemulsion Model

A. Free Enerqy of a Random Microemulsion

We consider microemulsions to be ternary mixtures of oil, water and surfactant.
Space is divided into cubes of size ¢ filled either with water or o0il. The
surfactant is constrained to stay at the water-0il interface; we divide it equally
between the o0il and water domains. Using the random mixing approximation, the
probability ¢ for a cube to contain water is

® =ty + bs/2,

where ¢y and ¢5 are respectively the volume fractions of water and surfactant. The
probability for a cube to contain 0il is 1-¢. The constraint for the surfactant to
fill the water-oil interface allows us to relate the volume fractions of the
components and the domain size ¢ within the random mixing approximation:

¢S 20 = ZzZV 7 (2.1)

where z=6 is the coordination number of the cubic Jattice; vg is the molecular
volume of the surfactant and ¥y is the surface area per surfactant molecule, which
is fixed in our model. Within this approximation relation (2.1) gives the domain
size ¢ at each point of the phase diagram (for fixed ¢, ¢g)

£ . o oll-d) (2.2)
a ¢>S
where, for convenience, a=vg/¥y is chosen to be equal to the lower cutoff in Ea.

(1.1).

Since the area per surfactant is kept fixed, the free energy per unit volume, f,
has only two terms: the entropy of mixing of the water and oil domains, fg, and the
energy of curvature of the interface, f.. The first term is calculated using the
random mixing approximation

fs = I§ [¢log{s) + (1-9)log(l-¢)] . (2-3)
¢

The second term f. is calculated as follows. First we associate the bending
energy Ec of a cube of water (oil) of size ¢ surrounded by oil (water) with that of
a sphere of diameter ¢




Fig.2 Schematic phase diagram for the case
of finite spontaneous curvature {(pp=£k/5),
with a value of 1=0.15. The region denoted
by 2 has been calculated in Ref. [10]. The
dotted three-phase region consists of an
equilibrium between the microemulsion,
lamellar and water phases, while 2 indicates
an equilibrium betweer a lemellar phase and
water.

Lameilae

For finite spontaneous curvature (e.g. pp>0 favoring bending towards the water),
there is an asymmetry in the extent of the two two-phase regions. For small enough
values of po/ék, the three-phase region disappears, as shown schematically in Fig.
2 where po=&/5. In that case, the length scale ¢ along the two-phase coexistence
curve bounding region 2, scales not with the persistence length ¢, but with the
spontaneous radius of curvature, pgy; for small values of ¢ and ¢g, phase separation
occurs when ¢~pg. This is an indication of the emulsification failure instability
which precludes the formation of globules with a size larger than py [3]. At large
values of ¢ and ¢s, a single phase of droplets is unstable to coexistence with a
lamellar phase.

Returning the case of the symmetric microemulsion {pg==), we note that the
renormalization of the bending constant to values on the order of T, allows the
energy cost of the random systems to be compensated by the entropy gain from the
random mixing of the water and oil regions. However, at large values of ¢, the
length scale ¢ decreases [see Eq. (2.2)}, and K(¢) approaches its bare value K.
The energy cost of the curved interfaces in the random microemulsion is no longer
compensated by the entropy of mixing. Instead, the lamellar phase dominates, as
shown in Fig. 1.

[II. Renormalization of Bending Constant and Random Surfaces

Since the size dependence of the bending constant plays a crucial role in our
model of microemulsions, it is important to go beyond the first-order perturbation
formula for K{¢&) [Eq. (2.5)], which is used to calculate the free energy cost of
the bends imposed by the random mixing of the 0il and water regions [Eq. (2.4)]
This free-energy cost, AF, can be easily calculated for a one-dimensional, semi-
flexible (worm-like [16]) rod of length L. Here we sketch a calculation of AF(L)
in a model which includes the bending energy and do not make any a priori
assumptions about the persistence length. The details of this calculation will be
presented elswhere.

The free energy AF, is calculated by taking the difference of the free energies
of a chain constrained to bend and one which is free. The bending constraint is
expressed as

<t >- B < lﬁo 1>/, (3.1)

where T is the n=1 Fourier mode of the tangent vector ¥{(s). The coordinate s is
measured along the arclength of the chain.

N
f(s) = ﬁO/L + Lt cos(mms/L) (3.2)
m=1
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with N=L/a. In (3.1) B‘is a constant vector which determines the angle and
direction of the bend, Ry is the end-to-end vector of the chain, and <...>
represents a statistical average with the weight function P[E(s)], to be determined
below. This choice for T ensures that the spatial displacement of the bend is of
the same order as the mean end-to-end distance < |R, r>; the bend is visible on
scales of order < |Ry|>.

The free energy F is calculated variationally; F is minimized with respect to
the statistical weight, P[T(s)] where,

F =T<logP> + < Hy > - (3.3)

Here, the first term is the entropy and Hp = (xg/2) [ ds (dT/ds)2, is the bending
energy, where xg has the units of energy x length. The incompressibility of the
chain, which forces t¢(s)=1, is approximated as a global constraint, which is
imposed by a Lagrange multiplier conjugate to 71 = [ ds £2(s). With these
constraints, we determine P[E(s)] from 8G/6P=0, where

G =F-p<T> - fl > . (3.4)

The Lagrange multiplier . is <chosen so that (3.1) 1is satified. The
parameterization of the chain by its arclength allows the calculation of AF in both
the stiff (Ro-L) and floppy (RO~L1/2) Timits for chains without seif-avoidance.
Excluded volume effects can be included at the end of the calculation by a Flory
argument.

The variational calculation yields an end-to-end distance, Ry = ()\/22)1/2 L.
The Lagrange multiplier z = pla/2T with A = (4LT/n2xy) 1is determined by the
incompressibility constraint

N 1 4 2 Rz
= - & |rawm 2. (3.5)

m=1 m o+ 2z

For small values of A, Rg-L, and the chain is stiff. The free energy per unit
length due to bending,

AF(L)/L = B2 (n%/8) x(L)/L2 ,

where the effective bending constant is

(L) = xg (1 -y (TU/xg) +...)

for p<<1, where y is a numerical constant of order unity. The bending constant is
renormalized by L and not log(l), due to the stronger effect of the one-dimensional
fluctuations. As the length scale increases, x{L) decreases. In the Timit X+, the
chain is floppy, leading to RO-LI/2 in the absence of excluded volume, and

AF/L =T B2 (1 - ¥ B2 (xo/TL))/2L,

where 7 is a numerical constant. The free energy is higher for the bent chain; the
change in free energy due to bending is on the order of kT per bend. An examination
of the higher order terms in AF/L shows that they are positive and proportional
to xp2/L7.

A similar treatment of the two-dimensional interface (a surface) in a three-
dimensional system can be carried out. An estimate of AF for the surface can be
made by assuming that only the phase space in the Fourier decomposition [Eq. (3.
4)] changes in going from the chain to the surface (this also implies that for the
surface, where the bending constant K, has the units of energy, the parameter A in
(3.5) is proportional to T/Kgy, independent of L). One predicts that for small
values of L, the free energy per unit area due to the bend,
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AF/LZ = K(L)/L2,

with
K{L) = Kq (1 - 7 (T/Kg) log(L/a) +...),

where 7 is a numerical constant. This is in agreement with the functional form
predicted by the perturbation theories [14, 15]. For large values of L>>¢, the
free energy per unit area,

AF/LZ = TBZ/LZ + ...,
again representing the loss of entropy of one degree of freedom per surface.

While the small L limit of the stiff interface relates to recent treatments of
membranes, the large L limit of the floppy interface may be relevant to the random
surface discussed by Kantor et al. {17]. W¥When L is much larger than the relevant
persistence length, a large number of microscopic models may converge in a single
universality class. The surface then executés the equivalent of the random walk of
a polymer chain. Ref, ([17] suggests that excliuded volume interactions are
extremely crucial in this regime; they change the expected radius of gyration from
a weak logarithmic dependence on L to a power law.

The application of the statistics of a random surface to the microemulsion
problem requires some care. In our microemulsion model, the length scale of the
water/oil domains never grows larger than the persistence length ¢, because the
entropy of mixing favors small ¢. If ¢ is increased beyond ~¢k, the system phase
separates, since the microemulsion with é~¢& is a local minimum (for fixed ¢} of
the free energy. Thus, for length scales ¢xék, one may use calculations of the
effective free energy of bending such as those discussed above, as inputs to
microemulsion thermodynamics. However, for length scales larger than ¢, the random
walk of the surfactant interface as well as its excluded volume interaction are
taken into account by the lattice construction. The random microemulsion is a
random surface that is different from that considered in the previous discussion or
by Ref. [17] in that (i) it has a sideness with respect to the oil/water and (ii)
it is not one continuous surface; in random mixing, the characteristic surface size
is of order ¢ (iii) the coordination number is not fixed as in the tethered
surface; coordination defects can lead to additional fluctuations which may
increase the size of the surface even in the absence of excluded volume effects
[18]. The random microemulsion is perhaps more analogous to the problem of
equilibrium, branched polymerization. Nonetheless, the physics of the random
surface and the analogy to the worm-like chain play an important role in our
understanding of the free energy and the renormalization of the bending constant of
micreoemulsions.
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