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We present a simple phenomenological model to describe the phase equilibria and structural
properties of microemulsions. Space is divided into cells of side &; each cell is filled with either
pure water or oil. Surfactant molecules are presumed to form an incompressible fluid
monolayer at the oil-water interface. The monolayer is characterized by a size-dependent
bending constant K(£), which is small for £>£, the de Gennes-Taupin persistence length.
The model predicts a middle-phase microemulsion of structural length scale £ ~ &, which
coexists with dilute phases of surfactant in oil and surfactant in water. (These phases have
£=a, a being a molecular length.) On the same ternary phase diagram, we find also two
regions of two-phase equilibrium involving upper- and lower-phase microemulsions that
coexist with either almost pure water or oil. At low temperatures and/or high values of the
bare bending constant, K,=K(a), the middle-phase microemulsion may be entirely precluded
by separation to a lamellar phase, whereas at high temperature and/or low values of K, there
is a first-order transition between a disordered microemulsion and a lamellar phase. In the
absence of spontaneous curvature the phase diagram is oil-water symmetric. It may be
asymmetrized by: (i) spontaneous curvature in the middle phase or (ii) a difference between
the free energy of the two dilute phases. If the asymmetry is sufficiently large, the three-phase

region disappears.

I. INTRODUCTION
A. Microemulsions: A review

Microemulsions are thermodynamically stable, fluid,
oil-water—surfactant mixtures.'! The surfactant volume
fraction is typically low ( ~ 5% ); most microemulsions also
contain cosurfactant (alcohol) and/or salt. A characteristic
feature of microemulsions, as opposed to simple liquid mix-
tures, is that the oil and water remain separated in coherent
domains, typically tens or hundreds of angstroms in size.
Because of their amphiphilic character, the surfactant mole-
cules prefer the interfacial environment to either that of wa-
ter or oil. This results in an extensive oil-water interface.

The configuration of the oil and water domains varies
with composition. For small fractions of oil in water or of
water in oil, the structure is that of globules® whose colloidal
properties are well understood.> However, when the volume
fractions of oil and water are comparable, one expects ran-
dom,* bicontinuous® structures to form.5® Of course, under
appropriate conditions (particularly when the volume-frac-
tion of surfactant is higher than a few percent) various or-
dered structures, such as lamellae, cubic, or cylindrical
structures, may also arise.’

A schematic series of ternary phase diagrams for a pro-
totypical microemulsion system'® is shown in Fig. 1. A char-
acteristic feature is the presence of two- and three-phase re-
gions on the phase diagram. In the two-phase regions there is
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coexistence between an almost pure phase (surfactant in oil
or surfactant in water) and a microemulsion (lower or upper
phase, respectively). In the three-phase region, a middle-
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FIG. 1. Schematic phase diagrams for prototypical microemulsion systems.
In (a) and (b) systems with asymmetry towards oil (thus coexisting with
excess water) are shown. An oil-water symmetric system is shown in (c),
and a system with asymmetry towards water is shown in (d) and (e). These
triangular shaped phase diagrams are a convenient way to describe ternary
systems. The corners of each triangle correspond to: pure surfactant (S),
pure water (W), and pure oil (0). The numbers 1,2,3 indicate the number
of coexisting phases and some of the tie lines are shown.
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phase microemulsion coexists simultaneously with almost
pure water and almost pure oil."!

In Fig. 1(c), the phase diagram is oil-water symmetric.
This balance point is achieved under variation of a param-
eter such as salt concentration.® Such a parameter may be
tuned so as to alter the spontaneous curvature of the surfac-
tant film; it is commonly believed>'? that at the symmetric
(balance) point there is no preferred direction of curvature
[Fig. 1(c)]. In Figs. 1(a) and 1(b), there is spontaneous
curvature toward oil (favoring globules of oil in water) and
in Figs. 1(d) and 1 (e) spontaneous curvature towards water
(which favors globules of water in oil). Note that the three-
phase region has entirely disappeared in Figs. 1(a) and 1(e).
At the balance point, the middle-phase microemulsion
shows ultralow interfacial tensions'> (o~1073-10"°
dyn/cm) with both of the nearly pure phases with which it
coexists; this results in a variety of technological applica-
tions, for example in chemically enhanced oil recovery.'*
Crudely one can argue that o ~ T /£ 2, where £ is a structural
length scale of order the domain size and T is the tempera-
ture. Thus, the observed ultralow interfacial tensions arise
from the large (£~ 100 A) coherence lengths in these sys-
tems.

It should be emphasised that three-phase equilibrium as
shown in Fig. 1 is usually obtained with the addition of alco-
hol, as well as salt.’> Without alcohol, one normally sees
instead ordered mesophases which preclude equilibria in-
volving a middle phase microemulsion. It is thought that one
effect of adding alcohol is to reduce the rigidity of the surfac-
tant film.'® This favors disordered microemulsion phases
over ordered mesophases such as lamellae. (It certainly may
also have an effect on the spontaneous curvature. )

There have so far been two differing approaches to the
construction of thermodynamic models for microemulsions.
In this paper we follow the “phenomenological” approach,
which was initiated by Talmon and Prager,* and further
developed by de Gennes and co-workers'®!” and Widom.'®
In this approach one regards oil and water as continuum
liquids; the interfacial surfactant layer is treated either as a
flexible sheet, or in a microscopic manner similar to that of
insoluble Langmuir monolayers." The presence of salt
and/or alcohol is not directly treated, but enters through the
energy parameters of the interfacial sheet. The strategy is to
fix the volume fractions of oil, water, and surfactant, and to
then calculate the free energy of a hypothetical homogen-
eous phase of this composition. This generates a free energy
as a function of composition, from which the phase diagram
can be determined. In calculating the free energy, it is often
convenient to describe the oil and water domains in terms of
a coarse-grained lattice; in this procedure, the lattice spacing
remains comparable to the domain size, which is usually
much larger than a molecular length scale.

The second approach is based on the construction of
“microscopic” lattice models, in which a cell of the lattice
contains only a small number of molecules. This approach
was initiated by Wheeler and Widom,*® and has recently
been extended by Widom*' and others.?? This microscopic
approach, though of undoubted fundamental interest, may
be more difficult to implement than the phenomenological

Andelman et a/.: Phase equilibria of microemuisions

one. In particular, a microscopic model of microemulsions
must produce structural organization on a length scale (the
domain size) much larger than that of the lattice.”* It may,
therefore, be argued that the microscopic approach is better
suited to the description of long-range ordered mesophases,
which occur at higher surfactant concentrations, than the
description of random, bicontinuous structures, such as
middle-phase microemulsions.?*

B. Previous phenomenological models

As mentioned above, the first phenomenological model
of disordered microemulsions was that of Talmon and
Prager.* They considered a subdivision of space into ran-
dom (Voronoi) polyhedra, which were filled at random
with either oil or water, according to a probability propor-
tional to the volume fraction of each component. The surfac-
tant was presumed to form a monolayer at the interface
between cells of water and oil; the area per surfactant mole-
cule was taken as a fixed constant, £ = 3,. The bending
energy of the surfactant film was included (to some extent)
by assuming the interface to be completely flat everywhere
except at the edges of the Voronoi polyhedra, and assuming
that the surfactant packing density is changed in the vicinity
of the edges of the polyhedra. However, as already men-
tioned by Talmon and Prager, the energetics of this change
are not explicitly included in the free energy. In addition,
this does not take into account the harmonic curvature ener-
gy of the surfactant film used to model membranes and lig-
uid crystals. A further discussion of the Talmon—Prager for-
mulation may be found in Ref. 17. Despite these drawbacks,
this model has proved very valuable as a starting point for
improved phenomenological theories.

The first such improved theory was proposed by de
Gennes and Taupin,' and studied in more detail by Jouf-
froy, Levinson, and de Gennes (JLG)."” This model drew
on a physical picture of undulating lamellae. By summing
over undulation modes in a nearly flat sheet of bending con-
stant K and zero surface tension, de Gennes and Taupin
calculated a persistence length which may be defined by

Ex =aet™/oT, (1.1)

Here a is a numerical constant, which is somewhat arbi-
trary. de Gennes and Taupin set a = 2, but below we will
find it convenient to use a different value (@ = 1). In any
case, as discussed below, our results, when expressed in re-
duced units, are not sensitive to the exact value of a. How-
ever, since £, depends exponentially on K /aT, the phase
diagram as a function of the unscaled volume fractions does
depend on the values of K /T and a. In Eq. (1.1),ais a
molecular size, which provides a lower cutoff in the wave-
length of the undulations, and T is temperature (we set the
Boltzmann constant, k, equal to unity). The sheet remains
flat over distances & < £, but is crumpled at larger length
scales.

The JLG model simplified the Talmon—Prager one by
dividing space into a lattice of cubes (rather than Voronoi
polyhedra); the cubes are filled at random with oil or water
according to their volume fractions. Based on the physical
picture of the persistence length, they chose the lattice size to
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be always equal to £ . Within the random mixing approxi-
mation (to be explained in Sec. IT), this requires that the
interfacial area per surfactant = depends on composition as

s 20 =8 (12)
¢s§ K
where ¢ is the volume fraction of water, 1 — ¢ is the volume
fraction of oil, and the volume fraction of surfactant is
&, €d, 1 — ¢. The JLG model uses a free energy contribu-
tion per surfactant

F=A(2 —X,)%/32. (1.3)
This represents the preference of the surfactant layer for an
optimum area per molecule 2,. The bending energy was
estimated by assuming the local radius of curvature of the
interfacial film to be everywhere comparable to the lattice
size £k . (This improves the original Talmon-Prager formu-
lation in which curvature is concentrated at the edges of the
Voronoi polyhedra. )

The JLG model, while appealingly simple, does not pre-
dict the experimentally observed three-phase equilibrium
(Fig. 1). Instead, there is a two-phase region involving equi-
librium between two microemulsions. This is understood as
follows: as the surfactant concentration decreases, a uniform
phase of the required composition would have £> 2, [Eq.
(1.2) ], with a corresponding energy penalty from Eq. (1.3)
which can be avoided by phase separation into two phases,
each having 3 =~ 3,. The line 2 = =, on the phase diagram,
known as the Schulman line'®!” is everywhere close to the
two-phase boundary. For high surfactant concentrations,
this model predicts £ €2, implying a large variation in the
area per surfactant; a pure surfactant phase is not allowed,
since the surfactant must reside at the oil/water interface.

The next development was the theory of Widom.'® He
introduced a (cubic) lattice of variable side £, which he then
treated as a variational parameter; the free energy was taken
at its minimum over £ for each composition. In his calcula-
tion of the bending energy contributions, Widom essentially
followed the formulation of JLG.

Widom departed slightly from JLG in the manner in
which the variable interfacial area per surfactant 2 was
treated. Specifically, he treated the interfacial layer as an
ideal gas of surfactant in two dimensions. In conjunction
with a bare interfacial tension y between oil and water, this
gives a quadratic minimum in the free energy as a function of
the area per head X. This is basically the same as Eq. (1.3);
however, the coefficient 4 in that expression is always of
order T. Thus this model describes a highly compressible
surfactant film at the oil-water interface. While this may be
appropriate under some conditions, there are other cases in
which the surfactant layer is more like an incompressible
two-dimensional liquid. For example, measurements on
globular® and bicontinuous®® microemulsions show that
that the interfacial area per polar head remains approxi-
mately constant under a wide range of conditions, even in the
presence of cosurfactant; moreover, measurements on Lang-
muir monolayers of similar surfactants'® show that the =
found directly from studies of microemulsions® indeed cor-
responds to a relatively incompressible fluid state.

Nonetheless, Widom’s model succesfully predicts three-
phase equilibrium involving a middle-phase microemulsion.
For sensible choices of microscopic energy parameters, the
predicted structural length scale & for the balanced middle
phase is of order 100 A, in accordance with experiments.
This middle phase coexists with two nearly pure phases that
have £~ a, where a is a molecular cutoff. However, curva-
ture fluctuations and the resulting persistence length of the
surfactant film are not addressed by this model. In the limit
when both K and y are large, Ref. 18 predicts that

&~a(Kya®/T?) Per@/T, (1.4)

This is unrelated to the expression (1.1) for the de
Gennes-Taupin persistence length £ . Experiments"® indi-
cate (albeit indirectly) that the properties of the middle
phase are very sensitive to the properties of the surfactant,
implying a strong dependence on the bending constant K.
For example, to make a middle phase at all one usually re-
quires cosurfactants such as alcohol, which are expected to
reduce K significantly, while having very little effect on the
bare surface tension y. Similarly, the choice of surfactant
itself is found to strongly influence the structural properties
of the middle phase."'® In the limit of large K, this choice
only enters Eq. (1.4) through a weak power-law dependence
on K (thebare interfacial tension ¥ is, by definition, indepen-
dent of the choice of surfactant). For small values of K /T,
Widom’s model does predict a stronger dependence on K of
the properties of the middle phase.

C. The present work

Our model and its results have previously been summar-
ized.?® In formulating our model we follow Refs. 17 and 18
in approximating the oil-water domain structure by a
coarse-grained lattice. Similarly, a random mixing approxi-
mation is used to calculate both the entropy of mixing of the
domains, and the extent of the oil-water interface; all the
surfactant is assumed to reside at this interface. We depart
from Ref. 17, and follow Ref. 18, in assigning to our lattice a
variable cell size &; however, rather than being a variational
parameter, £ will be determined uniquely by the volume
fractions of oil, water, and surfactant. This is because we
treat the surfactant layer at the oil-water interface as an
incompressible two-dimensional fluid: 2 =X, is a fixed con-
stant. The volume fraction of surfactant is then proportional
to the total area of the oil-water interface, which is a known
function of the water and oil volume fractions, and £, once
the random mixing approximation is made.

Formally we may consider the fixed £ constraint to
arise as a limiting form of the free energy (1.3), in which the
coefficient 4 obeys A /T— « . This limit is complementary to
that of Widom’s model, in which 4 /T remains always of
order unity. To obtain 4 /T— o in that model would re-
quire: (i) the incorporation of hard-core repulsions between
the surfactant molecules at the interface; (ii) taking the limit
¥ — o0. Once X is fixed, the bare oil-water interfacial tension
7, may be absorbed into the chemical potential of the surfac-
tant, and plays no further role in the theory. This is in con-
trast to the major role played by ¥ in Widom’s model (at
least in the limit of K /T> 1).

J. Chem. Phys._, Vol. 87, No. 12, 15 December 1987

Downloaded 22 Jul 2003 to 132.66.16.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



7232 Andelman et al.: Phase equilibria of microemulsions

The characterization of the microemulsion by the single
length scale £ is implicit in the mean-field approach used
here and by other authors.!'® The theory does not account
for the presence of small amounts of surfactant dissolved in
the coherent oil and water domains of the microemulsion.
The effects of these components on phase equilibria is some-
what delicate, and could in principle led to the destabiliza-
tion of the three-phase equilibrium that we find. However, a
self-consistent treatment of these effects would involve con-
sideration of polydispersity effects on a multiplicity of length
scales, which is beyond the scope of the present work.

Our second major departure from the previous formula-
tions lies in the treatment of the bending energy. Helfrich,*’
and Peliti and Leibler,”® have shown that the bending con-
stant K of a flexible sheet of size £ is renormalized down-
wards by thermal undulations at long length scales. In first-
order perturbation theory, these authors found a
size-dependent effective bending constant K (&) which obeys

K(£) =Ko[1—r7log(£/a)], (1.5)

where K,=K (a) is the bare bending constant (denoted pre-
viously by K); @ is a molecular length which provides the
cutoff wavelength of undulation modes [cf. Eq.(1.1)]; and

r=aT /47K, (1.6)

Here a is a numerical constant, whose precise value
(a = 1, or @ = 3) remains in dispute.”’>° In the remainder
of this article, we will choose a = 1. It is convenient to
choose Eq. (1.6) as a definition of the arbitrary parameter o
in Eq. (1.1) for the persistence length & . In this case, Eq.
(1.4) becomes

K(&) = — 1K, log(&/&x). (1.7)

The downward renormalization of K indicates that it
becomes relatively easy to bend a sheet of size £>£, since
such a sheet is anyway spontaneously crumpled. The pertur-
bative result (1.5) must fail for £>&, since mechanical sta-
bility requires K>0. However, for £<£x the form (1.5)
should give the correct qualitative behavior.

In our model for microemulsions (Sec. II), the renor-
malization of the bending constant is incorporated by identi-
fying the length scale £ in Eq. (1.5) with the lattice constant
used in the coarse graining of the oil and water domains. This
captures the fact that there is little to be gained, in terms of
bending energy, by having domains much larger than &,
the persistence length of the surfactant film. This is because
such a domain has a wrinkled surface, and so may as well
break up into smaller pieces (thus gaining entropy of mix-
ing). Of course it was precisely this physical idea that moti-
vated JLG to set & = £ in their model; however that turned
out to be too restrictive an assumption to give three-phase
equilibrium, since when the compositions approach those of
pure water or oil (as for the nearly pure phases with which
the middle phase coexists) the domains may be much
smaller than £ . In our model,® we find a middle-phase
microemulsion for which the structural length scale £ is in-
deed comparable to £ as defined by Eq (1.1); but thisis a
result of the theory, rather than an initial assumption. We
note that the variation of the middle-phase cell size with the
persistence length represents an unusual dependence of the

phase behavior on thermal fluctuations. These are of impor-
tance even in three-dimensional microemulsions because
their properties are determined by the nature of the thermal
fluctuations of the two-dimensional surfactant film.

The organization of the paper is as follows: In Sec. II we
present a phenomenological model which combines features
of both the JLG model and that of Widom. Section III de-
scribes extensions of our model to account more carefully for
the properties of the nearly pure phases that coexist with the
middle-phase microemulsion. In that section we also consid-
er the stability of the microemulsion relative to lamellar
phases. Section IV contains a further discussion and a sum-
mary of our results.

Il. THE BASIC MODEL
A. Free energy of a random microemulsion phase

With the assumptions of the previous section, we con-
sider microemulsions to be ternary mixtures of oil, water,
and surfactant. Space is divided into cubes of size £ filled
either with water or oil. The surfactant is constrained to stay
at the water—oil interface (Fig. 2); we divide it equally
between the oil and water domains. Using the random mix-
ing approximation, the probability ¢ for a cube to contain
water is

¢=0,+¢/2,
where ¢, and @, are, respectively, the volume fractions of
water and surfactant. The probability for a cube to contain
oil is 1 — &. The constraint for the surfactant to fill the wa-
ter—oil interface allows us to relate the volume fractions of
the components and the lattice size £ within the random
mixing approximation:

$. 3o = 2v, ———¢(15j¢) , (2.1)

where z = 6 is the coordination number of the cubic lattice;

-~

.

//

/

FIG. 2. A typical water, oil, and surfactant configuration in the random-
mixing approximation is shown schematically. The shaded region repre-
sents the water domains, the thick line delineates the surfactant film, and
the remainder of the volume is filled with oil.
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v, is the molecular volume of the surfactant and X is the
surface area per polar head of a surfactant molecule, which is
fixed in our model. Within this approximation the relation
(2.1) gives the lattice size £ at each point of the phase dia-
gram

£_,¢0-9)

a ¢S ’
where, for convenience, a = v, /3, is chosen to be equal to
the lower cutoff in Egs. (1.1) and (1.5). Note that in our
model, the lattice size £ is neither fixed at a constant value
(as in the JLG model) nor a variational parameter (as in
Widom’s model) but is determined by the constraint, Eq.
(2.2).

Since the area per polar head is kept fixed, the free ener-
gy per unit volume f has only two terms: the entropy of mix-
ing of the water and oil domains f; and the energy of curva-
ture of the interface f, . The first term is calculated using the
random mixing approximation

s = §3 [¢ log(4) + (1 — ¢)log(1 —¢)]——§~;S(¢).
(2.3)

The second term f, is calculated as follows. First we
associate the bending energy E, of a cube of water (oil) of
size & surrounded by oil (water) with that of a sphere of
diameter £:

E. =8xK(£)(1 — £ /py)?,

where p, is twice the spontaneous radius of curvature and is
defined to be positive for curvature towards the water and
negative for curvature towards the oil. In our model the
probability of having a bend is related to the probability of
having an edge. However, we take the radius of curvature to
be comparable to £, rather than presuming the interface to
have a sharp edge. Thus, the total energy of curvature per
unit volume is given by

(2.2)

= s”gﬁg) [6(1 — Y21 — £ /po)*
+8*(1 — @) (1 + £ /py)?] (2.42)
_ 87K (&)

¢(1 —¢)[1—26(1 —24)/po]l + -+~
(2.4b)

In Eq. (2.4b), we have dropped a term linear in ¢; which
may be absorbed into the chemical potential of surfactant.
The numerical factor in Eq. (2.4) was determined by choos-
ing the bends to be sections of a sphere. This choice is some-
what arbitrary, a fact which limits the sensitivity of our cal-
culation to the exact value of @ in Eq. (1.1).

As explained in Sec. I, we have explicitly incorporated
in our model the renormalization of the bending constant by
thermal fluctuations. The bending constant K(&) is then ex-
plicitly a function of the lattice size &, Eq. (1.5), and is a
decreasing function of £. The total free energy per unit vol-
ume fis the sum of f;, Eq. (2.3), and £, , Eq. (2.4b). We can
rewrite the free energy in reduced units, defining

§3

7=aT/(47K,), (2.5a)

7233

6 =E&x/a=exp(l/T), (2.5b)

x =&/, (2.5¢)

Xo=8x/Pos (2.5d)

$, = 4,8. (2.5¢)

We also define the reduced free energy f, = (£ 3/T)f,

£, = =51S(8) ~ 2(1 - $)log(x)

X [1 = 2xx,(1 —26)1}. (2.6)

The factor of 2 which multiplies the entire second term of
Eq. (2.6) comes from our association of the bends with sec-
tions of a sphere. A different geometrical relationship would
change this factor, as would a change in @. The constraint
given by Eq. (2.2) becomes

x=6i¢-(1~_—¢).
¢

5

2.7

E~quations (2.6) and (2.7) define a reduced free energy
£, (#,8, ) as afunction of the two compositions ¢ and @, . This
free energy is universal in the sense that, in reduced units, it
does not depend on the value of K;,. There is only one param-
eter: x,, the reduced spontaneous curvature. All the lengths
are in units of £ and the energies in units of 7.

B. Main characteristics of the free energy

We first consider the simple case where x, is equal to
zero (symmetrical case of no spontaneous curvature). The
function £, (¢,4, ) is a function whose properties determine
the phase diagram. Figure 3 shows a series of sections
through the surface at fixed J)s and variable ¢. For ¢, greater
than a maximum value :Zsm = 12/e=~4.4, f. (¢,4,) has only
one minimum at ¢ = 0.5. For @, smaller than &xm, the func-
tion has two minima, and a maximum at ¢ = 0.5 asshown in
Fig. 3. As the value of @, further decreases, these minima
approach the limiting values ¢ = 0 and ¢ = 1 and the value
of the free energy at these minima diverges to — oo . Similar
behavior was noticed by Widom!® and corresponds to the
fact that the entropy of mixing favors small values of £. In

10+

fr (0.0g)

FIG. 3. Sections through the reduced free energy surface, Eq. (2.6), for
variable ¢ = ¢,, + &,/2 and fixed §, = ¢, 8, where ¢, is the water volume
fraction, ¢, is the surfactant volume fraction, and 6 = exp(1/7) [see Eq.
(2.5)]. One minimum at ¢ = 0.5 is seen for ¢, = 7.0, whereas for é, =30
there are two minima. For even lower values of ¢, #, = 0.2, the two mini-
ma are very close to the cornersat ¢ =0 and ¢ = 1.
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order to obtain a more physical result he introduced a cutoff
for the lattice size at § = @, a being amolecular length. In our
model, the finite volume of the surfactant will naturally take
care of this problem. Indeed, for a given amount of surfac-
tant, ¢ cannot be smaller than ¢, /2 or greater than 1 — ¢, /2
(these values correspond to a lattice size £ ~a). Consequent-
ly, in our model the limit of the accessible region for the
variables (¢ and @, ) is a triangle defined by ¢>é,/28 and
¢<1 — ¢,/25. The minima of £, (¢) at constant ¢_ reach the
boundaries at a critical value of ¢, , ¢ = 18/8: for values of
&, smaller than ¢S the minima are on the boundaries of the
phase diagram (Fig. 3). We summarize this behavior in Fig.
4 where we show the contour plot of the free energy surface.
In addition to a saddle point (point S, where ¢ = 0.5), two
deep minima are located very near the corners on the oil-
surfactant side and on the water—surfactant side.

The free energy exhibits a region where the curvature of
the surface (second derivative) is negative. The instability of
the system is an indication of the existence of a phase separa-
tion. The phases in equilibrium consist of either two sym-
metrical microemulsions or three phases. Because the free
energy is symmetric in ¢<>(1 — &), we find the three-phase
equilibrium by plotting the value of the free energy at the
minimum @,,, as a function of ¢,. In Fig. 5 the function
£, [, (&,),8,] is shown schematically. This function is di-
vided in three parts corresponding to the three different re-
gimes previously described. For ¢, >¢S there exists only
one minimum for ¢ = 0.5. For ¢ <, < ¢ there exist two
minima where (df/9¢); = 0. When b, < ¢ the two mini-
ma are given by the intersectlon of the free energy with the
boundaries of the phase diagram and (Jf/d¢) ; #0. Figure
5 exhibits a region of 1nstab111ty {between the points 4, where
b, = ¢s , and B, where ¢, >¢ ). At these points a phase
separation to three coexisting phases occurs, since the point
A corresponds to two symmetrical roots and B to one.

The method explained above is a simplified geometrical
version, in the symmetric case, x, = 0, of the common tan-
gent plane construction. However, the determination of the
boundaries of the two-phase regions, or indeed the whole
phase diagram for the case of x,5£0, requires a numerical
calculation as discussed in the following section.

0 1 I " it {

0 0.2 0.4 0.6 0.8 1.0
(4

FIG. 4. Contour plot of the reduced free energy, f, = — 4, — 2, and + 15,
as a function of ¢ and ¢, for x, = 0 and 7 = 0.2. The point labeled S is a
saddle point. Two deep minima exist close to the oil and water corners at
¢, =0, ¢ =0and 1, respectively.
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fr

FIG. 5. A schematic plot of the reduced free energy, Eq. (2.6), evaluated at
its minimum with respect to ¢ and then plotted as a function of ¢, . A three-
phase coexistence is demonstrated here via the common tangent construc-
tion. Point 4 corresponds to the dilute phases (water and oil) and point Bis
the middle-phase microemulsion. The inflection point at ¢, = ¢s and the

deep minima at ¢, = 4753r are shown.

C. Calculation of the phase diagram

To calculate the phase diagram (Fig. 6) we define the
potential

g(¢’(zs) zﬁ(¢’$s) —‘/I’dz¢ _:u’s&.v' (28)

The equivalent of the common tangent construction on

0.3 T L T
(b)

&g,

FIG. 6. (a) Phase diagram for the case of no spontaneous curvature
(xo == 0). The numbers denote the number of coexisting phases and the tie-
lines in the two-phase regions are shown. The inset shows the details of the
tie lines at small values of the volume fractions. The value of 7 = 0.2 was
used. (b) Variationof § /5 (the normalized length scale of the microemul-
sion defined as x in the text) along the two-phase boundary.
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/ (¢,~$S) is the minimization of g(#,$, ) with respect to ¢
and ¢, with fixed values of the chemical potentials u, and
1. We solve the system of two equations defined by

(g_i)as =0 and (jg )¢ =0

s

(2.9)

the resulting phase diagram is shown in Fig. 6.

The absolute minimum of the function g corresponds to
the stable phase at a given chemical potential. In practice
Eqgs. (2.9) were solved numerically yielding the values ¢,
and &51' The resulting solution competes with that corre-
sponding to the free energy minima situated on the boundar-
ies of the phase diagram. Due to the finite volume fraction
surfactant, these minima do not correspond to a point where
the first derivatives of the free energy are equal to zero. Con-
sequently, we must compare the solution given by Eq. (2.9)
with that found by minimizing the function g along the
boundaries of the phase diagram

dg($./288.)
dg,

for the water—surfactant side and

1—¢,/25,4

g,

for the oil-surfactant side.

Equations (2.10) and (2.11) give two other sets of solu-
tions situated on the limit of the phase diagram
(¢ = 4,,/28,4,) and (¢5 = | — ¢, /25, &,,). The values
of the free energy g at the three minima g, = g(¢,-,‘;55,. ),
i = 1,2,3, allow us to determine the phase diagram. The val-
ues of u, and p,, where two or more minima are equal,
determine the chemical potentials for which two or more
phases coexist. The solution (¢,.,<;Ssi ) gives the location of the
phases in equilibrium. In Sec. III we will, in addition, com-
pare the free energy of the microemulsion with the free ener-
gy of a lamellar phase using the same procedure.

The preceding calculation leads to the phase diagram
shown in Fig. 6(a). It exhibits a one-phase region (the mi-
croemulsion phase) and three polyphasic regions: two two-
phase regions where a microemulsion phase is in equilibrium
with a very dilute phase of surfactant in water or oil (upper-
or lower-phase microemulsions, respectively), and a three-
phase region where a middle-phase microemulsion is in equi-
librium with both dilute phases.

Figure 6(b) is a plot of the reduced length scale,
x = £ /&, along the two-phase coexistence curve. We have
chosen 7 = 0.2, which corresponds to Ko,/ T~0.4 fora = 1.
(Measured values of K,/7 < 1 have been reported in Ref.
31.) For this choice of 7, £ =~0.23 . Moreover, £ remains on
the order of &4 even far from the middle phase. It is only
when ¢ is very close to 0 or 1 that £ falls rapidly to a micro-
scopic value (£ ~a).?® In addition, the concentration of sur-
factant in the middle phase’® scales as
log ¢, ~ — 1/7~ — K,/T. Thus the volume fraction of sur-
factant can be very small, when £, is large compared to the
molecular length. Consequently, the phase diagram is a
strong function of £, (and therefore of K,/ T) when plotted
as a function of the unscaled volume fractions. However, the

0 (2.10)

phase diagram as a function of the scaled volume fraction @,
is practically independent of the value of £,. The cusp that
occurs at ¢ = 0.5 [Fig. 6(b) ], has its origin in the crossover
of the two-phase equilibrium from that of a microemulsion
with water to a microemulsion with oil.

The detailed structure in the corners of the phase dia-
gram is given in the inset of Fig. 6(a). All the tielines of the
two-phase equilibria start from the boundaries of the phase
diagram (water-surfactant and oil-surfactant sides). The
points where the coexistence curves reach the limits of the
phase diagram are critical points. Indeed at these points the
composition of the two phases in equilibrium becomes iden-
tical.*® It should be noted, however, that we do not expect
our free energy to be accurate in this region of the phase
diagram. We will see in the next section that we can genera-
lize our model to include a more realistic account of the
properties of the dilute phases.

We now consider the case of finite spontaneous curva-
ture (x,#0). We choose x, > 0; the case x, < 0 corresponds
to the same evolution of the phase diagram but with the oil
and water volume fractions interchanged. So long as the
spontaneous radius of curvature remains larger than or on
the order of £, (x4, < 1) the phase diagram shows a slight
asymmetry but the three-phase equilibrium still exists (see
Sec. III). However, when the spontaneous curvature x, is
much greater than 1 (p,<£ ), the three-phase region van-
ishes (Fig. 7). The phase diagram is then very asymmetric
and most of the two-phase region consists of equilibria
between a microemulsion phase and nearly pure water. In
this case, along the phase boundary, £ scales with p,, indicat-
ing that phase separation occurs when the typical domain
size is of the order of p,. This result is an indication of the
emulsification failure® instability that precludes the forma-
tion of globules with a size larger than p,,. It is also interesting
to notice that the three-phase equilibrium disappears when
Xo = &x/po is of order unity.

25 : , . , : . : T .

20 - -

15 - 2 -

FIG. 7. Phase diagram for finite spontaneous curvature, with
xo = £x/po = 10and 7 = 0.15. The tielines in the two-phase region indicate
the coexistence of a microemulsion phase with nearly pure water. Both the
two-phase coexistence with oil and the three-phase region no longer exist
for this value of x,.
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Ill. EXTENSIONS OF THE BASIC MODEL
A. Generalized phase diagrams

The previous section described the phase diagram ob-
tained from a double-tangent plane construction using the
free energy of Eq. (2.6). We now describe a simplified meth-
od for generating the two- and three-phase coexistence re-
gions. This method relies on the observation that the microe-
mulsion phases coexist with very dilute phases of surfactant
in water or in oil.

Our study of the free energy surface in Figs. 3-5 showed
that the three-phase equilibrium is due to the presence of two
deep minima in the model free energy, in the region of very
small surfactant concentration. However, our model, which
describes the surfactant as an almost flat monolayer at the
water/oil interface, may not be appropriate in the dilute re-
gime where these minima occur. The extrapolation of the
bending energy to dilute phases where the surfactant exists
in the form of micelles or isolated molecules in solution may
not be justified.

We therefore introduce a simple model for these dilute
phases which is, in general, not merely an extrapolation of
the microemulsion free energy. Denoting the free energy per
unit volume of the dilute phases in water and oil respectively
by f,, and £, we write>*

fw=T[¢s(10g¢:—'l)+/¥w¢s]/R3’ (31)
where ¢, is the volume fracion of surfactant in the dilute
phase and R ? is the volume of a micelle. The first term in Eq.
(3.1) is the entropy of mixing and the second term is the
energy of surfactant in dilute solution. Note that the zero of
energy is that of a flat surfactant monolayer. Thus, if the
surfactant free energy is lowest for saturated interfaces, the
dimensionless energy y,, of the micelle or isolated surfactant
in solution is positive.*® It is only the entropy of mixing that
stabilizes these dilute phases with respect to the microemul-
sion phases. A similar expression is used for the free energy
per unit volume of the oil-rich dilute phases with £, — £, and
Xw = Xo

Note that the dilute limit of our microemulsion free en-
ergy, Eq. (2.6) with x, = 0, reduces to the form of Eq. (3.1),
with R = 6'*aand y,, = 87K,/T, for y,, > 1. The recogni-
tion that the dilute phases cannot necessarily be described by
the same harmonic bending energy as the microemulsion
phases is expressed by the introduction of a new energy y,,,
which is not simply related to K. Note that one could also
have introduced this connection by considering higher order
terms in the bending energy. These would scale as

(3.2)

Since the surface area is proportional to terms quadratic in
R, and R,, these higher order terms are negligible for large
values of R, or R, (i.e., in microemulsions). They become
important only in the states where both R, and R, are com-
parable to the molecular size a (i.¢., in the micellar or surfac-
tant solutions). The anharmonic coefficient X * would then
be related to y,, or y, of Eq. (3.1). One would then have a
single expression for the free energy which would describe
the different energetics of both the microemulsion and dilute

phases. In the following, however, we use Eq. (3.1) for the
modeling of the dilute phases treating y,, and y, as phenom-
enological parameters.

Recalling the coexistence curves of Fig. 6, we now look
for an equilibrium of a three-component (water—oil-surfac-
tant) microemulsion with a two-component (water—surfac-
tant or oil-surfactant), dilute phase. The equations for two-
phase equilibrium of the microemulsion with a dilute phase
of surfactant in water are

ar af - < 4.

f+a ¢)a¢ ¢, 2, Jo— &, 7.
o _1of

a4, 294 do,

Equation (3.4) results from the equality of the chemical po-
tential for surfactant which exists in both the microemulsion
and dilute phases. The second term in Eq. (3.4) arises from
the dependence of ¢ in the microemulsion phase on ¢ . For a
dilute phase of surfactant in water, Egs. (3.1) and (3.4)
determine the value ¢, = ¢* as

& LI gy
dp. 234 '

Since fin the microemulsion phase is of order T /£ x, where
Ex/a~exp(l/7)> 1, and since ¢, ~a/&y in the middle
phase, the second term is of the order of (a/£x ) Thus, for
large values of £, the first term on the right-hand side of Eq.
(3.5) dominates. Equation (3.5) shows that the value of ¢*
in the dilute phases is approximately independent of the val-
ue of ¢ or ¢, in the coexisting microemulsion phases.
Similar considerations allow us to neglect the second
term on the right-hand side of Eq. (3.3). With these approxi-
mations, the above equations reduce to only one condition:

(3.3)

3.4

log ¢* = — y, + (3.5)

4 —¢>—‘?f~—¢sj—f=f:, (3.6)

a¢ L

where now f* =f, (#*), with * ~exp( — y.,). The phase
boundary for two-phase coexistence is then found directly by
plotting ¢, as a function of ¢ as given by Eq. (3.6). If the
value y,, = 87K /T isused, the results are indistinguishable
from those of the exact tangent plane construction (see Fig.
6) described in Sec. II, except for a region very close to the
corners of the phase diagram [seen only in the inset of Fig.
6(b) ]. Our approximation is equivalent to having the ends
of the tielines in Fig. 6 meet at a single point. In addition, by
choosing different values of y,, and y,, we can generalize the
results of Sec. II. [Note that Eq. (3.1) can be generalized to
even more accurately model the free energy of the dilute
phases.] For example, the inclusion of attractive interac-
tions may further destabilize the micellar phase.

We have just described a simplified generalization for
determining the coexistence of a microemulsion with dilute
phases of surfactant in water or oil. The independent model-
ing of the free energy of dilute surfactant solutions intro-
duces two new relevant energy scales y,, and y,, in addition
to K, Since f* ~ T exp( — y,, )/a’, we can equally well par-
ametrize the dilute phases by f* or f¥. The coexistence
curves are in general sensitive to the values of these param-
eters. For example, Fig. 8 shows that if f* s£f%, the phase
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diagram is not symmetric about ¢ = 0.5, even though the
microemulsion phase has no preferred curvature (x, =0).
This is because phase equilibria are sensitive to the global
properties of the free energy surface, including the behavior
close to the corners of the three-phase triangle. Although
there is no spontaneous bending of a surfactant film towards
either water or oil, the different free energies of isolated sur-
factant molecules or micelles in water-rich and oil-rich envi-
ronments can be different. If £* /% is very different from
unity, the three-phase region can entirely disappear. There
are thus two mechanisms which can give rise to an asymme-
try of the phase diagram, and in the extreme case, to the
disappearance of the three-phase equilibrium: (i) a finite
spontaneous curvature, x,7#0; (ii) a difference in the free
energies of the surfactant in the dilute phases, /* #f¥.

B. Two-phase coexistence

In the previous section, we showed that the phase dia-
gram can be obtained quite simply by looking for coexistence
of a microemulsion with a dilute surfactant solution, charac-
terized by a free energy f*, which is in general, distinct from
the dilute limit of the microemulsion free energy /. [ Here we
assume f* = f¥ = f*.] This approximation relies on the oc-
curence of a deep minimum in fas a function of the surfac-
tant volume fraction ¢, . As previously stated, if f* becomes
comparable to the free energy of the middle phase £, two two-
phase equilibria of microemulsion and water-rich or oil-rich
dilute surfactant phases and the associated three-phase re-
gion, disappear. In their stead, a two-phase equilibrium
between two microemulsion phases arises.

We restrict the discussion to the case of no spontaneous
curvature for which the two coexisting microemulsion
phases with the same values of ¢, are found from the equality
of the water or oil chemical potentials. Since fis invariant to
a change of ¢ to (1 — ¢), the oil and water chemical poten-
tials have opposite sign. The equality of the two chemical
potentials then implies

(3_{;)4& =0

For large negative values of /*, the coexistence curve deter-
mined by Eq. (3.7) lies within the multiphase regions and is
thus not observable (see Fig. 9). As f* increases, the phase

(3.7)

FIG. 8. Phase diagram for no spontaneous curvature (x, = £x/po = 0)
and 7= 0.2 for the case of asymmetry in the free energies of the dilute
phases ( f* #f%). Here, f* = — 15T /£% and f* = — 15T /2£%.

diagram goes through the sequence shown in Fig. 9. We see
that a criterion for a stable middle-phase microemulsion is
that the surfactant not be too insoluble in the dilute phases.>¢
Examination of the phase diagrams shows that
[*< — 5T /&3 for the middle-phase microemulsion to exist
rather than equilibrium between two microemulsion phases.

When the critical point of two-phase equilibrium at
¢ = 0.5 occurs at a value of ¢, which is approximately equal
to the value of ¢; for the middle-phase microemulsion, the
microemulsion phase itself may be characterized by large
concentration fluctuations. This would invalidate the ran-
dom-mixing approximation used here. The corrections to
our model due to correlations between oil and water regions
are outside the scope of this work.

C. The lamellar phase

In this section, we consider the relative stability of ran-
dom microemulsions compared with a lamellar phase which
consists of an ordered array of surfactant monolayers divid-
ing adjacent oil and water domains. For the case of no spon-
taneous curvature, we show that for values of K,/T that do
not exceed a critical value, the random microemulsion is
more stable than the lamellar phase at small values of ¢,.
The renormalization of the bending constant to values of the
order of 7, allows the energy cost of the random system to be
compensated by the entropy gain from the random mixing of
water and oil regions. At large values of ¢,, the bending
constant approaches its bare value K. The energy cost of the
curved interfaces in the random microemulsion is no longer
compensated by the entropy of mixing, and the lamellar
phase dominates.

8 L T M T T
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FIG. 9. Phase diagrams including the coexistence of the two microemulsion
phases with the same values of ¢, (denoted by 2’ and shown by dashed
lines). The solid lines represent the multiphase regions of the microemul-
sion [see Fig. 6(a)]. In (a) the phase diagram is for f* = f&
= — 50T /&%, whilein (b) f* = f* = 0. Note thatin (b), the equilibrium
is between two microemulsions. The value of 7 = 0.2.
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We compare the free energies of the microemulsion and
lamellar phases. Although the ordered, lamellar phase has
no entropy of mixing and no curvature energy, it has a finite
free energy due to the steric repulsion of the surfactant
sheets.?’® This repulsion reduces the meandering entropy
of the lamellae from its value in the limit of infinite separa-
tion of the surfactant sheets.*® The additional free energy per
unit volume has been estimated by Helfrich®’ for an ordered
array of lamellae in a single solvent and is proportional to the
product of the number of lamellae per unit length and
T?*/(Kyd?). In our case, the lamellae separate adjacent re-
gions of oil and water. We heuristically generalize Helfrich’s
result to describe the free energy of the lamellar microemul-
sion per unit volume f;, and write

TV 1 1 2
o)
h=xN "\ +a

In Eq. (3.8), dy=2a¢,/d, and d,, =2ad, /P, are the dis-
tances between the surfactant sheets separating oil and water
domains, respectively. The surfactant volume fraction is giv-
enby ¢, =2a/(d,+d, ). Weexpect Eq. (3.8) to be correct
for d < £ . The parameter y expresses the uncertainty in the
numerical coefficient of Eq. (3.8) which depends on the de-
tails of the short distance cutoff. In our numerical calcula-
tions, we arbitrarily take y = 0.15/7=0.05; if y is taken to
be Helfrich’s value of (37°/256) =~0.12, the microemulsion
is stable with respect to the lamellar phase even at high val-
ues of ¢, for the chosen 7= 0.2.

A determination of the phase diagram is obtained from a
double tangent construction on both f; and fas described in
Sec. IT above. The results are shown in Fig. 10, for a value of
7= T /47K, = 0.2. Since the lamellar free energy scales as
(T*/K,) ¢3/a> and the microemulsion free energy scales as
T¢3/a>, the free energy difference between them is decreased
as K, is increased. For large values of K,/T, the lamellar
phase coexists directly with the dilute phases and the middle
phase microemulsion disappears. This confirms the sugges-
tion of de Gennes and Taupin, '° that the lamellar structure is
more stable than the random microemulsion for stiff surfac-
tant sheets.

This comparison of the free energies of the lamellar and
microemulsion phases, reveals the crucial role that the re-
normalization of the bending constant plays in our model. It
is through this renormalization that the bending energy in
the random microemulsion phase is reduced so that the en-
tropy gain of the random structure stabilizes it against the
ordered, lamellar phase.?® In our model, the bending con-
stant is naturally reduced to values of order 7'by the thermal
fluctuations. However, before more definite conclusions can
be reached, a more accurate description of the lamellar phase
free energy may be needed. Our treatment is a first approxi-
mation, and contains the phenomenological parameter y.

(3.8)

IV. DISCUSSION
A. Role of microscopic parameters

In the calculations presented here, the microemulsion is
assumed to be a ternary mixture of oil, water, and surfactant.
Nevertheless, some of the important physical properties and
expected phase behavior are obtained. The effects of salinity

S
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FIG. 10. Phase diagram for microemulsions with no spontaneous curvature
(x, =0). The region where the lamellar phase is stable is indicated. The
numbers indicate the number of coexisting phases. A value of 7 = 0.2 was
chosen. The tielines indicate the coexistence of disordered microemulsion
phases with lamellar phases. The lower part of this phase diagram is the
same as in Fig. 6(a), but with a different vertical scale since
&, = &, exp(1/7). The phase diagram is drawn within the triangle of al-
lowed concentrations: ¢,/2 <@ and ¢, /2 <1 — ¢.

and cosurfactant (short-chain alcohol) were not taken ex-
plicitly into account. Implicitly they enter our model
through parameters such as the spontaneous curvature x,,
the bending (rigidity) constant K, and the free energies of
the dilute phases, /* and f¥ which were introduced in Sec.
IT1. A more microscopic approach is needed in order to get a
quantitative understanding of these parameters and this cer-
tainly deserves further investigation. Such an approach
might for example give predictions about specific surfac-
tants or surfactant/cosurfactant mixtures.

In studying microemulsions, one shouid distinguish
between ordered phases and disordered, liquid-like ones.
For the former, a periodic structure repeats itself on large
length scale and the system is generally less like a liquid
(viscous, and birefringent in some cases) and more like a
weak solid. These phases usually occur at higher surfactant
concentration and can range from lamellar to cylindrical or
cubic (or others). We discussed in Sec. III a simplified ver-
sion of such a phase (lamellar). In our view, recent lattice
models®"*? that were proposed for microemulsions are prob-
ably more suited to these ordered phases than for the liquid-
like disordered ones.

The phases which are the focus of this article as well as
previous work,’¢'® are the disordered, liquid-like microe-
mulsion that are useful in many technological applications.
Microemulsions, which occur at relatively low surfactant
concentration, usually require the addition of salt and cosur-
factant for stability. Without these extra components, the
phase diagram is usually dominated by lamellar or other
ordered phases. The main effects of the salt and cosurfactant
are:
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(1) To “balance” the hydrophilic-lipophilic interac-
tions, thus effectively reducing the tendency of the surfac-
tant to form globules (driving the spontaneous curvature x
towards zero).

(ii) To reduce the rigidity of the surfactant film, thus
stabilizing a random configuration of the surfactant inter-
face over a more rigid lamellar structure.

Using a phenomenological lattice model, we presented
in Sec. II a simple free energy that predicts the observed
three-phase coexistence for a suitable range of our param-
eters. Our main deviation from previous models is to take
into account the renormalization of the bending energy for
length scales up to the persistence length. Since we made the
simplification that the area per surfactant is fixed, the total
area is uniquely determined by the amount of surfactant and
we are left only with two terms in our free energy: the en-
tropy of mixing and the bending energy (with a renormal-
ized bending constant which is length-scale dependent).

Cosurfactant does not enter directly into our model but
presumably its effect is to reduce the rigidity constant. Both
the middle phase and the structural length scale depend very
strongly on K,. Another effect of increasing K, is to stabilize
lamellar phases when compared to the microemulsion. A
moderate value of the bare K, (flexible surfactant films)
means that the system will have K, renormalized to a value
of order T at reasonable ( ~ 100 151) length scales.

Finally, we note that since the phenomenological pa-
rameters (x,, /¥, f¥) may in principle be temperature de-
pendent, the phase diagrams can change as the temperature
is varied. Hence a useful extension of our model might be to
calculate the phase diagram incorporating the temperature
dependence of the model parameters. Experimentally, it is
found that increasing the temperature can cause either
asymmetry towards the oil (e.g., for ethoxylate surfac-
tants*® ) and towards the water (e.g., for sulfonates'®). In
addition, both temperature and K, play an important role in
the competition between the bicontinuous and lamellar
phases as discussed above.

B. Summary of our predictions

We now make a few remarks about our resulting phase
diagrams and compare them with previous models:

(i) In the symmetric case (x, = 0) the calculated phase
diagram, Fig. 6, has four distinct regions: a single phase, two
two-phase coexistence regions (one consisting of a microe-
mulsion in equilibrium with nearly pure water and the other
of a microemulsion in equilibrium with nearly pure oil), and
a three-phase region where the middle-phase microemulsion
coexists simultaneously with water and oil. The surfactant
concentration in the middle phase depends exponentially on
the bending constant K,

(ii) Deviations from this symmetric picture are ob-
served as we change x, from zero to a finite positive (nega-
tive) value which reflects a tendency of the surfactant to
bends towards the water (the oil). As one increases x,, from
zero, the middle phase moves towards the oil corner. Conse-
quently, the extent of the two-phase coexistence with the
water increases while the extent of the two-phase coexistence
with the oil decreases until it, as well as the three-phase re-
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gion, completely disappears (Fig. 7), leaving only the two-
phase coexistence between the microemulsion (globules of
water in oil) and an excess water phase. This happens at
values of p,<£x and is in agreement with the concept of an
“emulsification failure” instability that was previously dis-
cussed for globular microemulsions.> The reverse occurs as
X, is decreased from zero.

With the simple expression that we have for the free
energy, Eq. (2.6), x, (or p,) is the only parameter that af-
fects the asymmetry of the phase diagram. In Sec. III, we
generalized our model and introduced two additional pa-
rameters, /¥ and /¥, which are the values of the free energy
in the dilute water and oil phases, and are related to the
surfactant stability in those phases. In the generalized mod-
el, another way to asymmetrize the phase diagram is to in-
crease |[f* — f*| while keeping both f* and f¥ below the
microemulsion value. For example, increasing the value of
S & with respect to f* causes a shrinking (Fig. 8) of the two-
phase coexistence with oil until this coexistence region, as
well as that of the three-phase coexistence, disappears.

(iii) Our theory contains several phenomenological pa-
rameters such as x;, /¥, and f¥, which are related to the
surfactant structure and chemistry. These parameters can
asymmetrize the phase diagram; they are experimentally
controlled through changes in the hydrophilic-lipophilic ra-
tio which depend on temperature (which has other effects as
well), salinity, and the stability of water and oil.*! Since
salinity screens the electrostatic interaction in the water, it
can be thought of as decreasing x, in our model. Also our
simplified account of the stability of the dilute water and oil
phases in terms of the two parameters f *, and /%, shows that
as the stability of the dilute oil phase increases, the oil-mi-
croemulsion coexistence region shrinks, until only a coexis-
tence with water is left (no three-phase region). The reverse
behavior is seen when the stability of the dilute water phase is
increased.

(iv) Another change in the phase diagram occurs as one
increases the value of f* = f* = f¥ with respect to the mi-
croemulsion free energy (Fig. 9). For f* near zero, the sys-
tem prefers to separate into two microemulsions, one being
oil-rich and the other water-rich (with equal amount of sur-
factant for the symmetric case x, = 0). Consequently, the
entire three-phase region disappears. This again shows the
importance of f* to the existence of the three-phase region.
A similar two-phase coexistence between two microemul-
sions was also obtained in Refs. 16 and 17. In the JLG model,
it was not possible to obtain the three-phase region because
the cell size was always presumed to be equal to £, the
persistence length, whereas in our model the cell size varies
from £ ~ &, near the middle-phase point on the phase dia-
gram, to a molecular size for the dilute phases. Similarly, we
find coexistence between two microemulsions with unequal
amounts of surfactant (oblique tie lines) by introducing a
finite spontaneous curvature.

(v) Although our model,”® Widom’s,'* and Talmon
and Prager’s* all result in three-phase coexistence, there are
several important differences between them. In Widom’s
model the surfactant film is thought of as highly compress-
ible two-dimensional gas whereas in our model it is an in-
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compressible film. The stability of the undulating interface
in our case is a direct consequence of the renormalization of
the bending constant and we find that the structural length
scale (cell size) £ is closely related to the de Gennes—Taupin
persistence length £, . It is especially notable (from Sec.
III C) that the smallest structural length scale £ obtainable
in the microemulsion before phase separation to lamellae
occurs, obeys for small 7, £« £, «e'”. However, £ /£ in
the middle phase is also bounded above by a constant corre-
sponding to the value obtained at the inflection point
¢, = ¢, as defined in Sec. II B. Thus, the structural length
scale £ in a stable middle-phase microemulsion is always of
order & . Moreover, along the two-phase coexistence lines, &
deviates strongly from £, only very close to the corners of
the phase diagram. This relation between the cell size and the
persistence length constant is not found by Widom. For rigid
surfactant films, (K,>7T) & depends only weakly on the
bending constant, Eq. (1.4), and exponentially on the water-
/0il bare surface tension, in his model. This difference
between the two theories can be checked experimentally
since (within the random mixing approximation) £ is in-
versely proportional to ¢, the volume fraction of the surfac-
tant. Measurements of K, vs ¢, and/or £ in the middle phase
will be helpful in comparing these two predictions. In the
Talmon-Prager model the phase diagram depends on a pa-
rameter (/) in such a way that the middle phase coexists
with a phase of 15% oil in water and another of 15% water in
oil. In contrast, our middle phase coesists with almost pure
water and oil. Another difference is that in our model, the
length scale of the domains has a clear physical origin; in the
Talmon—-Prager model, this length entered as an additional
parameter.

(vi) The microemulsion phase should always be com-
pared in stability to more ordered structures such as lamellae
(Fig. 10). This was done in Sec. III with some simplifying
assumptions about the contribution of thermal fluctuations
to the free energy of the lamellar phase. We find that for K,/
T larger than a critical value, the lamellar phase is always
more stable than the microemulsion phase and the three-
phase coexistence disappears altogether. In contrast, for
K,/T smaller than the critical value, the microemulsion
phase is more stable than the lamellar phase for small 4, ; as
¢, increases, there is a transition (always first order in our
model because we are comparing two different branches of
the free energy) from an isotropic disordered (microemul-
sion) phase at small values of ¢, to a lamellar one at higher
values of ¢,. In the coexistence region, the two phases in
equilibrium have different values of ¢ and ¢, , resulting in the
oblique tielines in Fig. 10.

C. Conclusions and future prospects

In this paper, we focused on understanding the origin of
middle-phase microemulsions. Within a simple model we
calculated phase diagrams that are similar to those observed
for nonionic surfactant microemulsions. In addition, our
model has a simple physical explanation in terms of the sta-
tistical mechanics of the undulating surfactant films separat-
ing oil and water regions. The renormalization of the bend-
ing constant of such films appears to be crucial to the
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stabilization of these phases. Indeed, including the effect of
the short-wavelength fluctuations is twofold: First, the mini-
mum amount of surfactant ¢, needed to obtain a stable
middle-phase scales as the inverse of the persistence length,
&k and is an exponential function of the bending constant.
Second, it stabilizes the microemulsion phase in comparison
with the lamellar phase.’® Various trends in asymmetrizing
the phase diagram were also explored.

A few points deserve additional study; we briefly discuss
some of them.

(1) Our calculation as well as those of Refs. 4, 17, and 18
are done within the random mixing approximation, which
does not take correctly into account concentration fluctu-
ations. For small length scales (smaller than a cell size), we
did include the effects of fluctuations via the renormaliza-
tion of the bending constant. However, one would like to
find corrections to the mean-field approximation for large
length scales by writing down a lattice model where the en-
tropy and the bending energy are better approximated.

In addition, the expression used for K(&) was de-
rived®”?® to first order in perturbation theory for zero sur-
face-tension interfaces. This expression is not expected to
hold for large length scales. Even within first-order pertuba-
tion theory, there is a dispute®’*’ at the present time about
the exact value of coefficient & in the expression for K(£),
Eq. (1.6). Changing « has a similar effect on our phase dia-
gram as changing f*. Variations in either parameter can
cause a crossover from three-phase equilibrium to coexis-
tence between two different microemulsions.

(ii) In our model, 2, the area per surfactant, is fixed and
the bare water/oil surface tension does not enter directly
into the free energy. This limit of an incompressible surfac-
tant film is complementary to that of Refs. 17 and 18 where
fluctuations around the Schulman line £ = X, are allowed.
It is possible to generalize our model by taking a variable
area per molecule and expanding the free energy around X,
This will introduce a third independent variable (e.g., either
3, or the cell size £) in addition to the two volume fractions ¢
and ¢, and requires a minimization with respect to this new
variable as well as c ouble tangent construction for the phase
diagram. However, if the coefficient 4 in Eq. (1.3) is large
compared with 7, the results are qualitatively the same as
those of our model, since the departures from the Schulman
line are negligible.

(iii) The ultralow interfacial tension o between microe-
mulsions, and nearly pure water or oil, can be simply under-
stood'® by the large coherence length in the middle phase,
&x > 100 A. From dimensional analysis, one expects that
o~T/E*. Approximating £~50a, (a being a molecular
length), this can explain a reduction of ~ 10* in the interfa-
cial tension."” An additional contribution to the lowering of
the interfacial tension may also come from the proximity of
the middle phase to a critical point'®!? where the correlation
length of the concentration fluctuations can become very
large. We found such a critical point, which, however, will
not be observable when it lies within the three-phase region
of the phase diagram.

(iv) The comparison of our phenomenological free en-
ergy, Eq. (2.6), and the one for the lamellar phase gives a
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first-order transition between the two phases when K/ T is
not larger than a critical value. Otherwise the lamellar phase
will be more stable than the microemulsion for the entire
range of ¢, . A more accurate calculation of the free energy of
the lamellar phase would enable us to resolve more convinc-
ingly the relative stability of random microemulsions and
ordered lamellar structures, and possibly other ordered
structures such as cubic and cylindrical phases.
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