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Résumé. 2014 On étudie ici les instabilités de courbure dans les membranes et les films amphiphiles en
introduisant un couplage entre une variable de forme (telle que la courbure) et les degrés de liberté internes
(comme l’aire par molécule, l’angle d’inclinaison des chaînes ou la composition locale). L’approximation du
champ moyen appliquée à un développement de l’énergie libre de Ginzbourg-Landau, démontre l’existence de
différentes phases ondulées (sur l’échelle mésoscopique), qui peuvent apparaître entre les phases homogènes
condensées (type solide) et diluées (type fluide) de la membrane. Ces phases ondulées sont caractérisées par
des modulations locales de leur composition ainsi que de leur courbure locale. Nous trouvons ici deux types de
telles phases - en bande et hexagonale 2014 et nous calculons le diagramme de phase de ce système.

Abstract. - Curvature-induced instabilities in membranes and amphiphilic films are investigated by
introducing a general coupling between a shape variable (such as curvature) and «internal» degrees of
freedom (such as area per molecule, tilt angle, or local composition). A mean-field treatment of the Ginzburg-
Landau free energy expansion shows the existence of various undulated phases (on a mesoscopic scale) that
can appear between condensed (solid-like) and dilute (fluid-like) homogeneous phases of the membrane.
These undulated phases are characterized by undulations in their local composition as well as in their local
curvature. We find two types of undulated phases - stripe and hexagonal 2014 and calculate the phase diagram
for the system.
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A bilayer membrane is one of various structures
’formed by amphiphilic molecules (e.g. phos-
pholipids) in a solvent (e.g. water) [1]. Such bilayer
membranes consist of two opposing layers of am-
phiphiles that have their polar heads pointed towards
the surrounding water, while their hydrocarbon tails
overlap and point away from the water due to their
hydrophobic character. Membranes are usually
found either in the form of closed vesicles or as part
of a multilayer stack of lamellae.
Other related structures that can be found in

solutions are two-dimensional monolayers of am-
phiphile molecules. These monolayers reside on

interfaces between two immiscible solvents of diffe-
rent character such as water and oil, and they exist
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either as a single interface between coexisting water
and oil phases, or as an extended interface that
separates oil and water regions (e.g. in microemul-
sion). In the case where the amphiphilic monolayer
resides on a liquid/air interface it is known as a

Langmuir monolayer.
For the purpose of this paper we will not make the

distinction between bilayer membranes and am-
phiphilic monolayers ; our treatment equally applies
to both systems, and thus we will use both to
illustrate our findings. However, in a more refined
model, the difference between membranes and am-
phiphilic films can be of importance.
One can study the shape of two-dimensional

membranes and amphiphilic films [2], their fluctua-
tions [3-5], and their mutual interactions [6], by
neglecting completely their internal degrees of free-
dom and by treating them as curved and fluctuating
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interfaces. However, this approach has some limita-
tions since in many physical or biological systems,
the degrees of freedom within the amphiphilic film
are coupled to global properties of the film. For
instance, a phospholipid or surfactant layer can
undergo an « internal » phase transformation such as
a chain melting (known as the « main transition »
[7]), or a lateral (inplane) phase separation [8] in the
case where two different types of amphiphiles are
present. Clearly, in such cases, it is appropriate to
introduce internal variables such as the local area

per amphiphile, or the local relative concentration of
the two different species.
These internal degrees of freedom, which are

connected to the inplane phase-transitions, are, in
general, coupled to the « external » degrees of
freedom that govern the behaviour of the membrane
as a two-dimensional, curved, and fluctuating struc-
ture. The purpose of this paper is to show, using a
simple example, how this coupling is a possible
source for a new type of phenomena termed curva-
ture instabilities [9]. These instabilities leads to the
appearance of ordered meso-structures for which
both the internal degrees of freedom and the curva-
ture will have modulations with nonzero wavevector
around their mean values at thermodynamic equilib-
rium.

Ordered and curved structures are indeed ob-
served in many different systems of bilayer mem-
branes. For example, in mixtures of amphiphiles of
different symmetries, a lateral phase separation with
curvature modulation takes place [8]. Moreover,
many phospholipid membranes can form a phase
known as the « ripple » phase. This phase is usually
found [10] for inplane concentrations that are be-
tween those of the dilute fluid-like and condensed
solid-like (sometimes called the « gel ») phases. By
the addition of small amounts of a different (small)
molecule that dissolves asymmetrically in the mem-
brane, one can provoke shape transformations, and
in some cases, structures that are both ordered and
curved [11].

In order to construct a model that exhibits the
behaviour discussed above, we make several simp-
lifying assumptions :

i) While allowing the bilayer membrane or the
monolayer amphiphilic film to curve (the difference
between the two is not taken into our model), their
shape is assumed to be close to planar ; thus the
possibility of having overhangs or discontinuities in
the film is neglected. Consequently, a displacement
variable f (x, y) that measures the displacement of
the film from a flat reference plane is a single valued
function. We note that a vesicle can be similarly
described in the limit where its radius of curvature is

large. We can now write an effective Hamiltonian as
an expansion in gradients of this variable f (x, y)

where a is the surface tension and K is the rigidity
modulus [12].

ii) We also assume that the relevant internal

degrees of freedom (e.g. the area per amphiphile,
the relative concentration for a membrane that is

composed of two different amphiphile molecules, or
the tilt angle of the hydrocarbon chains) can be
described by a single continuous scalar variable

c(x,y). Allowing for the possibility of a phase
transition within the membrane, we take 0 (x, y ) =
c (x, y ) - c0 as the appropriate order parameter of
this transition and writing the corresponding Ginz-
burg-Landau Hamiltonian as an expansion around
the critical point, c = co

where b and A are phenomenological coefficients, A
is the chemical potential, and f( CP) =
(1/2) az cP z + (114 ) a4 cP 4. Without the gradient
terms (b = A = 0), equation (2) gives the usual
critical point at a = a2 = 0, and a line of first-order
transitions for : 03BC = 0, a2  0. All other coefficients

(a4, etc.) are assumed to be positive for simplicity
sake, and the cubic term in 0 in f ( CP) is omitted
since it can be eliminated by redefining 0.

Finally, the two lowest orders in the coupling
between the internal variable 0 and the membrane

shape can be written as follows :

where the two lowest-order linear terms in both 0
and f are retained. These terms contain only even
powers of the gradient operator. In addition, we
omit other terms of the same order that can be
reduced to the ones in (3) by integration by parts. In
(3) we did not, as well, include terms that can be
written as the total derivative of some function, since
these terms can be re-expressed as boundary terms,
using the divergence theorem ; thus they vanish for
simple surfaces in the thermodynamic limit, when
both f and 0 are continuous and slowly varying
functions. An interesting generalization, which is

beyond the scope of this paper, would be to include
the possibility of defect structures [13] or nontrivial
boundary conditions.

Equations (1) to (3) define our model. The total
effective Hamiltonian H = Hl + H2 + H3, can then
be written in momentum space as :
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Since (4) contains terms that are at most quadratic in
fq, the integration over the {f q} degrees of freedom
can be done exactly. Such an integration is per-

formed using a « naive » measure f De == f llq de q’
which is justifiable within the approximation that we
will use hereafter. If one wants, however, to take
into account thermal fluctuations, a more accurate
definition of the appropriate measure is needed.

Integrating out the { f q}, yields the effective
Hamiltonian

where the bare surface tension a is assumed to be

positive and, for simplicity, we expanded (5) up to
forth order in q. The form revealed here (5) has an
important consequence : if the value of the coupling
constant A exceeds a critical value

the coefficient of the term q2 4&#x3E; q 4&#x3E; - q becomes

negative, leading to an instability of the homo-

geneous system with respect to long wavelength
fluctuations. The most unstable wavevector q * is
found by minimizing Heff with respect to q, equation
(5)

Here the coefficient of the q4 term in equation (5) is
assumed to be positive (otherwise higher order
terms in q are needed).

In order to estimate the value of q * in a real

system, we suppose for simplicity, A = A = 0. The
term Acl&#x3E; (V2f) in equation (3) is the generalization
of the spontaneous curvature energy [14] for

nonhomogeneous films, so that Aco - Ho K, where
Ho is the spontaneous curvature, and K is the rigidity
modulus. Taking typical values [14, 15] for Ho, K,

and co, and putting b - kB Tg3, with the correlation
length amplitude §o equal to a few angstroms, the
undulation periodicity, A* = 2 7T / q *, is found to

range between 10 and 1000 A. These unstable

wavelengths should therefore lie in the experimental
range, and in fact are comparable to the periodicity
of ordered structures observed in several systems
[16] (-100-1 000 A).

In what follows, a mean-field approximation [17]
for the effective Hamiltonian, equation (5) is presen-
ted. Studies of similar Hamiltonian have been per-
formed previously for quite different systems ;
among other these are : smectic phases of liquid
crystals [18], thin magnetic films of uniaxial symmet-
ry in a magnetic field [19], convection rolls [20], and
polar insoluble monolayers at the liquidlair interface
(Langmuir monolayers) [21].
The basic idea consists of comparing the mean-

field free energies of the following phases :
i) the stripe phase,

ii) the hexagonal phase,

where

and

iii) the homogeneous phases with q * = 0 and

0 = tPo. These include both the dilute (fluid) and
condensed (solid) phases. Although we refer to the
condensed phase as being solid-like and to the dilute
one as being fluid-like, there is nothing in our model
that takes into account the difference in character
between the two phases (such as the existence of
long range order in the solid phase).
Only the most unstable wavevector q * is used in

equations (8)-(9). This assumption greatly simplifies
the calculations and can be justified [19] close to the
homogeneous critical point, A = A = 0.

Figures 1 and 2 show the phase diagrams that has
been obtained from equations (5)-(9). In fact, close
to the critical temperature these phase diagrams are
identical to the ones found in the problem of polar
Langmuir monolayers [21]. There, the long-range
dipolar and repulsive interactions cause « super
structures » with undulating inplane concentration.

Figure 1 shows the phase diagram in the reduced
temperature - reduced concentration (e, m ) plane,
which is defined by

Close enough to e = 1, m = 0, there are five distinct
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Fig. 1. - Phase diagram in the (m, e) plane where e is the
reduced temperature and m is the reduced order par-
ameter. Here, as an example, this order parameter is

chosen to be the local density of amphiphilic molecules.
The two homogeneous phases : dilute (D) and condensed
« gel » (C) are separated by the hexagonal (H), stripe (S)
and inverted hexagonal (IH) phases. Two-phase coexist-
ence regions between the various single phases are also
shown. This phase diagram was obtained from equations
(5)-(9) and is valid close to the critical point of the
homogeneous system, e = 0.

Fig. 2. - The same phase diagram as in figure 1, in the
reduced temperature s - rescaled chemical potential h
plane. This phase diagram is symmetric about h = 0 and
only half of it with h &#x3E; 0 is shown. All transition lines are

first order and they terminate at the critical point :
h=0, 8 = 1. 

phases : a dilute homogeneous fluid (D), a con-

densed « gel » or solid-like (C), and three undulated
phases : a stripe phase (S) consisting of alternating
stripes of dilute and condensed regions, as well as
hexagonal. (H) and inverted hexagonal (IH) phases
with triangular symmetry, equation (9). Between the

, five phases there are four regions of two-phase

coexistence : D-H, H-S, S-IH, and IH-C. At a lower
temperature, e = - 1.6, the two hexagonal phases :
H and IH disappear, and the remaining phases S, C
and D have two regions of coexistence : S-D and S-
C. At even lower temperatures s m - 4.45, the

stripe phase itself becomes unstable and one is left
with the two-phase coexistence curve m2 = e be-
tween the D and C phases.

In figure 2 the same phase diagram is shown in the
chemical potential - reduced temperature (h, e)
plane where the rescaled chemical potential h is
defined as

At (h = 0, E = 1 ) there are four first-order transi-
tion lines that join together. Only two of them are
shown in figure 2 (between D-H and H-S) since our
phase diagram is symmetric about h = 0, and we
plotted only the h &#x3E; 0 half of it. In figure 2, two
triple points are shown ; the first (E = -1.6,
h = 0.38) is where the three phases : S, H, and D
coexist, whereas the second one (E = - 4.45, h = 0)
is where the three phases : D, C, and S coexist. A
third triple point that is not shown in figure 2 is the
one where the phases S, IH, and C coexist

(03B5=-1.6, h--0.38).
In general, several phases with spatial undulations

of both the internal order parameter 0 and the local
curvature, o2f, of the film are found. The undula-
tions in the local curvature are due to the coupling
between the local curvature and 0. Thus undulations
of the latter will induce undulations of the former.
For the case where 0 represents the relative compo-
sition of two species (A and B) of amphiphiles, one
(say A) will have higher concentration in regions of
higher curvature whereas the other (say B) will have
higher concentration in regions of lower curvature.
For the predicted hexagonal and inverted hexagonal
phases, lower and higher curvature regions corre-
spond to the « mountains » and « valleys » of the
film.
The phase diagram presented in figure 2 can be

viewed as a cut of a higher dimensional parameter
space. If the coefficient of the q2 term of equation
(5) is allowed to vary, a Lifshitz point [22] occurs
when b = A2/ú. Such an extended phase diagram is
similar [23] to the one obtained for an Ising model
with competing axial interactions in the presence of
an external field (the ANNNI model [24]). However,
the Ising problem is realized on a lattice and thus has
commensurate and incommensurate phases. In our
case, there is no underlying lattice and the undula-
tion wavelength varies continuously with the coupl-
ing strength.
An interesting special case, which merits a sepa-

rate discussion, is the case of a bilayer membrane (or
film) with vanishing surface tension, o- = 0. This
case had already been studied in reference [9].
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Setting a = 0 in (4) and integrating over Qq, we get
that the coefficient of the 02 term is given by

This means that for A2 &#x3E; K a2, one obtains a curva-
ture instability [9] which is, nevertheless, different
from the one we obtained above for a &#x3E; 0 [compare
with (6)]. For at = 0, the coupling to the curvature
increases the critical temperature of the inplane
phase separation. No undulated phase becomes
stable since q = 0 is the most stable wavevector for
o- =0.

In a recent paper [10], a simple theory was
proposed to explain the intermediate ripple phase
Pp, of phospholipid bilayers. A one-dimensional
periodic (« single q ») structure appears there as a
result of a term in the free energy which couples the
order parameter (the bilayer thickness) with its
second derivative (curvature) ; in our notation this
term is proportional to q 2 f q f - q’ Our theory can be
viewed as a generalization of reference [10] - the
periodic structures are not restricted to one-dimen-
sional undulations and the coupling is between two

. independent thermodynamic variables - the inplane
order parameter 0, and an external shape variable
f.
We can obtain the simpler model of reference [10]

if a linear relation between the chemical potential h
and the reduced temperature 8 is imposed. In this
case, one obtains a ripple phase lying between the
condensed solid-like (« gel ») and dilute fluid homo-
geneous phases. (For a one-dimensional membrane
there is only one type of ripple phase). The transi-
tions between both the ripple and dilute, as well as
the ripple and dense phases is always first order.
This is easily seen by drawing a straight line with a
finite slope on the phase diagram, figure 2, without
intersecting the critical point 4 = 0, s = 1.
We would like to stress that although the simple

model presented here looks quite appealing as a first
step towards understanding the Pf3’ phase [10, 13],
we believe that our model as well as the models of
references [10, 13] represent an oversimplification of

the Pp, phase. In fact, the order parameter of the
P,s, most likely, is not a scalar. It will rather have to
include the conformation degrees of freedom of the
amphiphilic chains.

In conclusion, we have constructed a simple
continuum theory in which membrane (film) shape is
coupled to the internal degrees of freedom of the
membrane (or the film). The mean-field treatment
of the model leads to the prediction of inplane meso-
structures, i. e. periodic undulated structures with
varying internal order-parameter (such as tilt angle,
density of impurities or « fluidity »). Such structures
have, indeed, been seen in several experimental
situations [8, 16].

Possible extensions of this model include : (i)
going beyond mean-field approximation, which
would require taking into account critical fluc-
tuations. These fluctuations may, in principle, des-
troy the undulated phases [19, 25], since the mem-
brane is two dimensional. (ii) Within mean-field
theory, finding the most stable solution, without
making the one-mode approximation, [q[ = q *.
This approximation can be justified only close to a
critical point [19], and probably fails in some cases
[21] at low temperatures. (iii) Even more important-
ly is to incorporate specific interactions into the
model presented here, which probably would require
the introduction of several, possibly non-scalar,
order-parameters. Such a study is needed before a
detailed comparison with experiments is possible.
Finally, better experimental estimates of the im-
portant parameters in our model (such as the rigidity
modulus K) are needed in order to obtain more

precise estimates on the range of the undulation
wavevector, q *.
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