Phase transitions in Langmuir monolayers of polar molecules
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Insoluble Langmuir monolayers are investigated in the presence of dipolar forces which can
have two origins: permanent dipoles in neutral monolayers and induced dipoles in charged
monolayers. The main effect of the additional long-range repulsive interactions is to stabilize

undulating phases at thermodynamic equilibrium. Phase diagrams are obtained in two limits:

close to the liquid—gas critical point via a Ginzburg-Landau expansion of the free energy
{mainly within a mean-field approximation), and at low temperatures by free energy
minimization. Possible applications of this theory to experiments at the liquid—gas, liquid
expanded-liquid condensed, and solid-liquid transitions are discussed.

I. INTRODUCTION

Many amphiphile molecules (surfactants, fatty acids, or
lipids ) form insoluble monolayers at the water/air interface.
The phase diagram of these Langmuir monolayers has been
extensively studied by surface tension measurements or with
Langmuir troughs and often shows a rich variety of phases.!

At very low surface pressure ( <0.1 mN/m) the surface
concentration is small and the monolayer is in a gaseous
state. In this state the area occupied by one molecule is much
larger than the polar head area and it is generally assumed
that the tails of the molecules lie on the water/air interface.

An increase in the surface pressure, in some cases, in-
duces a liquid—gas transition. This transition has been stud-
ied in great detail® for pentadecanoic acid by measuring the
surface pressure and the area per molecule while keeping the
temperature constant. A plateau of such isotherms in the
pressure-area plane indicates a coexistence between liquid
and gas phases i.e., a first-order transition. Due to the de-
crease in the area per molecule in the liquid state, the tails of
the molecules do not lie flat on the water/air interface and
hence have a tendency to point towards the air. As for three-
dimensional systems, a critical point is reached upon in-
creasing the temperature. The critical behavior around this
liquid—gas critical point seems to be mean-field-like,? a phe-
nomenon that is not well understood.

The most striking property of the liquid state is in many
cases (with long and flexible molecules) the existence of a
kink in the pressure-area isotherms. This kink divides the
liquid state into two “phases”: a liquid-expanded phase at
lower concentrations and a liquid-condensed phase at higher
concentrations. However, it 1s not clear whether these
phases are two distinct equilibrium phases. Consequently
the liquid expanded-liquid condensed transition has been
the subject of much controversy both experimentally® and
theoretically.*

In particular, Middleton et al.? find a plateau in the iso-
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therms of pentadecanoic acid, hexadecanoic acid, and dihex-
adecanoyl phosphatidylcholine (DHPC) at the liquid ex-
panded-liquid condensed transition. They thus conclude
that the transition is first order. Moreover, they claim that
the absence of a plateau in many experimental studies is due
to such artifacts as: retention of the spreading solvent, accu-
mulation of impurities at the interface, nonequilibrium de-
termination of the isotherms, hysteresis effects, or working
with undersaturated water vapor pressure.

On the other hand, theoretically, a kink in the isotherms
can be produced if the monolayer has two order parameters:
the area per polar head and another order parameter which
undergoes a transition. Following Langmuir® and Kirk-
wood® many lattice-gas theories have been developed* where
the orientation of the molecular tails is considered as the
additional order parameter. Any transition between differ-
ent orientational states couples to the monolayer concentra-
tion and may produce a kink in the isotherm. Such a transi-
tion has recently been directly observed in pentadecanoic
acid monolayers by Rasing ef al.” using nonlinear optics. In
this paper we will argue that in some systems another way of
having an additional order parameter can be an undulation
of the inplane concentration rather than the orientation of
the chains.

Increasing even further the surface pressure of mono-
layers in the liquid state, induces a liquid—solid transition
towards a solid phase where the polar heads are closely
packed and the surface compressibility is very small.

In recent years, some very refined experimental tech-
niques that allow a more detailed understanding of mono-
layers have been developed.®>'?> Abraham et al.® studied the
viscoelastic properties of stearyl alcohol and nanodecanoic
acid and were able to determine the shear modulus of the
solid phase. McConnell and co-workers’and Méhwald and
co-workers'® developed an epifiuorescence microscopy tech-
nique which allows a direct visualization of the liquid con-
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centration in lipid monolayers. A small fraction of lipid mol-
ecules are covalently linked to a dye molecule. These labeled
molecules are incompatible with the crystalline order and
are expelled from the solid phase. Thus the fluorescence oc-
curs only in the liquid phase, and one can observe, at high
concentration, an organization of liquid-like and solid-like
regions. Both groups®'° observed periodic domains (with a
hexagonal symmetry) of solid phase in a continuous liquid-
phase background. The same epifluorescence technique was
also used to study the liquid-gas transition, where the flu-
orescence is quenched in the gas state due to the contact of
the dye molecules with the water.’

Some of the properties of monolayers can be explamed if
electrostatic interactions are also considered.'>'> They have
two origins:

(i) Most neutral surfactant molecules carry a perma-
nent dipole moment which has a preferential orienta-
tion perpendicular to the interface.

(ii) Charged monolayers create an electrical double lay-
er which in some cases is equivalent to a layer of
permanent dipoles. The intensity of the equivalent
dipoles can then be tuned by varying the Debye—
Hiickel screening length of the double layer or
equivalently by changing the ionic strength in the
water.

Experimentally, these electrostatic effects are measured by
the so-called surface potential.**

The purpose of this paper is to study theoretically the
role of these electrostatic interactions on the phase diagram
of insoluble monolayers. In the next section, we study in
details the interactions between the dipoles of both charged
and neutral monolayers. The competition between these
long-range repulsive interactions and the short-range attrac-
tion due to van der Waals forces is at the origin of new phases
of monolayers where the concentration is not isotropic but
rather has periodic (in-plane) oscillations. We consider
such supercrystal phases with a hexagonal or stripe (lamel-
lar) symmetry.’® These phases could be related to the peri-
odic domains observed by the fluorescence techniques®*
and to the oscillations in the surface potential measured in
some other experiments'*'%” in the liquid expanded-liquid
condensed transition region. On the other hand, it is not
clear to what extent these experiments are done in true equi-
librium for which our theory applies. In Sec IT we analyze
the effects of electrostatic interactions. The equilibrium
phase diagrams are studied in Sec. I1I for two limits: close to
the liquid—gas critical point and at very low temperatures.
Our conclusions and the possible relevance to experiments
are presented in Sec. IV.

il. ELECTROSTATIC INTERACTIONS IN INSOLUBLE
MONOLAYERS

A. Neutral monolayers

We first study the electrostatic interactions in a Lang-
muir monolayer of neutral molecules. Each molecule carries
adipole moment p (of the order of a few mD), that is prefer-
entially oriented perpendicular to the water/air interface
while its averaged tangential component vanishes. The two-
dimensional polarization is given by P = n®, where ® is the

in-plane monolayer concentration. When all the dipoles are
immersed in the aqueous liquid (of dielectric constant €) the
discontinuity of the potential at the surface is
P ,u<I>
e et
e* represents here the local dielectric constant seen by the
dipoles. We will, as a first approximation, neglect the vari-
ation of the dielectric constant close to the water/air inter-
face, hence €* is equal to the bulk dielectric constant €. We
now assume that all the dipoles are immersed in the water at
a very small distance % from the water/air interface,
z = — h, and that their surface concentration oscillates with
a wave vector ¢: ®(x) = &, + P,€'9" as shown in Fig. 1.
The electrical potential ¥ satisfies the Laplace equation

AV = (n

V=0 (2)
with the following boundary conditions:
(i) lim,_ V=Ilim, _ _V=0.

(ii) €(2)dV /dz is continuous at z = 0.
(iii) The jump in the potential at z= — 4 is given by
Eq. (1).
In the limit where A goes to zero this Laplace equation is
easily solved:

vV ,uq)q e—lq!qux, z>0,

€+ €, (3
= ;ﬂ’.&elqlzﬂqx, 2<0.

€(€ + €5)

The electrostatic free energy of the dipoles subject to
this potential V'is

lf 2 1 242 €,

Fy=——|P -Edr= ——|qu2d>—=0 .

) 5 zlqlu et en)
4)

A simple interpretation of this result can be given in
terms of image dipoles. A given dipole at a distancez = — h
from the interface has an image dipole, u' = u(e, —€)/
(€o + €),located at z = h. Another “real” dipolelocated at a
distance r from the first one sees the field created by both
dipoles, 2 + p'. The interaction energy between the two real
dipoles is then

_ ME (5)
2rre(€ + €)
which by Fourier transform gives back the free energy, Eq.

(4).
The dipolar interaction energy g(r) is long range and

gry=

AIR &

2:0 z

S S A A R R
SOLUTION  £»¢,

FIG. 1. A fiat interface at z = O separates air (dielectric constant €,) from
an aqueous solution (e» €,). Dipoles are confined to the plane z = — A.
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repulsive (all dipoles point in the same direction along the z
axis). Another important feature is the role played by the
dielectric constant € ( 3 ¢€,). The energy, Eq. (5), is propor-
tional to € 2. If the dipoles are not immersed in the water,
but rather are above the interface at z = h > 0, the interac-
tion energy, which is obtained by exchanging € and €, in Eq.
(5), becomes € independent. Hence, translating the dipoles
from just below to just above the interface would increase
their interaction by a factor €* = 6400. This shows the impor-
tance of knowing the value of the actual dielectric constant
€* close to the interface, which is not a very well known
parameter.

B. Charged monolayers

We now study a monolayer that is not made of neutral
molecules carrying a dipole moment but rather of charged
molecules. A first approach is to characterize such a mono-
layer by the experimentally measured quantity—the surface
potential, £(®), as a function of the surface concentration
®. When the concentration ¢ has a fluctuation ®, at small
wave vector g (smaller than the Debye-Hiickel screening
length «~'), the surface potential has a fluctuation
AV = (3 /39)®,. Equation (1) defines an effective dielec-
tric polarization P, = e® d¢ /d® associated with this fluc-
tuation and the corresponding free energy can be estimated
from Eq. (4), :

=1 :3.5_)2 2_€€o

Fa= - lal(55) o (®

In what follows, we employ a different approach where
the electrostatic free energy is calculated directly using the
linearized Poisson-Boltzman equation. Each surfactant
molecule is assumed to have a charge ¢ and the charges lieon
the interface (z = 0). The surface charge density is o = e®
and the ionic solution is characterized by the Debye-Hiickel
screening length x~!. We study a fluctuation of the concen-
tration 5§ = ®_e*". The electrical potential satisfies the lin-
earized Poisson—-Boltzman equation

V2V -V =0, z<0,
V2 V = 0, z> 0:
with the boundary conditions

€))

Wlim,_  V=Ilim, __V=0.

(ii) — €(3V /32),,0 + €(FV /32) 1 = eP €.

(iii) The potential is continuous at z = 0.

For a charge fluctuation at a wave vector g, the effective
screening length 1/«’ is such that

=t +q . (8)

and the electric potential is
ed i
VeIt g~ lalstiox in the air, 2> 0,
ex’ + €lg|
ed, izt . .
V=——2_¢li+ie* in the solution, z <0.
ex’ + &lq|

The electrostatic energy of the amphiphile molecules is

282
o,

1
Fi=—e® V(z=0)=— 9%
177 2(ex’ + €lg!)

Two limits should be distinguished at this point: the limit of
small wave vectors, |g| €«, where the charged monolayer
can be described by effective dipole moments and the elec-
trostatic free energy is very similar to Eq. (4). In the other
limit of large wave vectors, |g| >k, the electrostatic interac-
tions are not screened and are Coulomb-like rather than di-
pole-like.

1. Dipolar regime: Strong lonic solution {/q/ <«x)
The electrostatic free energy can be expanded as

Foalds (1 -ﬁﬁl). )
2ex € kK

The first term is the correction to the average energy of the
double layer and the second one is the dipolar term. Compar-
ing Egs. (9) and (4) we conclude that in this limit, || <«, as
proposed above, a charged monolayer is equivalent to a neu-
tral monolayer of molecules carrying an effective dipole

172

p== (10)

1+%
K €
It is interesting to compare this result with the result of Eq.
(6) where we had forced an equivalent dipole density P,.
Egquation (6) combined with the value of the surface poten-
tial of the electrical double layer {(®) = e®/ex predicts an
equivalent dipole moment u = e/k. The small difference
(€>¢€,) between the results stresses again the need to know
in details the effective dielectric constant € close to the wa-
ter/air interface.

The effective dipole moment of charged monolayers giv-
en by Eq. (10) (for x~'=10 A) is, in general, much larger
than the dipole moment of neutral molecules (which are of
the order of a few mD), and thus the dipolar interactions can
have a much stronger effect on the phase diagram of charged
monolayers (as is discussed below). Moreover, the dipole
moment can be tuned by changing the Debye-Hiickel
screening length, i.e., the ionic strength in the aqueous solu-
tion.

2. Coulomb regime: Weak ionic solution (/q/> x)
In this regime the electrostatic free energy is
Pl
S
2|g|(e + €)

Note that |g| ~! is, in two dimensions, the Fourier transform
of 1/(2wr). This interaction between molecules is thus pure-
ly Coulombic and repulsive; screening is not efficient in this
regime. We will not study low ionic strength solutions for
which this regime can be important, but one could expect in
such cases formation of Wigner crystals similar to the two-
dimensional colloidal crystals studied by Pieranski.'®

(11)

el

Iil. PHASE TRANSITIONS
A. Ginzburg-Landau expansion close to a critical point

In the previous section, some of the effects of dipolar
interactions were discussed. We now take into account these
long-range repulsive interactions in order to obtain the var-
ious equilibrium phases of the system and the transitions
between them. We start!® by considering the Flory—-Hug-
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gins'® theory ordinarily used to describe polymer solutions.
For an insoluble monolayer the free energy per unit area is

So —1@i0ed (_1__¢)1 (_l__q>)
R A S 83,

+y®(1 — O3,). (12)

The first two terms describe the entropy of mixing of surfac-
tant molecules on the water/air interface. The parameter
N(> 1) is the number of 2, (area per polar head) that each
surfactant molecule occupies if it lies flat on the water/air
interface. Introducing N as a parameter is clearly an approx-
imation because in the “liquid state” the hydrophobic tails
stick out of the water while in the “gas state” they tend to lie
on the water surface. Thus, effectively, we do not consider
the additional degree of freedom of ordering of the tails.
However, the advantage of introducing N > 1 is that the re-
sulting coexistence curves are asymmetric as seen in experi-
ments.” The third term in Eq. (12) with y > O is the enthalpy
of mixing and it consists mainly of short range interactions.
The average dipole—dipole repulsion will lower y without
changing its sign.

The free energy, Eq. (12), has a coexistence curve separ-
ating dilute gas-like region from a denser liquid-like one viaa
first-order phase transition. This coexistence curve ends
with a critical point: ®, = 1/{(1+v/N)3Z,}, and ¥,

= (1 +v/N)%/2N. In the proximity of the critical point
(®,,x.) we can expand f; in powers of ¥ =P — P,

fo—/e

= ia\I’z(r) + —l—u‘I“'(r)

13
kT 2 4 (13)
with
a=2(y. —x)ZoxT~T.
and
! (14)

U= .
33,0, [(1/Z,) — . ]?

[There is no ¥* term in Eq. (13) because we took y as &
independent in Eq. (12)].

Adding the dipolar interactions (introduced in the pre-
vious sections) to the free energy requires that the spatial
variation of the monolayer concentration should be taken
explicitly into account. Close to the critical point introduced
above, it is convenient to remain in the framework of the
Landau expansion and to add to Eq. (13) spatially varying
terms. The resulting free energy is known as a Ginzburg—
Landau expansion and has in our case two additional terms:

(i) An electrostatic contribution coming from dipole-
dipole interactions between the polar heads. From Egs. (4)
and (5) this additional free energy can be written as

F, = —-—l-fP . Ed2r=-l—f\l/(r)g(|r—r'l)x
2 2
XV(r'Ydxdu' (15)
with
3
g(r) =H—(i)
2w \r

given by Eq. (5) where
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3 _ 1 ©2&
kT e(e+€,)
The dipole 4 is either a permanent dipole, Egs. (4) and (5),
or an induced dipole, Eq. (10).

(ii) A second term that opposes inplane undulations of
the monolayer concentration and is proportional to (V¥)2
It expresses the additional cost in energy as one creates in-
plane perturbations of an isotropic ¥,

(16)

F, 1 )
——=—22f ¥y dr. 17
T 20 (VW¥)“d“r (17)
In Fourier space ¥(r) = X, ®, exp(iq - r) and
Fo+F 1

T =5 2(%q -~ b))% (18)

Note that ¥(r) and ®(r) have the same Fourier compo-
nents, {®, } except forg = O where ¥, = &, — ®,.. Itisclear
that due to the competition between F,, and F;, there is an
optimum ¢ vector that minimizes their sum, Eq. (18), and
whose magnitude is given by

* b *
= . 19)
lg*| 25 (
The two most basic solutions?® with undulations are:

(i) The smectic phase,

Y, =W, + P, cos g*y. (20a)
(a)

X

’ @ @
G
LAY |
NI '
G G
@ | @

FIG. 2. (a) The stripe phase is shown schematically, where the stripes are
chosen to be along the x direction. Domain walls (which are sharp only at
low temperatures) separate denser liquid (L) from dilute gas (G). Close to
a critical point, the density profile is rather sinusoidal and is given by Eq.
(20a). (b) The hexagonal phase is shown schematically. Denser liquid
“bubbles™ (L) are separated via domain walls from a dilute gas background
(G). Domain walls are sharp only at low temperatures. Close to T, the

density profile is rather given by Eq. (20b) where the three-vector basis is
shown for the central bubble.
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Here the undulations occur only along one direction in the
(x,y) plane as is shown in Fig. 2(a).
(ii) The hexagonal phase,

3
Vg =Y+ Y @. cos(k; - 1; +5,),
i=1
with
3

Sk =0.

i=1
Here the undulations are supercomposed in three different
directions, as is shown in Fig. 2(b).

These phases were previously considered theoretically
by Brazovskii?! and by Garel and Doniach?? for thin uniax-
ial magnetic films. An analogy exists between Langmuir
monolayers with polar molecules and thin uniaxial ferro-
magnetic films subject to a perpendicular magnetic field
where stripe (smectic) and hexagonal (“bubble”) phases
were observed in the past.?® Studying this magnetic analog of
our system, Garel and Doniach?? obtained a very similar
Ginzburg-Landau expansion for the free energy. The only
difference between the two free energies is the different ori-
gin of the dipolar interactions; in the magnetic film it arises
from the demagnetizing contribution due to the finite thick-
ness of the film. In the monolayer the dipoles are permanent
and the phenomenon exists even for true two-dimensional
film.

Substituting the two proposed solutions. Egs. (20a) and
(20b), into our free energy, Eqs. (13)-(18), we get the two
corresponding free energy densities. For the smectic solution

fs _ QAo U 1o

T Z\IJ0 + 4\1’0 + 4<l>,,.

k| = gor (20b)

x(a =L + 3083 + 2u0t.), 1)

where

2 b ¢ *\2
Ui E—zg- =42,(q*)
is a dimensionless parameter characterizing the dipolar in-
teractions. For the hexagonal solution

 a u 3 3 9

=W g <I>2.(—a——772+—u\112)

kT2°+4°+“4 16 4 °
+ S uW® + -‘—;%ucb‘;. (22)

Notice that the appearance of the cubic term (®,.)* in Eq.
(22) is a special feature of the hexagonal phase which has a
three-vector basis, Eq. (20b), and corresponds to an ade-
quate choice of the phases, 25, = 0.

We define the following reduced dimensionless param-
eters:

4a 4u _u
65;2—, m% -;]T‘I’(z), m:. =—17—2¢:. .
Dividing the various free energy densities by */16u, results
in the following dimensionless free energies:

3
£ =_‘52_mg +—1—m3 +mi (6 —1+3m}) +—2—m3., (24a)

(23

8
Su= —2?m(2, + %mg +mi (36 — 3+ 9mi + 12mym,. )
+ 3 (24b)

The isotropic solution is obtained by taking m . = 0in Eqgs.
(24), yielding

fy =} - S}
Phase diagrams can be constructed by looking for the abso-
lute minimum of f;-um,, where the subscript / stands for S
(stripe), H (hexagonal), and I (isotropic), and u being the
chemical potential coupled to the average overall concentra-
tion, (m) = m,,

Minimizing f5 fy, and Egs. (24) with respect to m_. we
get that the stripe phase exists only for

Imi<1—6 (25)
while the hexagonal phase exists for
3mk <5(1 — 8)/4. (26)

Minimizing f; — um, also with respect to m,, we obtain nu-
merically the phase diagrams which are shown in Figs. 3 and
4. In Fig. 3 the reduced temperature § is plotted as a function
of the average concentration my~ (®) — ®,. All the first-
order transition lines terminate at a special critical point
(m# = 0,6* = 1). Close enough to §*, there are five distinct
phases: an isotropic dilute gas (G ), a dilute hexagonal phase
that consists of droplets of liquid in gas (H), a stripe (S), a
dense (inverted ) hexagonal phase that consists of droplets of
gas in liquid (IH), and a dense liquid phase (L). Between
these five phases there are four regions of two-phase coexis-
tence: G-H, H-S, S-IH, IH-L. At a lower temperature,
6= — 1.6, the H and IH phases disappear thus leaving only
three distinct phases: G, S, and L, with two coexistence re-
gions between gas and stripe phases, G—S, and between stripe
and liquid phases, S-L. Yet at even a lower temperature,
8= — 4.45, the stripe phase itself disappears and we are left
with the regular liquid-gas coexistence curve which in our
reduced variables is simply a parabola m3 = &. All the other

T T T T 1 T T T 1
1}
H
ot s .
L <}

F - L+IH [/IHeS S+H \\| H+G -
-2 .
L+S S+G 1
-4L -
_/ L+G \ o

s I ! 1 1 T S T 1

2.0 10 [} 10 20

me

FIG. 3. Phase diagram in the (2, 8) plane where §~ T — T is the reduced
temperature and my~ (®) — P, is the reduced concentration. The two iso-
tropic phases: liquid (L) and gas (G are separated by the hexagonal (H),
stripe (S), and inverted hexagonal (IH) phases. Two-phase coexistence re-
gions are also indicated. This phase diagram was obtained from Eqgs. (24)
and is valid only close to (§* =1, m3 =0).
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FIG. 4. Phase diagram in the reduced temperature (§)—chemical potential
(1) plane. This phase diagram is symmetric around ¢ = 0 thus is shown
only for u > 0. First-order transition lines separate the isotropic dilute gas
(G) from hexagonal (H) and stripe (S) phases. This phase diagram was
obtained from Egs. (24) and is valid only close to (6* = I, m§ = 0).

coexistence curves close to m¥ = 0, §* = 1, also scale with
an exponent my~ &7, = 1/2, which is the expected mean-
field value for S.

For completeness (and also for comparison with Ref.
22) we plot in Fig. 4 the phase diagram in the reduced tem-
perature—chemical potential plane (8, u). At (u=0,
6* = 1) there are two first-order transition lines joining up.
Thus at lower temperatures these lines separate the five dis-
tinct phases that were mentioned before: G, H, S, IH, and L.
Around 8= — 1.6 there is a triple point at ¢ =0.38 where
three first order lines: G-H, H-8, and S-G are joining to-
gether. Since our results are symmetric about u == 0, another
triple point exists for £ = — 0.38. For even lower tempera-
tures the three first-order lines G-S, S-L, and L-G join up at
p =0, = — 4.45 thus leaving only the regular L-G first-
order line at ¢ = O for lower temperatures. We also obtained
the phase diagrams where the hexagonal phase was explicit-
ly omitted.>*

These results that are derived from a Ginzburg-Landau
expansion of the dominant g-vector mode are accurate only
close to the critical point, §* = 1. Far from the critical point
other modes have a significant contribution, and the disap-
pearance of stripe and hexagonal phases at lower tempera-
tures could be a fault of this one-mode Ginzburg-Landau
expansion. In a low temperature calculation presented below
we go to the other extreme limit of a concentration that var-
ies sharply between two given values and show that the stripe
phase is more stable than the isotropic phase for some range
of concentration.

B. Stability of equilibrium phases at low temperatures

In the previous section we concluded that the disappear-
ance of the undulating phases at lower temperatures, Figs. 3
and 4, is probably related to the approximations that were
employed. In this section a low temperature calculation is
used in order to show that an undulating phase with sharp
domain walls is stable even at zero temperature. Close to a
critical point, a Ginzburg-Landau expansion of a single ¢-
vector mode is reasonable since the amplitude of the first
harmonic grows faster than that of any higher harmonics.??
Nevertheless, at low temperatures where domain walls be-
come sharp, all higher harmonics in Eq. (18) have to be

Andsiman, Broghard, and Joanny: Phase transitions in Langmuir monolayers

taken into account. Such a calculation at intermediate tem-
peratures is quite complicated and we will rather concen-
trate in this section on the behavior at low temperature
where domains are assumed to have sharp walls (indepen-
dent of the domain size), Figs. 2, and the entropy terms in
the free energy, Eqs. (15)—(17), are partially neglected.
For simplicity a stripe phase with periodicity
= (D + Dg) is considered. (The treatment of the hex-
agonal phases will be left for future investigation.) The con-
centration of the gas phase (liquid phase) is @5 (¥,), and
the average overall concentration is b
= (Dg®s + D, )/(Dg + D, ). The dipolar contribu-
tion to the total internal energy is given by Eq. (15). For the
stripe geometry, the free energy density is

Ja _ 8 gt 4 (1— 22 b @ ®;)?
KT~ e 0L T 1= 0P] = (R~ D6

X[log£+logx(1 —~x)] +ﬂ£—)—,
a D

(27)
x is the fraction of the molecules in the liquid state,
x=(® —&s)/ (P, —Pg) =D, /D, and a is a micro-
scopic cutoff provided by the width of the interface between
liquid and gas domains. At very low temperatures, a=V'Z,,
Another quantity introduced in Eq. (27) is A(x) which rep-
resents the interaction between distant stripes

+log(l-—x)]

[Zlog

q"} { lo 7 +1lo x]
pz g 2_(1 )2 g
2630, P
4 2 %%
w
- (2p+1)2+4x(1—x)—1]
X log .(28)
L;l ® (2p+1)2—1

These interactions between distant stripes are nonsingu-
lar [k (x) is a slowly varying function of x, 0<x<1] and have
only a small contribution to the overall energy at low tem-
peratures; they renormalize the line tension between gas and
liquid phases.

The first two terms in the electrostatic energy, Eq. (27),
represent the electrostatic contribution to the osmotic pres-
sure (independent of D) and to the chemical potential of
amphiphile molecules. The third and fourth terms in Eq.
(27) represents the difference in electrostatic free energy
between the stripe phase and two isotropic phases in equilib-
rium (with the same value of the overall concentration ®).

A further contribution to the free energy difference Af
between the stripe phase and the isotropic phase comes from
the interfacial terms which take into account the concentra-
tion variation at each liquid/gas interface. We describe it in
terms of a line tension ¢ which could in principle be calculat-
ed from Eqgs. (18) and (12) but which will be kept here as a
parameter.

The total free energy difference between the stripe and
isotropic phases is thus
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b? T2 D
Af= — kT —(®p — D5 ) log — + log x(1 — x)
D a

2y + kTh(x)
e

The equilibrium period of the stripe structure that mini-
mizes this energy Afis

+ (29)

p=—21__ :
1 —x) exp(B) (30)
where S is
217—7/* .
= 1
B ka3(¢L -¢G )2 +
e 31)

peo (DL —Dg)°
and p* is the effective line tension, ¥* = ¥ + kTh(x)/2. The
period D becomes exponentially large whenever 8> 1 which
seems to be the case far from the critical point and for typical
values for the various parameters. However, D depends quite
strongly on the precise values of the parameters in Eq. (31).
At equilibrium, the free energy density Afis

3
Af= — kT%(fb —®)(P — D) exp(— ). (32)
We also note that this stabilization of an undulating pat-

G4

isotropic
phases
I stripe phase
Oy _
(0]
T4
II I, ‘\ \\
G 'G4+S!? S ‘S¢L' L
[ | .

o)

FIG. 5. (a) The free energy G at low temperatures as a funciton of the
concentration P is shown schematically. The two isotropic solutions, ®g
and ®, , are the minima of the isotropic free energy. When the dipolar inter-
actions are added, a double tangent construction gives coexistence between
@, (isotropic) and ®;; (stripe), both close to ;. Similar two phase coexis-
tence exists close to the liquid phase. (b) The phase diagram for low tem-
peratures is shown schematically in the temperature (T)-concentration
(®P) plane. The stripe phase (8S) is stable in the region between the gas (G)
and the liquid (L) phases. Two-phase coexistence regions are constructed
from (a). They exist between S and L and between S and G. The hexagonal
phases are not shown for simplicity.

tern (the fact that D > 0 is the optimal solution) is similar to
the stripes in solid magnetic films that were mentioned in the
previous section and also to the normal field instability that
is observed in ferrofluids.”®> There when two immiscible
fluids of whom one is ferromagnetic, are placed in a Hele—
Shaw geometry and are subject to a normal magnetic field,
the system develops a inplane labyrinth pattern on the scale
of millimeters. Since the two fluids are completely immisci-
ble, this is similar to our system at very low temperatures.

In order to study the equilibrium between the stripe and
the isotropic phases, we consider the thermodynamic poten-
tial

G=f—p ,P+11,,

i.q and I, are the chemical potential and osmotic pressure
of the two isotropic phases in equilibrium (with concentra-
tions ®; and & ). For isotropic phases, G($P) has, by con-
struction, two minima with G =0 for the equilibrium
phases: ® = ®; and ® = ®;. Whereas for the stripe phase,
G = Af. A qualitative plot of G is shown in Fig. 5(a) for
these two phases.

The usual double tangent construction, Fig. 5(a), yields
the phase diagram shown in Fig. 5(b). An explicit calcula-
tion of the equilibrium lines can be made if we neglect the
dependence of the interfacial tension * on concentration
and if we approximate the variation of G around ®, and &,
by two parabolas

Gs =y (& — 95 )>

G. =y (@ —®.)?

X and y; are the osmotic compressibilities of the gas and
liquid phases, which should be a good approximation at low
temperatures where the energy in the isotropic phases has
two deep minima.

On the gas side, for example, when the condition, 83> 1
is fulfilled, we find the two equilibrium concentrations

3

Tb
@, =By — (P —%)—;}"’—exp( -8,

172
exp( —iB ) -
(33)

This thus predicts a large single lamellar phase for concen-
trations between ®; and ®, and small regions of coexis-
tence between lamellar and isotropic phases around ®; and
L :

We have not performed the explicit calculation for the
hexagonal phase but it seems reasonable to assume that this
phase also remains stable at low temperatures and that over
the whole temperature range, the sequence of phases and
phase coexistences remains similar to what it is close to the
critical point, hence no disappearing of the undulating
phases at low temperatures [see Fig. 5(b)].

@, —dg
2

2kTh3yq

Ta

(DII zq)G +

IV. CONCLUSIONS

We explored the effects of dipolar interactions in Lang-
muir monolayers. Their main effect is to stabilize supercrys-
tal phases for which the inplane concentration is undulating.
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We study here stripe phases (smectic) and to some less ex-
tent hexagonal phases (bubbles).

Experimentally, epifluorescence observations have
shown the existence of undulating phases in a concentration
range which corresponds to the liquid-solid transition.
However, for such transitions, the undulating phase is prob-
ably due to the nucleation of two dimensional solid regions
in a liquid background. Different solid nuclei have different
crystalline orientations and are thus separated by grain
boundaries which do not disappear even for quite high pres-
sures. The observed hexagonal phases are thus a nonequilib-
rium phenomenon which cannot be explained only by the
equilibrium model presented here. However, since the sizes
of the solid domains depend strongly on the ionic strength of
the solution, we believe that the electrostatic interactions
play a major role in determining the structure of these undu-
lating phases.'?

The Flory-type theory proposed here is more applicable
to fluid phases rather than to the solid-liquid region. This
can be both in the liquid—gas or the liquid expanded-liquid
condensed regions although due to low surface pressure and
concentrations, in the former case fewer effects can be mea-
sured. The period of the undulations can be estimated from
Egs. (19), (30) and (31); it can vary from 1000 Atol pm
according to the precise magnitude of the dipoles on the sur-
face (or equivalently of the { potential). It also depends
strongly on the local dielectric constant at the interface
which is not very well known.

For charged monolayers, the equivalent dipole can be
tuned by varying the ionic strength in the solution. Our the-
ory gives the explicit dependence of the undulation period
and the critical temperature as function of the screening
length x~!. However, this does not represent the whole de-
pendence on the ionic strength, since the charge per mole-
cule e also depends strongly on the ionic strength. This must
be taken into account when a comparison with experiments
is done.

At the liquid expanded-liquid condensed transition, the
model does not give a definite explanation for the kink ob-
served in many experiments. It does however demonstrate
the role played by an additional order parameter, in our case,
the undulations amplitude. As was explained in the intro-
duction, it is not clear if the experimental isotherms show a
kink or a more complicated structure as proposed here.
Moreover, the jump in the pressure between the two extreme
transitions in Fig. 3 is of order of eAV?/D, AV being the
potential jump across the monolayer and D is the period of
the undulations. Estimating its magnitude we get a very
small value of the order of 0.01 mN/m.

We also make the connection between the dipolar mon-
olayer and two other magnetic systems: a thin uniaxial mag-
netic film and a thin layer of ferrofluid both subject to a
normal magnetic field. In these magnetic analogs, a competi-
tion between dipolar forces and domain wall energies or line
tension also destabilizes the isotropic state of the system. The
ferrofluid is more like our system at T'= O since thermal
fluctuations do not play an important role, whereas for the
thin magnetic film thermal fluctuations are important. It is
striking that the similarity between these three systems exist

Andelman, Broghard, and Joanny: Phase transitions in Langmuir monolayers

although the length scale of the undulations are very differ-
ent; it can reach a few millimeters in the ferrofluid (subject
to magnetic fields of only several hundred Gauss), whereas
it can be as small as few hundred A for the monolayer and in
the intermediate micron range for the thin solid magnetic
films.

An additional limitation of the theory presented here is
that it is a mean field theory and thus it does not take into
account correctly critical fluctuations which can be quite
important for two-dimensional systems. The effects of these
fluctuations have been discussed in details by Brazovskii*!
and by Garel and Doniach.?? Fluctuations modify the pre-
cise shape of the phase diagram especially close to a critical
point but the qualitative picture presented here would still
remain correct; the transitions are expected to remain first
order.”?

In conclusion it should be noted that the effect of the
long-range dipolar forces are important for most of the mon-
olayer properties and not only for the equilibrium phase dia-
gram as was studied in this paper. From an experimental
point of view, nonequilibrium phenomena seem to be of par-
ticular importance in Langmuir monolayers. Thus the inclu-
sion of dipolar forces in the kinetics of domain growth is of
relevance and will be addressed in a separate study.
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