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I. INTRODUCTION

In recent years there was a big increase in experiments on physical
systems that are realizations of random fields. Just to name a few these
include diluted antiferromagnets in a magnetic field, charge density waves
pinned by impurities, hydrogen in binary metallic alloys and quite
recently also binary liquid mixtures in gels. In all these systems there
are annealed degrees of freedom (spin like) and a source of gquenched dis-
order (impurities, random structure, etc) that effectively creates a ran-
dom field which is coupled to the order perameter. In this article we will
concentrate on random field systems where the order parameter is a scalar
and the random field is coupled linearly to it (i.e. the random field Ising
model - RFIM).

Theoretically, much effort has been made to study critical behavior
and the lower critical dimension (d,) of this model. (dg is the dimension
below which there is no long-range order). Using a simple domain argqment
Imry and Ma predicted2 dg = 2 whereas other works claimed dg = 3. The
current belief that indeed dg = 2 is based on a refined domain argument?,3
that takes into account domain wall roughening, some numerical investiga-
tions,” as well as a rigorous proof5 on the existence of long-range order
at T = 0 for the 4 = 3 RFIM. At first glance this theoretical prediction
of dg = 2 seems to be contradictory with neutron scattering experiments6
on diluted antiferromagnets. Domains (thus lack of long-range order) are
seen as the sample is cooled down in presence of a constant magnetic field
(field cooling). To resolve this discrepancy, Villain considered the do-
mains as metastable states pinned by the random field. Hence although the
long-range order state has the lowest energy, the system gets stuck (or
has very long relaxation times) in one of these domain states since it can-—
not jump over all the energy barriers during the field cooling procedure.
Other theories using similar ideas about non equilibrium states also exist.

The purpose of the present work is two~fold : (i) we would like to
emphasize the connection between the RFIM investigated so far mostly by its
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magnetic realization and between recent experiments on binary liquid mix-
tures” in presence of random structures such as gels or porous solids.

(ii) We propose a Landau theory that takes into account the possibility of
metastable domain states and whieh:leads to: anfexplanatlon of the opales-
cence seen in the, A/B + gel’ systems cloge to thé‘dem1x1ng curve of the

pure A/B mixture./ In’addition the theory can 8rov1de a pogsible explana-
tion of recent neutron scattering experlments on diluted antiferromagnets
where an abrupt transition from history-independent to history-dependent
behavior occurs. Our theory is also in agreement with recent numerical
investigations of the RFIM on finite lattices.!!

IT . BINARY MIXTURES IN GELS AND POROUS MEDIA : RANDOM FIELD SYSTEMS

Recent experiment39 showed that phase separation and critical beha-
vior of binary liquid mixtures with a well defined demixing curve changes
drastically as s gel is immersed in the 1liquid mixture. One of the most
striking phenomena seen in the A/B + gel system {(water-lutidine or water-
isobutyric acid are chosen as the binary mixtures and agorose or polyacryla-
mide as the gels) is the appearance of opalescence which follows closely the
demixing curve of the pure A/B mixture. The onset of opalescence is not
sharp but rather gradual on a range of a few degrees and even well inside
the pure two-phase region it persists for long times. This opalescence
should be distinguished from critical opalescence usually seen in pure
A/B mixtures but only in a range of a few mK° around the consolute point.
Nevertheless the fact that the onset of opalescence follows the pure de-
mixing curve is a strong indication that it has to do mainly with the
liquid=-liquid fluctuations rather than with the gel fluctuations.

Pure A/B liquid mixtures are usually described by lattice gas models ;
we would like to extend these models to binary liquid mixtures in a gel.
The gel always has an heterogeneous chemical structure. We focus here on
rigid gels which thus act on the liquid mixture as a source of quenched
disorder (the same assumption is correct for porous solids). In the oppo-
site 1limit of flexible gels, thermal fluctuations become important and one
should consider the binary mixture in the gel as a ternary system., The main
effect of the gel on the A/B mixture is a preferential adsorption1 of one
of the liquid components (in our case the water-component A). The gel +
A/B system has two characteristic lengths : one is the mesh size of the
gel (L) and the other is the bare fluid-fluid correlation length (&). The
behavior is determined by a comparison between these two lengths. We will
describe the system in the regime I < & (tight gels or temperatures close
to the consolute point). Since & is large, the system can be divided into
blocks of size L (coarse graining) ; in each block there is an effective
random field h(r) proportional to the average gel concentration in the
block. The average of h(r), < h(r) >, expresses the total preference of
the gel plus a contribution from the concentration difference between the
liquid inside the gel in the A/B reservoir into which the gel is immersed.
The order parameter of the system (analogous to the magnetization in ma-
gnetic systems) may be defined as M = (Cp - Cp)/{Cap + Cp) where Cp (CB) is
the number density of A (B): The strength of the random field is characte-
rized by the r.m.s. deviation H.

III. LANDAU THEORY FOR RANDOM FIELDS

Making the analogy between the A/B + gel system and random fields, we
proceed by obtaining a description of the former via a Landau theory for
the latter. We make a Landau expansion of the free energy (always using
the magnetic terminology : magnetization, random fields, etc) in terms of
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the local order parameter M(r). The expansion includes even terms in M(r)
up to fourth order, a gradient term related to the short-range character
of the interactions and a linear term which describes the coupling to the
random field h(r):

JT2 w2 v Lo+ Lt - ne) e | o, (1)

F 2

e=a (T - TQ) is proportional to the distance from the pure critical tem—
perature T° and u >0 is a constant. We restrict the following discussion

to the symmetrlc case <h(r)> = 0, eventhough for the A/B + gel, <h(r)> =
h # 0 can be controtled by changing the concentration in the reservoir
around the gel. For the diluted antiferromagnets, <h(r)s>=h= 0 ;

a non zero h would correspond to a staggered field (which is not realizable}.

Minimizing the free energy functional (1) with respect to M(r) we get
an equation for the order parameter M(r)

SF
SM(r)

In order to solve (2) which is non linear and has a random source h(r),
we split M(r) into two terms : M(r) = My + 6M(r)1where MO is the average
magnetization of the system, Mg = < M(r) > = V SM(r)a? and SM(r) is the
local fluctuation, <8M(r)> = 0. The equation for the average magnetization
My is obtained by averaging (2), thus yielding

Mo (€ + 3u < 8M™>) + w3 =0 (3)

- VM + M+ w - hir) =0 (2)

where <6M2> is the r.m.s. magnetization fluctuation (the average of odd powers
of SM(r) vanishes). Subtracting (3) from (2) we get an equation for &M(r)

VEEM + n(r) = (e + 3uM)M + 3 Mou[6M2 - <<5M2>] s, (%

Linearizing (4), we neg%e"t the term SM° — <8M2> and using a decoupling
scheme the last term 8M> is written as 3<SM2>8M.* Within this decoupling
approximation we get in Fourier space a linear relation between SM(q) and

h(q)
oM(q) = EBEE.Q%Z where (5)

K° = ¢+ 3uMS + 3u<sM> (6)

and K| is the correlation length of the magnetization SM(r). Hence the
contribution to the structure factor from the field fluctuations is a
Lorent zian square :

2
s(q) = <M(g)> = —H (1)

2
(a2 + K°)
In position space (5)-(6) implies

sM(r) = const.fa?v [exp(—K |Zz-2)y7- ?v|d‘2] n(r'). (8)

The three physical gquantities My, K and <6M > which we want tc determine
as functions of the reduced temperature € and the strength of the random

field H = <h2>1/2, are linked by the three equations (3), (6) and (8).

* The numerical factor is chosen as the number of ways to do the decou-
pling. Here it is three.
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The other solution M0¢()exists only for low temperatures such that
z X gg
K? = 20 = - 2¢ - 6u/(£K) (17

and it has two branches (Fig.1).As will be discussed later the lower branch
has always a higher free energy than the upper omne which behaves at low
temperatures ss in the pure case : K = M, =~ (-€)'/2, thus has an increasing
magnetization and a decreasing correlation length as the temperature is
reduced.

Having obtained the two soXutions My = 0 and M0¢=0, the next step is
to compare the free energy of the two solutions in order to see which one
is more stable. Due to lack of space we discuss h?ge only the results and
the full calculation will be presented elsewhere. Substituting back into
the free energy functional (1), the various,solutiong 29), (16)-(17) and
using the decoupling scheme to estimate <6M > = 3<6M2> , the evaluation of
(1) for the different solutions is straight forward but tedious. It leads
us to two conclusions : (i) The upper branch of the Mg#0 solution is always
more stable than the lower one in agreement with what is expected physi-
cally. (ii) In the interval €*< € < g,, the My = 0 solution is more stable
than the My 0 solution, whereas for lower temperatures, € < € * the latter
is more stable. The value of €* was found to be 1.085 €.

IV. DISCUSSION AND COMPARISON WITH EXPERIMENT AND SIMULATIONS

The Landau theory discussed in the previous sections is relevant to
magnetic realizations of the RFIM as well as to binary liquid mixtures in
random structure such as gels and porous media under the conditions dis-
cussed in section II ; namely that the random structures are rigid and
£ > L. The advantage of the present theory is that it is giving the corre-
lation length K ' as function of T and H even in the critical region whereas
all previous theoriesT s13 assumed a rapid quench from high to low tempe—~
ratures thus not following the experimental procedure. We also would like
to note the strong resemblance between our Fig.1 and Fig.3 of ref 10.
Starting at high temperature and doing a field cooling we expect the sys-
tem to stay on the My = O solution which we interpret to be the domain
state at low temperature. Similar dependence of K on T was seen in ref 10
as the system was field cooled. The explanation why the system get stuck in
the domain state, although for € < £* +the long-range order has lower
energy, is similar to the explanation of spinodal decomposition using a
mean—-field approach. As for the zero field cooled procedure, our theory
predict a first-order transition. This could be related to an abrupt, 10
apparently discontinuous transition that was observed experimentally.
Although the similarity of our predictions and the neutron scattering data
of ref 10 are quite appealing, we wowrd like to emphasize that our theory
neglected critical fluctuations and we still do not fully understand the
effects of our decoupling aspproximetion. One encouraging support of our
theory com?s from the numerical solutions of mean-field equation for finite
lattices.!! From these simulations, the existence of (i) history indepen-
dent region in the T-H plane (only a parasmagnetic solution) (ii) history
dependent region where the domein state has lower energy than the ferro-
magnetic state, (iii) history dependent region where the ferromagnetic
state has the lowest energy although the domain state also exists was
found. These finding are in agreement with our three regions : € > €.,

e <e < €eay, and € < €,

As for the A/B + gel systems, since the opalescence in those systems
persists for very long times we believe that it is caused by "freezing" of
the system in a domain state, thus K~ ' is the domains size and is related
to the solution with My = 0 (Fig.1) even for low temperatures (e < e*).
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As for the other solution with MO#O, unfortunately a procedure analogue

to the zero-field cooling is not possible for the gel (this would mean
changing in a controlled way the concentration flucturations of the gel).
However an additional external parameter which is available here is the
analogue of a constant magnetic field, and phase separation (the equivalent
of long-range order) can be induced by changing the relative concentration
of the A/B mixture in the reservoir around the gel. Some initial predictions
of the influence of such non zero average field are available'3 and could
be tested experimentally.
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