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The critical properties of systems with quenched bond disorder are determined from a fixed dis-
tribution, under renormalization group, of the random bonds. Full fixed distributions with all mo-
ments are obtained numerically by histograms and, to a good approximation, in terms of I'" distribu-
tions. For such systems, the specific-heat exponent a does not equal the crossover exponent ¢ at
random criticality. We derive a new relation between a and ¢, which invokes characteristics of the
fixed distribution. The difference between a and ¢ is noted for n-vector models in 4—e€ dimensions
and for Potts models on hierarchical lattices solved exactly. In general, stable random critical
behavior with positive a appears to be possible. We develop a general treatment of quenched disor-
der and illustrate it by calculating specific-heat curves. It is suggested that the critical exponents of
the three- and four-state random-bond Potts models in two dimensions are v~1.06 and 1.19.

Properties of a system near its critical point are dom-
inated by the statistical mechanics of fluctuations occur-
ring at all length scales, and therefore can be obtained by
analysis of a Hamiltonian which is invariant under rescal-
ing transformation.”? This of course is the fixed point of
a renormalization-group transformation.? If quenched
disorder is present and affects long-range fluctuations, the
new criticality is expected to be determined by a scale-
invariant form of the quenched disorder. This is a fixed
distribution. In this paper, a renormalization-group treat-
ment of systems with quenched disorder is developed.
From fixed distributions and from distributions evolving
under renormalization-group iterations, properties at and
away from criticality are deduced.

An important advance in the study of criticality under
quenched bond disorder was achieved with a physical ar-
gument due to Harris.> The self-consistency condition for
a single well-defined critical temperature throughout the
system was found to be a negative specific-heat exponent,
a <0. Actually, this compact form is the accident of a
hyperscaling relation between critical exponents, as the ar-
gument yields 2 —dv <0, where v is the correlation-length
exponent and d is the spatial dimensionality. The latter
expression was in fact identified as the crossover exponent
¢ at the pure-system criticality, with respect to small
quenched disorder. This renormalization-group result was
obtained by Aharony,* who studied the decoupling fixed
point of a “replicated” system. It was later reproduced by
Chalupa,5 and by Kinzel and Domany,6 without recourse
to the replica trick in dealing with quenched disorder, but
with a heuristic renormalization-group argument. Ac-
cordingly, a system with pure a <0 exhibits pure-system
criticality when perturbed by quenched bond disorder.
Conversely, pure-system criticality is asymptotically lost
under such perturbation, if the pure «a is positive.

Yet another simple and heuristic derivation of this cri-
terion is as follows. To a pure system at criticality intro-
duce small quenched local fluctuations of average magni-
tude ¥ and zero mean. In a Kadanoff block! of length b
along each dimension, the summed fluctuation is b%/2V.
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We heuristically hypothesize that this has the same effect
as when the summed fluctuation is equally distributed
among all the sites inside the block, namely b ~?/*V per
site. A renormalization-group transformation? is carried
out and the block is replaced by a single site of the renor-
malized system. The quenched fluctuation associated
with the renormalized site is

V'=b""b=4"y , (1

where y, is the eigenvalue exponent of the pure system
corresponding to the variable which is being perturbed by
the quenched fluctuations. Thus, the latter are relevant or
irrelevant depending on whether y,—d /2 is positive or
negative. When V is a bond strength, the criterion is
equivalent to the sign of the specific-heat exponent a.
When V is a magnetic field, the criterion is equivalent to
the sign of the susceptibility exponent .’ The remainder
of the article will be in terms of random bonds, although
our approach is equally applicable to random fields.

In a general model of quenched bond disorder, the local
bond strengths K, are frozen in a random configuration
{K}. The ensemble of such configurations is described by
a probability distribution P({K}). The quantitative sta-
tistical mechanics is performed by monitoring the effect
of a renormalization-group transformation on this proba-
bility distribution,®
N
11 4K,

r

.
P(K)=[ I 8(k; —R,({K})) |P({K}),

(2)

where primes refer to the renormalized system, {R ({K})}
are the set of recursion relations for a specific bond distri-
bution {K}, and the index r distinguishes the N members
of the set {K}. The present work utilizes the approach
embodied in Eq. (2), including the cases of fully developed
quenched randomness (as opposed to infinitesimal pertur-
bation about a pure system) and the cases where new types
of critical behavior are caused by the randomness. The
latter situation is reflected by a fixed distribution,
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P*({K}), of finite width and shape, which is invariant
under the renormalization-group transformation of Eq.
(2), and onto which all systems with the new criticality
collapse under Eq. (2). One specific new result® is that the
exponent equality ¢ =a does not apply at random critical-
ity. This is generally true, even at random criticality in-
finitesimally close to pure-system behavior. The direction
of the ensuing inequality is not generally determined, so
that predominant critical behavior (¢ <0) with quenched
impurities and positive a is, in principle, possible. These
results will be derived analytically. We have also numeri-
cally pursued the transformation of Eq. (2) and deter-
mined fixed distributions. From the rescaling behavior of
small functional deviations from these fixed distributions,
critical exponents have been calculated. The difficulty in-
troduced by the unstable (temperaturelike) deviation has
been surmounted. These fixed distributions are found to
be well approximated by I' distributions. These calcula-
tions and results are illustrated with g-state Potts models,’
with @ conveniently variable!® as a function of ¢, in a
position-space renormalization-group context. We also
show .that momentum-space renormalization-group on -
vector spins in 4—e dimensions support these findings.

Our present treatment is not without simplifying as-
sumptions. We restrict ourselves to probability distribu-
tions which factorize into single-bond distributions,

N
PUKD=TLp(k,) . 3)

This restriction assumes that the transformation does not
generate appreciable quenched correlations between the
probabilities of distinct renormalized bonds. If, on the
other hand, appreciable correlations. were induced in the
region of the renormalization-group flows, the global
probability distribution would then be factorized into c-
bond distributions, [[,p(K,,K, 1, ..., K, ), where c is
the number of bonds inside a quench-correlated region.!!
Thus, the analysis below would proceed, with the scalar
K, replaced by the vector K,=(K,,K,+1, ..., K, ), pro-
vided the generated quenched correlations are not long
ranged.!? This caveat is analogous to the condition that
no appreciable long-range interactions be generated in the
renormalization-group treatment of pure systems.'
Presently adopting Eq. (3), the transformation (2) reduces
to
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pk=[ lHdK,p(K,)]S(K,"—R,v({K},,,)). )

Note that in the thermodynamic limit, for each renormal-
ized bond K}, there are m =b? original bonds K,, where b
and b? are, respectively, the length and volume rescaling
factors. Another simplification, already incorporated into
Eq. (4), results from the assumption that each K, depends
appreciably only on the b original bonds K, which are in-
side the rescaling volume of this given K;.. Actually, the
factorization and m =b? assumptions are similarly ar-
gued, and their breakdown can be cured by the same
development mentioned above. These simplifications are
also used in the nonreplica renormalization-group argu-
ments for the Harris criterion at pure criticality,>° and are
exact in the Migdal-Kadanoff procedure,'*'> on hierarchi-
cal lattices,'”!® and in the limit of large-rescaling
position-space transformations.!”
Consider a fixed distribution, p (K)=p*(K), with mean

pi=[dKp*(K)K , (52)

and variance

ps= [dK p*(K)NK —p} ) . (5b)
To analyze critical behavior, a small deviation from p*(K)
is considered: Each bond of the system is subjected to a
small, random deviation AK according to the distribution
8p(AK), symmetric about the mean 8, and with variance
8, such that §;,8, <<u3. The overall bond-strength distri-
bution is the convolution

p(K)= [ dx p*(K —x)8p (x)

dp*(K) 8 d%p*(K)
dK 2 dK?

to leading order in 6, ,. The deviations in the moments of
p(K) are

~p*(K)—8; , (6)

duy=p—p1 =8,
Spr=p,—p3=5,,

where p*(K—+ o0 )=0 is used. The effect of rescaling,
via Eq. (2), is to leading order

(7)

duy (3;R) (3,R) S
sy |~ |((BRH)—2(R)(R)) ((3,R2)—2(RY(3,R)) | |82 | * ®
where
1 & 9"R({K})
O, =— ,
n i§1 oK/
m =b% and ( - - - ) indicates averaging with respect to p*(K), e.g.,

(R)=[ [1'"1 dK,p*(K,) [R((K}) .
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An immediate check is to consider the special case of the fixed distribution p*(K)=8(K —K*), namely, a pure system.
In this case, (R)=K* and (3,R )=b"T. One eigenvalue of the recursion matrix in Eq. (8) is A,=b"", y;=ypr, with
eigenvector purely in the nonrandom direction 8u;. The other eigenvalue is A2=by2, y,=2yr—d, with eigenvector hav-
ing components in both 8u; and 8u, directions.!® Since a=2—d/y, and =y, /y;, the exponent equality ¢=a is
recovered at the pure-system criticality. However, at random criticality, with fixed distribution p*(K) which is not a §
function, the eigenvalues are still easily obtained by diagonalizing the 2 X 2 matrix in Eq. (8), and y,542y; —d. Thus, the
exponent equality is violated at random criticality. When u} <<ul,

m R 3R) 1 12
+ |31(3;R)+3R |2 - ,
i RIVOR 12 2 ok, ok, R |21 | b -
m 3R B(3;R) m R 3BR)|] 1 & [ aR ||
~[43 = - oo | |7 E D —
r2 i§1 dK; 3K; 1R i§1 oK; oK; |b’—1 Jri,jz=1 0K;9K; | |Inb #=d

where all derivatives are evaluated at the pure-system fixed point, and y is the pure-system thermal exponent, so that
¢5+a at random criticality infinitesimally close to pure behavior.

We now demonstrate the numerical determination of a fixed distribution p*(K). A fixed distribution corresponding to
a phase transition has an unstable direction of flow under renormalization, so that it is difficult to obtain by straightfor-
ward iteration of Eq. (4). Our approach is to narrow down initial conditions onto a phase boundary, flow under Eq. (4)
to the neighborhood of p*(K), and use a Newton-Raphson algorithm to determine p*(K) for successively finer numerical
representations. The range of bond-strength values is divided into M intervals, and the distribution is approximated by

M
pu(K)= 3 p;A(K) , (11
i=1
where A;(K) equal 1 if K falls into the ith interval, and is zero otherwise. The ith interval is centered at K; and has
width k;. The successive numerical refinements are accomplished by increasing M, which is readily taken to a desired
accuracy. The recursion relation of Eq. (4) can now be cast as projections between histogram probabilities,

LR | RO (12)
j=1

M

pi=ki'3

=1

M
S MR, ...,
I,=1

A cutoff K, is simply implemented by counting all R > K,, into the last histogram before K. Setting the fixed-point
condition p; =p; =p;" for all i and noting the normalization condition ¥,p;k;=1 [which is of course conserved by Eq.
(12)], leave M —1 coupled fixed-point equations to solve, which is where the Newton-Raphson algorithm is used on suc-
cessive values of M. We tested this approach using the Migdal-Kadanoff'*!® recursion relation for the g-state Potts
models, with b =d =2, equivalent to the exact solution of a hierarchical model:!% ¢

R(K1,K;, K5 K)=In[(eX1 TRt ¥R gy oy petFa ot _apg)). (13)
T
* M *

(It is to be stressed that the function R is an input in our pi —pi = 3 Tylp;—p}),
approach.) For ¢ =18.75, the pure-system criticality has j=1 (15)
specific-heat and crossover exponents equal to 0.333, and —pt = ET: —ut)
therefore is unstable to quenched impurities. This partic- A !
ular g value is chosen as our example, because it has pure where

a equal to that of ¢ =3 on d =2 Bravais lattices.!” The
fixed distribution p*(K) which controls random criticality
is shown in Fig. 1(a). It was also found that p*(K) is well
approximated by a I distribution [Fig. 1(b)],

Pp*(K)~T'(K)=6.07K % —22K

M M
p1=2 kipiK; and pny1= 3 kipj(Kj—p,)" .
j=1 j=1

(14) The two recursion matrices T and T, being related by a
similarity transformation, have the same eigenvalues

Substituting the general form of a I" distribution into Egs. A;=b". Table I gives the eigenvalue exponents y; at

(4) and (13), three of the four integrals can be performed

analytically. A quasifixed distribution is located by nu-
merically searching through the fourth integral.

The renormalization-group eigenvalue analysis can be
done with the rescaling behavior either of the histogram
probabiltiies, or of the moments. For small deviations
from the fixed distribution,

p*(K) of Fig. 1(a). Only one positive (relevant) exponent
yl =0.94 is seen, corresponding to the eigendirection out
of the phase boundary. All other exponents are negative
(irrelevant), corresponding to eigendirections within the
phase-boundary hypersurface. Specifically,

y2=—0.305£2y, —d = —0.12 .
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TABLE I. Leading eigenvalue exponents and the components of their right eigenvector along the leading moments (i, )'/" of the
bond probability distribution. Also given are the mean K *=u} and the width o* =(u3)"/? of the fixed distributions. These results
are obtained for the ¢ =18.75 (pure a=0.333) Potts model under the b =d =2 Migdal-Kadanoff recursion. The fixed distribution
was successively approximated by M histograms of equal width spanning the interval 0 < K <3.6. The first eigenvector, correspond-
ing to the temperature direction, has its largest component along the mean (the first moment) of the distribution. The other eigenvec-
tors, corresponding to the irrelevant (y; < 0) exponents, lie almost entirely along the higher moments.

Eigenvalue exponents Eigenvector
M=38 16 32 M =32

»i 0.887 0.926 0.940 0.3753 0.0982 —0.0343 0.0577 —0.0292 —0.0033
2 —0.544 —0.367 —0.300 0.0598 0.2485 0.2271 0.2765 0.2695 0.2724
>3 —1.841 —1.639 —1.518 0.0234 0.0691 0.2535 0.1675 0.2622 0.2250
Ya —2.665 —2.715 —2.604 0.0098 0.0391 0.1317 0.1509 0.2036 0.2129
Vs —3.188 —3.627 —3.510 0.0060 0.0225 0.0919 0.1023 0.1800 0.1795
Ve —3.732 —4.119 —4.263 0.0038 0.0155 0.0632 0.0787 0.1402 0.1588
y7 —7.632 —5.145 —5.002 0.0027 0.0106 0.0467 0.0584 0.1127 0.1304
s —5.453 —5.484 0.0020 0.0084 0.0358 0.0481 0.0924 0.1133
K* 1.258 1.252 1.236 Exponents M =32

o* 0.873 0.855 0.818 a=-0.128 ¢=-0.319

The specific-heat and crossover exponents have the respec-
tive values a= —0.13 and ¢ =—0.32 <. Figure 1(a) and
Table I show that our procedure is convergent, by com-

Bond st I
ond strength K 5 parison of results with M =18, 16, and 32.

Q | 2 .

0.6 L Leading exponents at pure and corresponding random
T OL aM, (a) | criticality are given in Table II for several other calculated
- AC" s * M cases. Pursuing the philosphy that g can be used as an ad-
o 04l LW . justable parameter'® under the Migdal-Kadanoff recur-
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FIG. 2. Specific heat per site for g-state Potts models evaluat-
ed under the b =d =2 Migdal-Kadanoff recursion. The upper
dashed curve shows the pure g =18.75 Potts model, which has
the critical exponent a=0.333. The full curve shows the
random-bond g =18.75 Potts model, with a=—0.160. The
mean bond strength K=y, was scanned by varying p in the dis-

FIG. 1. (a) Fixed distribution of the ¢ =18.75 (pure
a=0.333) random-bond Potts model under the b=d=2

Migdal-Kadanoff recursion. M =8 (0), 16(®), and 32(A) histo-
grams of equal width are used in successively more refined
evaluations. The points next to K,=3.6 are somewhat
enhanced due to our cutoff procedure at that value. (b) The dis-
tribution 6.07 K'7exp(—2.29K) which approximates a fixed
distribution for g =18.75. Dashed line is its first
renormalization-group iteration.

tribution p (K)=p8(K —0.5625)+(1—p)6(K —1.9125), so that
the variance remained in the range 0.43 <, <0.46. M =16 his-
tograms and an upper cutoff of K, =3.6 were used in this calcu-
lation. Finally, the lower dashed curve shows the pure g =4.77
Potts model, which has the same critical exponent a= —0.160
as the random g =18.75 model. Note the asymmetry which
develops in the random case.
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TABLE II. Random and pure criticality of g-state Potts models under the b =d =2 Migdal-Kadanoff recursion. The fixed distri-
butions, with mean K*=uT and width o* =(u3)!/?, were obtained with M =16 histograms of equal width, using the upper cutoff
values of K, =2.2, 2.5, 3.6, 4.0, and 8.0, respectively. A better representation of ¢ =18.75 random criticality is given in Table I with

M =32.
_ Random criticality . Pure criticality

q K* o* » Y2 a ¢ yr a=¢
12 1.07 0.50 0.964 —0.302 -0.075 —0.313 1.114 0.205
14 1.12 0.59 0.957 —0.307 —0.090 —0.321 1.144 0.252
18.75 1.25 0.85 0.926 —0.367 —0.160 —0.396 1.200 0.333
25 1.36 0.99 0.909 —0.426 —0.200 —0.469 1.220 0.405
116 1.92 1.66 0.843 —0.520 —0.372 —0.617 1.500 0.667

% with g(adjusted)=18.75 and 116. Thus, it is suggested
that the corresponding random bond a=-—0.13 and
—0.37 (or, equivalently, v=y; ' =1.06 and 1.19) apply to
the 3- and 4-state Potts models on d =2 Bravais lattices.
The latter result is close to, but outside the reported uncer-
tainty (v=1.0%0.07) of a Monte Carlo simulation?® of the
random Baxter-Wu model,?! which should be in the
universality class of the ¢ =4 Potts model. Random d =2
Potts models could be important?>?3 for the interpretation
of critical behavior in adsorbed systems.?*

In light of these new results, we have reexamined results
of momentum-space renormalization-group calcula-
tions,»?* for n-vector spins in d =4—e dimensions. It is
indeed seen that, at random criticality,

3n(5n +4)n —4)e?
64(n —1)%(5n —8)

¢=a+ 0(63)

=a—(n,—n)e?/24+0((n.—n)*,€’) , (16)
where n,=4—4e is the component number below which
quenched impurities become relevant. The inequality
¢ < a sets at second order in € and was not noted in previ-
ous works.

In both examples above, Potts models under the
Migdal-Kadanoff renormalization procedure, or on
hierarchical lattices solved exactly, and n-vector spins in
4—¢ dimensions, ¢ <a <0 at stable random criticality.
From our general formulas, it is in principle possible® to
have these two exponents of opposite sign, ¢ <0< a, de-
pending on the characteristics of the fixed distribution.
However, we have not yet located an example of this.

Beyond these critical exponents, we have developed here

a treatment for systems strongly affected by quenched
randomness. Entire thermodynamic curves can be calcu-
lated, as examplified by the specific heat shown in Fig. 2.

- The contribution to the free energy per original bond from

the nth renormalization is

F(n) _p—dn - <
Fim=p—dn 3 S GKp,..., K )
=1 I,=1

m
(n—1)
X H kzj p1j N (17)
j=1
where G({K},,) is the additive constant generated in the
local rescaling, which, in Eq. (17), is averaged over the
iterated bond distribution. For example,

G (KK, K;3,Ky)=In(e" 524 oK1+ K

+e —2+4¢q) (18)

in the above Migdal-Kadanoff procedure. The total free
energy per original bond, ., f (m rapidly converges with
the number of renormalizations n, as in other position-
space treatments. Numerical differentiation yields the
specific heat. The critical singularity is depressed in tem-
perature compared with the pure system and appears to
have developed asymmetry. We hope that this approach
will be useful in other interesting problems, such as ran-
dom tricriticality®® and random fields.?
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