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The thermal critical exponent of the four-state Potts model in two dimensions is evaluated as
v~1=1.49 +0.01, using the Monte Carlo renormalization-group method. The presence of a
marginal scaling direction is also indicated. These results confirm previous conjectures, univer-
sality, and logarithmic corrections. A purely Potts Hamiltonian is considered. A four-point in-
teraction is used to control the chemical potential of effective vacancies, without the introduc-

tion of explicit vacancy states.

Several years ago, Baxter! rigorously derived the la-
tent heats of the two-dimensional Potts models,?
showing that they go to zero as the number of states
q is lowered to q. =4. This was interpreted as the oc-
currence of second-order phase transitions® for
q =<g4q., and of first-order transitions for ¢ > ¢.. The
renormalization-group mechanism* for this change-
over at ¢., obtained more recently, involves a line of
fixed points [CMT in Fig. 1(a)] controlling all
higher-order phase transitions. This fixed line,
parametrized by g, turns over and reverses stability
within the phase boundary surface, at ¢.. Thus,
phase boundary points with ¢ > g, cannot attain this
fixed line, and instead renormalize to first-order
fixed points [ ZF in Fig. 1(a)].

Previously to the renormalization-group solution
mentioned above, den Nijs® had proposed a conjec-
ture for the exact values of the critical exponents
y(q) for0=<gq <4:

[y(q)=315(g)—-2]1=3 , (1)
where

cosl3mi ()1 =5q

This curve [y5(0)y,(4) in Fig. 1(b)] passes, of
course, through Onsager’s® exact result y$(g =2)
=1. In the renormalization-group treatment, it was
noticed that the tricritical fixed points of these Potts
models [ 7M in Fig. 1(a)] are a smooth continuation
of the critical fixed points (CM), and that, on the
other hand, the den Nijs formula (1) is multivalued.
This led to the extension® of the conjecture, to in-
clude exact values for the tricritical exponents
[y5(0) y,(4) in Fig. 1(b)]. The entire curve is in
general agreement with previous”® and subse-
quent®™!® calculations, most notably with the subse-
quent derivation of y5(3) =—g~ by Baxter'> (for the
hard hexagon problem which has the ordering sym-
metry of the ¢ =3 Potts model), and of the entire
critical branch y5(0) y,(4) by Black and Emery.'®
However, confirmation of the turnover point at
g =4 has not been satisfactory. This point should
have the leading thermal exponent

vii=y(g=4)=3 , (2a)

according to the den Nijs conjecture.® Furthermore,
the renormalization-group description of the change-
over from first- to second-order transitions indicates*
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FIG. 1. (a) Schematic renormalization-group flows within
the phase boundary surface. CMT and ZF are lines of fixed
points controlling higher- and first-order transitions, respec-
tively. G is a dilution chemical potential. See Refs. 4 and
23. (b) Extended den Nijs conjecture for the exact values of
critical, y§(¢), and tricritical, y (¢), exponents. At the
turnover point, y§(g;) =4 (g.) =y,(g.=4).

a reversal of fixed-point stability at g. =4. It was
pointed out'®!” that this picture directly implies a
next-leading thermal exponent which is marginal,

valg=4)=0 , (2b)

and logarithmic corrections in the critical properties
of the ¢ =4 Potts model. However, the predicted
values (2) have not been firmly established by direct
calculation, as discussed below. Moreover, although
the exact value of y2=% was previously obtained!®

for the triplet Ising (Baxter-Wu) model, which has
the ordering symmetry of the ¢ =4 Potts model and
is therefore related by universality, logarithmic
corrections were rigorously absent.!?

Monte Carlo renormalization-group studies of
the Potts models have given good agreement with the
above conjectures, both for the critical exponents®1°
»5(2) and y5(3), and for the tricritical exponent!?
¥5(2). However, the method failed to converge for
q =4, successive renormalization-group iterations giv-
ing'®!! estimates for y,(4) of 1.21, 1.27, 1.30, and
1.33. This slow convergence was surprising in the
light of the corresponding Monte Carlo renormaliza-
tion-group calculation? for the triplet Ising model,
which showed very rapid convergence.

The ¢ =4 Monte Carlo renormalization-group
results were interpreted by Rebbi and Swendsen!® as

8,19

arising from slow convergence to the fixed point due
to the marginal operator. They were able to say that
the data were consistent with the existence of a mar-
ginal operator and y,(4) = %, but could not explicitly
confirm the predictions of Egs. (2). On the other
hand, Eschbach, Stauffer, and Herrmann'! argued
that the sequence of estimates could be extrapolated
to obtain y,(4) =1.34. Variational position-space
renormalization-group calculations® and a recent
finite-size scaling calculation'* did give good agree-
ment with the conjectured y,(4).

In this paper, we present the results of a new
Monte Carlo renormalization-group calculation,
which accurately reproduces Eq. (2a). Specifically,
we find

y,(4)=1.49 £0.01 , 3)

as well as indication of the marginality of the next
thermal exponent y4(4). The four-state Potts model
is studied on the square lattice, with the Hamiltonian:

—-Bpx=J Essls
@ "
+F<Uk2”(1"Ss,-s,)“'sysk)““Bsksl)(l“ssm) ,
4)

where s,=a, b, ¢, or d, and 8,},}=1(0) for 5;=s5,

(s;#s;). The first term is the usual nearest-
neighbor coupling. The second term is a four-point
coupling which assigns an energy F to any elementary
square (ijkl) with all four bonds broken. Thus, this
term controls local disorder, which in the
renormalization-group solution* was shown to be im-
portant. The changeover in the order of the phase
transitions in Potts models has been studied in terms
of somewhat different four-point interactions in two
other works.?!"2

A comparison, in this respect, may be useful. The
renormalization-group treatment of Ref. 4 projects
the locally disordered, entropically important regions
as effective vacancies, which appear in the renormal-
ized Hamiltonian.?* The fixed point is then located
in the Hamiltonian space of this extended (Potts-
lattice-gas?¥) model. In the present Monte Carlo
renormalization-group calculation, vacancy projection
is never introduced. Each site is always in one of the
four permutation-symmetric states of the ¢ =4
model. Nevertheless, the effective vacancies still ex-
ist, inherently but not manifestly. They could be
thought of as elementary excitations of the system.
They have a non-negligible presence at the fixed
point.

The control over the effective vacancies provided
by the four-point coupling is used to circumvent the
difficulty of approaching the fixed point along the
marginal direction, under renormalization-group
transformations. By adjusting F, we were able to
analyze a system that approaches the fixed point
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TABLE 1. Values for the leading thermal eigenvalue ex-
ponent, y,(4), calculated with a 48 x 48 lattice. Data were
taken from a run of 4.25 x 105 MC step/site at intervals of
10 MC step/site, after discarding 4.5 x 10* MC step/site to
establish thermodynamic equilibrium. Using eight interac-
tion parameters, the Monte Carlo renormalization-group
analysis was performed for scale factors 2™. The number of
the renormalization-group iteration is denoted by n. Esti-
mates of the statistical uncertainty of the last digits are given
in parentheses. The conjectured values is y,(4) =1.5.

n m=1 2 3 4

1 1.512(3) 1.503(3) 1.50(1) 1.50(4)
2 1.490(5) 1.49(1) 1.49(4)

3 1.49(2) 1.49(5)

4 1.49(7)

along a direction essentially orthogonal to the margin-
al one. Such a ¢ =4 Potts model has no logarithmic
corrections to scaling, and thus is very much like the
triplet Ising model. Convergence in the Monte Carlo
renormalization group is very rapid.

The Monte Carlo renormalization-group method
has been described in detail in several other
places.®!® In this calculation, square cells and a ma-
jority rule with a random tie breaker were used. We
have located the criticality condition at J,=1.204 63,
for F/J =0.85. Self-consistent checks!® within the
Monte Carlo renormalization-group method indicate
an accuracy for J. of 1 part in 10°. Our numerical
results are summarized in Tables I-1V, as obtained
from simulating a 48 x 48 lattice. The finite-size ef-
fect was found to be negligible, from comparison
with simulations of 24 x 24 and 12 x 12 lattices.

Table I shows the immediate convergence of y,(4)
to the conjectured® value of 1.5. This rapid conver-
gence is comparable to that obtained in a Monte Car-
lo renormalization-group study? of the triplet Ising
model, which also has no logarithmic corrections, and

TABLE II. Values for the leading magnetic eigenvaiue
exponent, y;(4), calculated under the conditions described
in Table I. The conjectured value is 1.875.

n m=1 2 3 4

1 1.868 1.872 1.877 1.886
2 1.875 1.881 1.892

3 1.887 1.899

4 1.911

TABLE III. Values for the next-leading magnetic eigen-
value exponent, y3(4). The conjectured value is 0.875.

n m=1 2 3 4

1 0.890 0.882 0.885 0.876
2 0.876 0.878 0.868

3 0.881 0.863

4 0.859

contrasts strongly with the slow convergence obtained
in direct simulations,'®!! of the nearest-neighbor

g =4 Potts model, which does have logarithmic
corrections. The consistency of the analyses with dif-
ferent scale factors 2™ indicates that the eigenvector
is well represented.

Tables II and III show our results for the leading,
y1(4), and the next-leading, y;(4), magnetic eigen-
value exponents in good agreement with the conjec-
tured? exact values of 1.875 and 0.875. The very
small rise in y; at the higher iterations #» must be due
to a slight residual error in the determination of the
critical point.

Table IV contains the results for a more difficult
part of the computation —the confirmation of the
presence of a marginal eigenvalue, y4(4) =0. Super-
imposed on the larger statistical errors in determining
a nonleading eigenvalue, a clear systematic trend is
seen towards smaller values of | y4| as the scale factor
is increased. This is characteristic of having included
an insufficient number of interactions into the
analysis. Since the renormalization-group transfor-
mations with larger scale factors include many more
interactions in the implicit calculation of higher
powers of the recursion matrix, we have a strong in-
dication of a marginal eigenvalue with a complicated
eigenvector.

Finally, the use of Hamiltonian (4) provides the
possibility of exploring a new direction. By making F

TABLE IV. Values for the next-leading thermal eigen-
value exponent, y4(4). This is expected to be marginal,

y4(4) =0.

n m=1 2 3 4

1 —0.08 -0.09 —-0.15 -0.10
2 —-0.38 -0.25 —0.15

3 —0.36 —-0.26

4 —0.45
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FIG. 2. Speculative flow diagram within the phase boun-
dary surface, in a space where the effective vacancies can be
suppressed (by F <0). Asterisks (*) represent
renormalization-group fixed points, whose natures are indi-
cated on the right-hand side.

negative, the effective vacancies of the usual Potts
models are removed. For ¢ =20, and F/J =—1, we
see from Monte Carlo analysis that the latent heat of
the first-order transition is reduced by a least 50%.
(The transition temperature, J~, is increased by only
15%.) Thus, the first-order character of Potts transi-
tions can be considerably weakened by this suppres-
sion of local disorder, although not completely re-
moved as vacancies occur at a larger length scale.
(Long-range interactions suppressing effective vacan-
cies at all length scales should restore the second-
order transitions, with corresponding novel universal-
ity classes, at ¢ > ¢..) Accordingly, one could specu-
late in terms of the flow diagram shown in Fig. 2.
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