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Abstract: Controlling the life cycle of the green macroalga
Ulva (Chlorophyta) is essential to maintain its efficient
aquaculture. A fundamental shift in cultivation occurs by
transforming the thallus cells into gametangia and
sporangia (sporulation), with the subsequent release of
gametes and zoids. Sporulation occurrence depends on
algal age and abiotic stimuli and is controlled by sporu-
lation inhibitors. Thus, quantification of sporulation in-
tensity is critical for identifying the biotic and abiotic
factors that influence the transition to reproductive growth.
Here, we propose to determine the sporulation index by
measuring the number of released gametes using flow
cytometry, in proportion to the total number of thallus cells
present before the occurrence of the sporulation event. The
flow cytometric measurements were validated bymanually
counting the number of released gametes. We observed a
variation in the autofluorescence levels of the gametes
which were released from the gametangia. High auto-
fluorescence level correlated to phototactically active

behaviour of the gametes. As autofluorescence levels var-
ied between different groups of gametes related to their
mobility, flow cytometry can also determine the physio-
logical status of the gametes used as feedstock in seaweed
cultivation.

Keywords: aquaculture; flow cytometry; gametogenesis;
seaweed; sporulation.

1 Introduction

The green macroalgal genus Ulva (Linnaeus, 1753; Chlor-
ophyta) comprises around 130 recognised species, most of
which are distributed worldwide. Ulva species are edible
and are often used as a raw material in various industries
(Meghanath et al. 2019; Nikolaisen et al. 2011). For
example, they have bioremediation applications and can
act as biofilters in integrated multi-trophic aquaculture
systems (Neori et al. 2003; Shpigel et al. 2017). The inher-
ently high growth rates of Ulva species make them prom-
ising candidates to produce sustainably high biomass
yields. In general, marine macroalgae (seaweeds) can be
beneficial to humans by providing valuable chemicals
such as carbohydrates, proteins, vitamins, and minerals
(Charrier et al. 2017; Ito and Hori 2009; Li et al. 2018).

Ulva undergoes alternate sexual and asexual repro-
duction throughout generations, forming isomorphic spo-
rophytes andgametophytes (Hiraoka andYoshida 2010). In
both reproduction stages during sporulation,Ulva releases
haploid swarmers (i.e., zoids and gametes), which differ by
the number of flagella present and their phototactic
behaviour (Hiraoka et al. 2003; Kuwano et al. 2012; Løvlie
et al. 1964). Sporulation, the transformation of a thallus cell
into a gametangium, is a highly regulated process. Specific
intra- and extra-cellular sporulation inhibitors control the
transformation of thallus cells into either a gametangium
or sporangium (Hoxmark 1975; Jónsson et al. 1985; Kessler
et al. 2018; Nordby and Hoxmark 1972; Stratmann et al.
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1996; Vesty et al. 2015). In Ulva compressa, Ulva mutabilis,
and Ulva linza, upon the removal of the sporulation in-
hibitors, the release of swarmers occurs after approxi-
mately 72 h (Vesty et al. 2015; Wichard and Oertel 2010).
Nonetheless, during the first 24–46 h sporulation is
reversible, after which the cells are “committed” to the
differentiation and the swarmers are finally developed
(Kessler et al. 2017; Stratmann et al. 1996). If an additional
swarming inhibitor is removed, the swarmers will leave the
cell through an individual pore in the cell wall (Katsaros
et al. 2017;Wichard and Oertel 2010). Sporulation inUlva is
also seasonal as it is influenced by external factors such as
temperature, salinity, irradiance, photoperiod, and pH
(Balar and Mantri 2020; Dan et al. 2002; Kalita and Titlya-
nov 2003).

In Ulva cultures, cutting mature thalli into 1–2 mm2

fragments is one of the most practical methods employed
for sporulation induction (Alsufyani et al. 2017; Hiraoka
and Enomoto 1998; Stratmann et al. 1996). The fragments
are then immersed in seawater which is changed several
times to wash away any sporulation inhibitors. As thalli
mature, sporulation events can occur spontaneously due to
the lack of sporulation inhibitor production or its reception
(Alsufyani et al. 2017; Stratmann et al. 1996). In addition,
larger thalli may break down into fragments, triggering
sporulation and the release of swarmers, which can
contribute to the formation of green tides (Gao et al. 2017).
Therefore, thallus fragmentation can also have negative
implications for the maintenance of Ulva cultivars. Some
efforts have beenmade to predict spontaneous sporulation
using metabolomic markers (He et al. 2019; Kessler et al.
2017). However, further knowledge of the life cycle and
sporulation patterns of Ulva is required to achieve a sus-
tainable Ulva aquaculture, reduce and accelerate sporu-
lation, and facilitate strain selection.

So far, the understanding of the sporulation events is
limited to descriptive observations and we cannot accu-
rately determine the strength of sporulation events inUlva.
To the best of our knowledge, no studies have focused on
using flow cytometry to help to determine the strength of
sporulation events. Therefore, in this study, we suggest a
workflow to semi-quantify the strength of sporulation
events (i.e., gametogenesis and sporogenesis) by counting
the number of swarmers using flow cytometry.

Currently, there are three main approaches to assess
the intensity of sporulation: (i) by monitoring the colour
change of the thallus, from dark green to brown, during the
transformation of thallus cells (Dan et al. 2002); (ii) by
counting the empty gametangia and sporangia after the
swarmers have been discharged; and (iii) by estimating the
number of discharged swarmers in a counting chamber as a

proxy for the strength of the sporulation event. The ratio of
empty to non-empty gametangia is often used to determine
sporulation intensity (Gao et al. 2017; Kalita and Titlyanov
2003; Nilsen and Nordby 1975); thus, staining empty
gametangia with Evans Blue dye improves the reliable
identification of these cells (Lee et al. 2019). However, an
issue arises with the application of Evans Blue since the
dye does not distinguish between discharged and dead
cells. This approach may overestimate sporulation in-
tensity in the case of high cell mortality. Further, previous
experiments have revealed only a weak correlation be-
tween thallus colour and sporulation intensity in Ulva
(Stratmann et al. 1996), as changes in salinity, tempera-
ture, irradiance, and nutrient supply can also cause colour
changes (Gao et al. 2016; Pinchetti et al. 1998).

In this context, fluorescence detection can be a
powerful tool to increase the sensitivity and selectivity of
liquid chromatography (LC) analysis for fluorescent com-
pounds. Thus, fluorescence microplate readers are widely
used in high-throughput screenings of fluorescent cells
(Petersen et al. 2014). Flow cytometry facilitates the
counting of cell numbers through fluorescence or light-
scattering (Hogg et al. 2015; Franklin at al. 2004) and the
surveying of those cells (Krutzik et al. 2008). Indeed, cells
can be characterised by the scattered or fluorescent light
pulses [side scatter (SSC) and forward scatter (FSC),
respectively] created when the particles pass through a
focused light beam (Hoffman 2008; Olson et al. 1989).
Methods have been established for monitoring of
contamination, succession, and overall growth in both
unicellular algae andmicrobial communities (Peniuk et al.
2016).

Here, we suggest a method for quantifying sporulation
intensity and estimating gamete mobility by measuring
the number of discharged gametes of U. mutabilis (model
system) and U. rigida (aquaculture) using flow cytometry.

2 Materials and methods

2.1 Algal material and cultivation

Ulva rigida (C. Agardh 1823; foliose morphotype) and U. mutabilis
(Føyn 1958; tubular morphotype) were studied under controlled
conditions. The algal identities were confirmed by molecular ap-
proaches and themicroscopic observation of the thallus (Brodie et al.
2007; Krupnik et al. 2018). Ulva rigida thalli were cultivated in out-
door tanks (V = 750 l), irrigated by a continuous flow of surface
seawater pumped from the Mediterranean Sea adjacent to the Israel
Oceanographic and Limnological Research (IOLR) facility in Haifa.
Nutrients were added once a week at concentrations of 0.057 mM
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NaH2PO4 and 0.59 mM NH4Cl. The outdoor tanks included an
aerating system to optimise gas exchange (O2 and CO2) and main-
tained the continuous movement of the thalli.

Haploid gametophytes from the fast-growing, naturally occur-
ring developmental mutant “slender” of U. mutabilis (Løvlie 1964)
were cultivated in anUlva culturemedium (UCM) in a 17:7 (L:D) regime
at 18 °C with an illumination of 80–120 μmol photons m−2 s−1 (50%
GroLux, 50%daylightfluorescent tubes; OSRAM,München, Germany)
without aeration (Stratmann et al. 1996; Wichard and Oertel. 2010).

2.2 Induction of the sporulation (gametogenesis) of
Ulva rigida and Ulva mutabilis

Fresh weights of approximately 1–5 g of U. rigida were cleaned from
the epiphytes and debris in the tanks and acclimated for one week in
a growth room (set at 20 °C, 100 μmol photons m−2 s−1, 17 L:7 D). After
acclimation, the U. rigida thalli were washed with UCM and incu-
bated at 20 °C for 1 h to evaporate the water prior to cutting the
thallus. Three 1-cm2 pieces of U. rigida were then cut from each
specimen and left to dry with the thallus under the same conditions.
Each specimen was photographed using a light microscope
(OlympusOptical Co., Ltd., Japan). The area (S) of a knownnumber of
cells (N ) was measured using ImageJ software (v. 1.53c) (Schindelin
et al. 2012).

The partly dry U. rigida thalli were then chopped into 2–3 mm2

fragments to induce the transformation from vegetative cells into
reproductive cells. The fragments were weighed (Wsample), and 0.5 g of
the chopped subsamples were inserted into a 150-ml Erlenmeyer flask
containing UCM.

The 1-cm2 pieces were also weighed (Wsquare) at the same time as
the samples to ensure the same moisture content (fresh weight). The
algal flasks were then incubated for 72 h in a growth chamber with a
17 L:7 D photoperiod.

To test the effect of temperature, algal flaskswere placed on three
different trays set at 15 °C, 20 °C, and 25 °C using an aquarium heat-
er and placed at the same distance from the light source under
70–100 μmol photons m−2 s−1. For the irradiance experiments, the
environmental temperature was set to 20 °C and the algal flasks were
placed at three different irradiance levels: 10, 80, and 120 μmol pho-
tonsm−2 s−1. The lowest irradiance treatment samples were held inside
a black net, while for the high irradiance treatment, a regular table
lamp was used. Irradiance was measured with a LI-250 light metre
(LI-COR®, Nebraska, Canada). Each treatment was carried out in
triplicate.

After 72 h, the release of the gametes was induced through a
change of UCM (Vtotal): a defined volume (VFCM) of the well-mixed
culture medium (Vtotal) was fixed with 2% glutaraldehyde before
measuring the number of gametes by flow cytometry. By knowing the
concentration of the gametes in the samples and the volume of me-
dium (Vtotal), the total number of gametes in each sample was
calculated.

Approximately 2–3 g of U. mutabilis fresh weight was manually
separated into 2–4 mm2 fragments using a chopper (Zyliss, Zürich,
Switzerland) (Califano and Wichard 2018; Wichard and Oertel 2010).
The fragments were washed three times with UCM. Then, they were
cultivated for three days, as described above. On the morning of the
third day, gamete release was initiated by changing the UCM. The
gametes were collected either from the brightest spot closest to the
light source or obtained after mixing the UCM.

2.3 Flow cytometry counting

The discharged gametes were diluted into a series of densities using
UCM and then fixed with 2% glutaraldehyde for 2 h at 20 °C ± 1 °C (2%
[v:v] final concentration; Merck, Darmstadt, Germany). The glutaral-
dehyde fixation prevented the gametes from settling on surfaces. The
flow cytometer (BD Accuri C6, Heidelberg, Germany) was calibrated
with six- and eight-peak validation beads (Spherotech 3 μm, BD
Accuri) to identify the gametes. The dilution series of gametes was
measured in triplicate. Alignment beads with known size were excited
at a wavelength of 488 nm, and fluorescence was measured at
FL3 > 670 nm to obtain the optimal gamete count (Califano and
Wichard 2018).

For quantification, the samples were measured under the
following conditions: sample volume = 50 μl; flow rate = 35 μl min−1;
threshold of FSC-H = 800. Wash and agitate cycles were performed
between each measurement of the samples. By interpolating FSC-H,
SSC-H, and FL3-H, it was possible to display defined clusters of
gametes and thus determine the number of gametes per microliter
using the flow cytometry software (BDC Sampler software, Heidelberg,
Germany).

2.4 Manual counting and autofluorescence
measurement

Manual counting was carried out under a Leica DM 2000 microscope
(Leica, Wetzlar Germany) using a Neubauer chamber (chamber of
0.100 mm depth, Lo-Laboroptik, UK). The larger squares at the four
corners were used for the counting of the gametes. Aliquots of each
independent sample were transferred to 96-multiwell plates (Sarstedt,
Nümbrecht, Germany) tomeasure the fluorescence intensity (FI) using
a Varioskan Flash plate reader (Thermo Fisher Scientific, Waltham,
MA, USA) for three technical replicates. The same excitation wave-
length (λ = 488 nm) was used as that applied for flow cytometry, and
the emission was recorded between 500 and 700 nm. The shaker was
operated for 10 s at 300 rpm with a break of 30 s after each measure-
ment. For data processing, the fluorescence intensity between 678 and
682 nm was obtained using the SkanltTM Software for microplate
readers (Thermo Fisher Scientific, Waltham, MA, USA).

2.5 Chlorophyll removal

Chlorophyll was bleached in the gametes using the protocol outlined
by Li et al. (2016) to identify cells in the flow cytometry image that
showed low fluorescence due to a reduced amount of chlorophyll. In
brief, the sample of gametes was incubated with 100% methanol and
1% NaOH (1:4, v:v) at 70 °C for 30 min. After incubation, the sample
tubes were centrifuged for 3 min at 3000 × g. The supernatant was
removed and replaced with sterile-filtered UCM andmeasured by flow
cytometry.

2.6 Statistical analysis

To compare the various sporulation indices (SPI) for the gametophytes
ofU. rigida upon induction of gametogenesis at different temperatures
and irradiances, a one-way ANOVA was performed along with
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the Tukey’s post-hoc range test using Rstudio (2020) (v. 1.1.456,
RStudio, Inc).

3 Results and discussion

3.1 Determination of the sporulation index

To determine sporulation intensity, the number of dis-
charged gametes needs to be related to the number of
thallus cells involved. We thus defined an SPI to estimate
sporulation strength that was based on the ratio between
the overall number of gametes that were released and the
number of thallus cells in each sample before treatment.
The SPI allowed us to easily compare the results from
different experiments and treatments within an estab-
lished workflow (Figure 1). The number of thallus cells
before the incubation or treatments was calculated ac-
cording to the following equation, using the 1-cm2 piece of
Ulva, which was weighed and photographed prior the
incubation:

Number of thallus cells in the sample 

= 10,0002

S
N ⋅ 2 ⋅

W sample

Wsquare
N ⋅ 2 ⋅

Wsample

W square
(Eq. 1)

where S is the area of the examined thallus (μm2), N is the
number of thallus cells counted under the microscope in
the area S multiplied by two for both layers of the thallus,
Wsample is the weight of the sample used in the experiment,
andWsquare is the weight (g) of the 1-cm

2 thallus, whichwas
cut from the same thallus as the sample. The value 10,0002

was needed to calculate how many cells were present in
1 cm2 to convert μm2 to cm2.

This equationwas used to calculate the number ofUlva
thallus cells per unit weight of thallus. The area of the
thallus cells was measured under the microscope, then the
weight of the known area (the weight of 1 cm2 Ulva) was
determined to calculate the ratio of the thallus cells per
gram ofUlva. Theweight of 1 cm2Ulva, originating from the
same thallus, was determined, with a relative standard
deviation (SD) ranging from 2.9 to 16.6%. The high SD
resulted from changes in the moisture of the different
samples and the size of the selected thallus. A disc cutter
with a known diameter should be used to minimise the
relative SD to approximately 2%. The SPI combined the
number of gametes discharged with the number of thallus

cells in the incubation flask. Based on the determined cell
numbers, the SPI can be calculated to estimate sporulation
intensity under controlled conditions (Eq. 2):

Flow cytometry was applied for counting the gametes
and zoids.

3.2 Autofluorescence and mobility of
gametes

We compared the autofluorescence of gametes harvested
at the brightest light spot in the culture flask (Figure 2A, i
and ii) with those from a well-mixed culture (Figure 2A, iii
and iv). First, FSC (Forward scatter) versus SSC (Side
scatter) was plotted to identify and separate the population
of gametes (Figure 2A, i and iii) from the debris. Plotting
fluorescence versus FSC revealed that autofluorescence
level depended on the status of the gametes (Figure 2A, ii
and iv). Actively phototactic gametes harvested at the
brightest light spot in the culture flask exhibited a high
level of autofluorescence (Figure 2A, i and ii), whilst
gametes collected from the well-mixed culture medium
revealed a broader range of fluorescence emission values,
including that of inactive (i.e., low mobility) gametes
(Figure 2A, iii and iv). Therefore, the loss of fluorescence
may indicate the low mobility of the gametes which can
vary fromexperiment to experiment (Figure 2B). In general,
there was no homogeneous distribution in fluorescence
emission of discharged gametes when gametes were
collected from well-mixed culture medium.

To prove whether lower levels of autofluorescence
were due to the reduction in active chlorophyll content, the
chlorophyll from the phototactic gametes (Figure 3, i and ii)
was removed using the methanol incubation approach (Li
et al. 2016) (Figure 3, iii and iv). As reported by Li et al.
(2016), the cells without chlorophyll remained intact and
spherical and were detected by flow cytometry in high
yields (Figure 3, i and iii), but their intracellular constitu-
ents changed significantly, resulting in a low level of
autofluorescence (Figure 3, iv). The methanol-treated
gametes (Figure 3, iii) showed low autofluorescence,
similar to that of the collected gametes that exhibited low
mobility (Figure 2). Differences in the chlorophyll content
have been already reported between + and − mating type

SPI = Counts of gametes 
Number of thallus cells in the sample before the incubation 

(Eq. 2)
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gametes (Hiraoka et al. 1998). However, in our study, we
observed that gametes of the same mating type possessed
various fluorescence levels, which were correlated with
reduced swimming ability or phototactic behaviour.
Interestingly, previous studies showed that the flagellar
autofluorescent substance of the brown alga Scytosiphon
lomentaria is probably involved in the photoreception of
the phototaxis of the swarmers (Yamano et al. 1996).
Moreover, autofluorescent compounds have been used to
enumerate dinoflagellate cysts in marine and estuarine
sediments in the context of anticipating and monitoring
harmful algal blooms (Tang and Dobbs 2007). In any case,
the reasons for the differences in autofluorescence that
have been observed remain unexplained. Thus, when
determining flow cytometric measurements and calcu-
lating the SPI, we recommend mixing the culture medium
before sampling the gametes. Interestingly, mobile

gametes identified by their high autofluorescence may
possess a higher viability and work as an efficient feed-
stock. The reasons for variation in the fluorescent rates of
the discharged gametes must be identified through future
studies. The photosynthetic activity of the released gam-
etes should be measured by pulse amplitude modulation
fluorometry.

3.3 Counting gametes and method
comparison

Fluorescence measurements and flow cytometry were
applied for counting the discharged gametes (Figure 4).
Autofluorescence measurements corroborated that more
gametes caused increasing levels of fluorescence
measured by the plate reader (Figure 4A) (Pearson corre-
lation: r = 0.99, p < 0.01). However, fluorescent emission is
subject to strong fluctuations depending on the physio-
logical state of the cells (Figures 2 and 3; Tang and Dobbs
2007). Therefore, the counts obtained by the flow cyto-
metric technique (FSC-H versus SSC-H) were compared
with the counts obtained by the Neubauer-counting
chamber (Figure 4B). The comparison demonstrated that
gamete concentrations could be accurately measured by
flow cytometry (Pearson correlation: r = 0.97, p < 0.05).
Consequently, this methodology was further applied to
determine the counts of gametes for the SPI of U. rigida in
culture. It was noted that gametes or zoids may occasion-
ally remain in the parental cell and germinate into “false-
branches”. However, such occurrences were not observed
in our study.

3.4 Temperature and light dependency

Changes in the culture temperature affected the sporula-
tion of Ulva. SPI was higher in the aquaculture of U. rigida
(p = 0.001) at 15 °C and 25 °C than at 20 °C (Figure 5). Our
results are consistent with previous findings that a higher
level of sporulation occurs at 15 °C than at 20 °C for e.g.Ulva
fenestrata (Kalita and Tytlianov 2003).

In our study, only a small portion of the used thallus
cells was transformed into gametangia, indicated by a SPI
of 0.3 (Figure 5A). However, the proposed SPI approach
showed differences in sporulation intensity resulting from
the different treatments, indicating the high sensitivity of
this approach to even very small differences in sporulation.
The same was true for the incubation of U. rigida at
different irradiances during sporulation (Figure 5B). If all
cells of an examined thallus differentiated in gametangia,

Figure 1: Workflow to determine sporulation index (SPI). (i): (a) Ulva
rigida thalli collected from cultivation tank. (b) Thalli dried at 20 °C
for 1 h. (c) Three pieces of 1 cm2 U. rigida cut from each specimen
used in experiment and left to dry together with thallus. (d) Each
specimen photographed using light microscope (and area of known
number of cells measured. (ii): (e) Fresh thalli chopped to induce
sporulation. (f) Fragments weighed, washed with seawater, and
inoculated into incubation flask. (g) After differentiation of thallus
cells into gametangia, release of gametes induced through change
of culture medium (Vtotal), defined volume (VFCM) of well-mixed cul-
ture medium (Vtotal) fixed with 2% glutaraldehyde before measuring
number of gametes using flow cytometer and calculating total
numbers in Vtotal. (iii): (h) Using cells per unit area and weight of
1 cm2, number of thallus cells in each flask calculated. SPI combined
number of gametes discharged with number of thallus cells in in-
cubation flask.

O. Nahor et al.: Applications of flow cytometry in macroalgal sporulation 87



the maximum SPI of 16 would be reached, assuming a
gametangium usually forms 16 gametes (Løvlie 1964).
However, this high yield has only been observed in Enter-
omorpha-like tubular Ulva species, while foliose species,
such as U. rigida or U. lactuca, which was recently

redesignated to U. fenestrata (Hughey et al. 2019), often
only show sporulation at the thallusmargins (Wichard and
Oertel 2010).

These findings confirmed that temperature and light
intensity have an impact on sporulation, as previously

Figure 3: Flow cytometric measurements used
to compare active with inactivate gametes of
Ulva mutabilis. (i, ii) Mobile gametes were
collected at the brightest spot and prepared
for flow cytometric measurements. (iii, iv)
Gametes were collected at the brightest spot
as well. After chlorophyll removal, they were
prepared for flow cytometric measurements.
Plots present populations of gametes
separated by their expected size (i, iii, % of
the total counting events is given) and by the
measured chlorophyll autofluorescence (ii,
iv). The fluorescence measurements
correspond to the gametes framed by the red
gates in (i, iii). FSC-H, forward scatter height;
SSC-H, side scatter height; FL, fluorescence
(Fluo).

Figure 2: Distinction of gametes of Ulva mutabilis according to their autofluorescence using flow cytometric measurements. (A: i, ii) Gametes
released by U. mutabilis were collected from the green layer in the spotlight (i.e., phototactically active gametes). (A: iii, iv) Gametes were
collected after the culturemediumwas well-mixed. Plots present populations of gametes separated by their expected size (i, iii, % of the total
counting events is given) and by the measured chlorophyll autofluorescence (ii, iv). The autofluorescence measurements correspond to the
gametes framed by the red gates in (i, iii). (B) Percentages of high-level autofluorescence. Error bars represent mean ± standard deviation
(n = 3); FSC-H, forward scatter height; SSC-H, side scatter height; FL, fluorescence (Fluo).
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observed (e.g., Dan et al. 2002; Gao et al. 2017; Kalita and
Tytlianov 2003). As a result, it will be interesting to study
whether these stresses also influence fluorescence in-
tensity and mobility of the discharged gametes.

4 Conclusion

Our research is of interest and use to those who seek to
enhance their understanding of the life cycle and sporu-
lation patterns of Ulva species. Assessing sporulation in-
tensity provides valuable information for preparing a
feedstock and monitoring the status of the algal propaga-
tion process in Ulva aquaculture. Flow cytometry is a rapid
method to quantify gametes and can indicate cell charac-
teristics such as the mobility of discharged gametes. The
SPI is a useful parameter tomeasure the level of production
and release of gametes upon a given specific (abiotic)
stimulus, upon removal of the sporulation inhibitors, or
after spontaneous sporulation due to maturation. The
simplicity of the test also ensures that the SPI can be
applied to zoids or a mixture of gametes and zoids. The SPI
would also be a suitable reference for determining survival
rates of the released gametes and zoids. Overall, flow
cytometry provides an accessible tool for the rapid

prognostic assessment of sporulation processes in seaweed
cultivation.
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Figure 4: Gamete counts of Ulva mutabilis
collected from well-mixed culture medium.
(A) Fluorescence of a dilution series of
gametes measured using a plate reader.
(B) For method validation, number of
gametes measured by light-scattering
flow cytometry (FCM) was compared with
number of gametes determined by the
Neubauer improved chamber. Error bars
represent the mean ± standard deviation
(n = 3).
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