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Abstract

Intelligent biorefinery design that addresses both the composition of the biomass feedstock

as well as fermentation microorganisms could benefit from dedicated tools for computational

simulation and computer-assisted optimization. Here we present the BioLego Vn2.0 frame-

work, based on Microsoft Azure Cloud, which supports large-scale simulations of biomass

serial fermentation processes by two different organisms. BioLego enables the simulta-

neous analysis of multiple fermentation scenarios and the comparison of fermentation

potential of multiple feedstock compositions. Thanks to the effective use of cloud computing

it further allows resource intensive analysis and exploration of media and organism modifi-

cations. We use BioLego to obtain biological and validation results, including (1) exploratory

search for the optimal utilization of corn biomasses—corn cobs, corn fiber and corn stover—

in fermentation biorefineries; (2) analysis of the possible effects of changes in the composi-

tion of K. alvarezi biomass on the ethanol production yield in an anaerobic two-step process

(S. cerevisiae followed by E. coli); (3) analysis of the impact, on the estimated ethanol pro-

duction yield, of knocking out single organism reactions either in one or in both organisms in

an anaerobic two-step fermentation process of Ulva sp. into ethanol (S. cerevisiae followed

by E. coli); and (4) comparison of several experimentally measured ethanol fermentation

rates with the predictions of BioLego.

Introduction

Efficient and sustainable conversion of biomass into commerciable products, including food

products, chemicals and fuels, currently is a major challenge for science, governments and

industry across the globe [1]. Designing biorefineries requires addressing all aspects of the

process, including biomass growth, harvesting and fermentation and also the distribution of

products and handling waste [2]. The feedstock composition and its amenability to efficient

fermentation by microorganisms are two important determinants of the efficiency of biorefi-

neries [3]. While feedstock composition is constrained by local resources [4], there is much
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more freedom for designers in selecting fermentation configurations, including the constitu-

ent organisms.

Two major directions can be taken by fermentation designers. The first is to maximally

utilize the biomass available at hand, when constrained by the given available feedstocks and

when there is a need to identify potentially interesting products and design the corresponding

configuration. The second is the efficient production of a certain molecule, when the desired

product is known. In this case design aims to identify and adjust optimal feedstocks and

their fermentation setup to achieve maximal production efficiency. Indeed, most biorefinery

designers will tackle a mix of these challenges—a small set of feedstock candidates limited by

local agricultural output and a small set of products with high commercial value to the local

community (i.e. biofuels like ethanol, food supplements like carrageenan and more).

Starting with potential feedstocks available for fermentation (i.e. local species of corn or

algae) and with the fermentation targets (i.e. bioethanol), designers of the fermentation process

determine the constituent organisms for the process. The feedstock biomass is a composition

of several types of compounds, such as amino acids (valine, histidine, lysine, etc.), monosac-

charides (glucose, galactose, rhamnose, xylose, etc.) and polysaccharidic fibers (cellulose,

hemicellulose, lignin, ulvan, etc.), fatty acids (myristic, oleic, palmitic, etc.) and others. Many

of the domesticated, industrial organisms cannot metabolize some biomass components.

Therefore, the selection of the fermentation configuration, to achieve maximum efficiency,

can be challenging. Approaches to overcome this challenge include genetic modification of

microorganisms with the goal to endow them with additional fermentation pathways, or, alter-

natively, to use several organisms [5,6], each specializing in fermenting different biomass com-

ponents [7]. For example, some studies aim to genetically modify S. cerevisiae, which is first

choice ethanol producer, to improve sugar (i.e. xylose) uptake mechanisms. Other studies aim

to induce or to increase the required functionality in the organism by driving broader diges-

tion rates, like in E. coli [8,9].

Fermentation processes utilizing bacterial communities require more diverse equipment,

expertise in cultivating several organisms, and understanding of inter-organism interactions

and of how they compete for resources [10]. Mathematical modelling of community-based fer-

mentation processes is also more complicated, since the natural inter-organism interactions

are still not-sufficiently understood [11] and as mapping metabolites between models of differ-

ent organisms is technically complicated, mostly due to historical inconsistencies of naming

conventions [12,13]. The OptCom [11] methodology proposes a computational framework for

modelling inter-species interactions, aiming to balance individual vs. community level fitness

criteria. Similarly, cFBA [14] integrates inter-species interactions and performs modelling that

maximizes the growth rate of entire bacterial communities.

Serial fermentation is a design approach that offers tighter and more predictable control

of inter-organism relations and reactions, thus enabling better process optimization [15–18].

Briefly, in this process each organism is grown separately. Residual media together with

decomposed biomass, resulting from this first step, are then transferred to the next organism,

serially. One particularly interesting subclass of serial fermentation schemes is a two-step fer-

mentation process, in which only two organisms participate in the fermentation.

In previous work we introduced BioLego—a platform that simulates the efficiency of bio-

mass fermentation in two-step processes [15,16,19]. This current work leverages Microsoft

Azure Cloud to enhance the BioLego framework and to allow high-scale simulations, explor-

ing a large multiplicity of scenarios, of the efficiency of biomass fermentation in two-step

processes. Tasks addressable by the cloud-based approach include simultaneously analyzing

multiple fermentation configurations and comparing the potential of several feedstock bio-

masses. Most importantly—the cloud-based approach allows for analyzing the effects of
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different media compositions and of genetic modifications of the organisms, a task that is

highly resource-intensive.

Our biological and validation results include (1) exploratory search for optimal biomass uti-

lization setup for three different types of corn biomasses—corn cobs, corn fiber and corn stover;
(2) analysis of possible effects of changes in the composition of K. alvarezi algal biomass on the

ethanol production yield in the anaerobic two-step process (S. cerevisiae followed by E. coli);
(3) analysis of impact on the estimated ethanol production yield of knocking out single organ-

ism reactions either in one or in both organisms in anaerobic two-step process that ferments

Ulva sp. into ethanol (S. cerevisiae followed by E. coli); and (4) comparison of experimental

measurements of ethanol fermentation efficiency with the efficiency predicted by BioLego

system.

Our results, as described in the current paper, significantly impact several aspects of biore-

finery design processes. The BioLego code now has fully functional important features and

capabilities, including support for performing knock-out analysis on a large scale, as well as

components that connect it to cloud services. Such components are essential for performing

large-scale tasks in reasonable time. In addition, our biological results validate our modelling

approach for serial processes and shine light on the potential of using knockouts to increase

ethanol production in such systems. Finally, our specific findings, as related to corn and to

Ulva sp. may be useful in the context of actual production.

Materials and methods

This section briefly covers all implementation details of BioLego 2.0 system. All the source

code, detailed explanations, installation instructions, simulation results and Supplementary

materials are available at http://wassist.cs.technion.ac.il/~edwardv/STORAGE/biolego2_data/

2.1. Serial biomass fermentation by two organisms

Incomplete understanding of interactions between organisms and differences in nomencla-

tures are two major challenges in modeling community-based fermentation processes.

Leveraging the nature of processes composed of separate steps, we address these problems by a

flexible modular modelling approach. Specifically—our models encapsulate existing metabolic

models in dedicated envelopes that can then be combined using defined interfaces. This soft-

ware design approach thus produces different fermentation configurations by combining

models with each other using interface that is metaphorically similar to the interface between

LEGO bricks.

For completeness we briefly describe the approach herein. Full details are available at [16].

2.1.1. Flux Balance Analysis. Flux Balance Analysis (FBA) framework is a basis for Bio-

Lego mathematical simulations of biomass utilization and ethanol production yields. FBA is

a sub-class of Constraint-Based Modeling (CBM) mathematical modeling approaches. CBM

analyzes internal reaction fluxes based solely on simple physical-chemical constraints, such as

reaction stoichiometry and metabolic flux constraints, without requiring exact enzyme kinetic

data. CBM approach enables the prediction of organism growth rates based only on reaction

stoichiometry and directionality. FBA-based approaches have a wide range of applications

including phenotype analysis, bioengineering and metabolic model reconstructions [20–22].

The reaction stoichiometry in a metabolic model is represented by stoichiometric matrix S,

wherein Sm,r corresponds to stoichiometric coefficient of metabolite m in the reaction r. The

vector of metabolic fluxes that are carried by the model reactions, normally denoted as~v, is con-

strained both by mass-balance (Eq 1) and by maximal/minimal feasible fluxes vUB
� !

and vLB
� !
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(Eq 2).

S �~v ¼ 0 ð1Þ

vLB
� !
�~v � vUB

� !
ð2Þ

Although vUBr and vLBr are set to ±infinity for many reactions due to lack of knowledge, the solu-

tion space is not actually unbounded; it is always constrained by the feedstock media uptake rate.

In our specific case, the actual media uptake rate is less important, as we are interested in the total

conversion (in %) of biomass into ethanol (or other target product), rather than in specific reac-

tion rates. We therefore assume a media uptake rate of 1gDW�gDW-1�h-1 (1 gram of media dry

weight per 1 gram of bacteria dry weight per hour) of media and enforce it through the media

transporter reactions. We then calculate the yield of biomass-to-ethanol conversion accordingly.

Note, that this uptake rate is very similar to the commonly accepted rate in E. coli. For example,

the glucose uptake rate commonly assumed for E. coli is 1.8gDW�gDW-1�h-1 (which according to

mole-to-gram transformation formula (Amount[mol] = Weight[g] ⁄ Molecular_Weight[g � mol−1])

corresponds to 10mmol�gDW-1�h-1 (using glucose molecular weight of 180g�mol-1) of glucose

uptake rate defined in iJO1366 [23]), when grown on glucose minimal media [23].

FBA, a special case of the CBM framework, assumes that the metabolic network of the stud-

ied organism is regulated (e.g. by evolutionary processes) to maximize some cellular function,

which is usually an organism growth rate for unicellular organisms [24]. The FBA formulation

is summarized in Eq 3:

BMMAX ¼ max
~v
fvGrowthg

s:t: :

S �~v ¼ 0

vLB
� !
�~v � vUB

� !

P
vmedia transporters ¼ 1

gDWðmediaÞ
h

2

6
6
6
4

3

7
7
7
5

ð3Þ

Here, vGrowth is an artificial growth reaction, representing the organism’s growth rate. This

quantity converts all the organism cellular components into a single output variable representing

a unit of biomass; vmedia transporters is a generic name for all transporter reactions and BMMAX is

an estimated maximal organism growth rate under the given constraints. Optimization process

may identify many possible sets of fluxes that both maximize vGrowth and satisfy all the CBM con-

straints. That is—the optimum is often attained by a large set of possible solution vectors,~v.

We are often interested in finding ranges of certain components of the vector~v, when

taken from the set of values that attain the optimal value as above. Note reactions other than

vGrowth (in particular, ethanol production) will potentially have a range of possible values

within (affine) subspaces of fluxes that maximize growth rate (Eq 3). Modelling, known as

Flux Variability Analysis (FVA)[25], aims to estimate this range. That is—FVA aims to evalu-

ate both the maximum (Eq 4a) and the minimum (Eq 4b) possible values for the target reac-

tion vTarget, amongst the fluxes that attain maximum growth:

aÞmax
~v
fvTargetg bÞmin

~v
fvTargetg

s:t: :

vLBGrowth ¼ BMMAX : Solution of Equation 3

S �~v ¼ 0

vLB
� !
�~v � vUB

� !

P
vmedia transporters ¼ 1

gDWðmediaÞ
h

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð4Þ
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The deletion of certain reactions, also referred to as reaction knockouts, may have a major

impact on the distribution of the model fluxes. Such deletions are enabled through genetic

modifications, mostly gene knock outs or knock downs [26]. FBA provides means for analyz-

ing this impact by nullifying reaction boundaries of the deleted reaction. However, screening

of all possible organism knockouts is a heavy computational task, since common metabolic

models consist of thousands of reactions. Therefore, such screening is usually replaced by a

search for the solution maximizing the production yield [27,28].

In BioLego we use this general framework to perform evaluation steps and then combine

them, as further described below.

2.1.2. Modular approach of BioLego. To evaluate the expected yield of the multi-organ-

ism fermentation we combine the metabolic models of different participating organisms and

simulate them together. Specifically, we encapsulate literature organism metabolic models in

a dedicated envelope layer (Fig 1). This allows overcoming nomenclature differences and

enforcing inter-organism interactions only to a desired predefined set. Practically the latter

makes sense, since in serial fermentation all the constituents moving from one organism to the

following is under our control.

For each organism we create a single module, composed of two principle parts—the Inter-
nal chamber, which is essentially an existing organism metabolic model, and the four cham-

bers of the envelope layer: Media, Growth, Waste and Product (Fig 1). Media refers to the set of

media compounds received by organism; Growth refers to the set of molecules comprising the

organism biomass; Product refers to the desired product and Waste refers to all the compounds

either non-digested from media or non-product molecules extracted to the outside as a side-

effect of metabolic processes. Obviously, each such module should be constructed dynamically

according to the setup-specific media composition and the defined target product molecule.

We enforce the inter-chamber metabolic fluxes to be unidirectional. In addition, no direct

metabolic flux between the internal chamber and the external environment is allowed, which

results in full control over all inputs and outputs of the system.

Fig 1. Single-module for existing organism metabolic model. This module is composed of five chambers: (i) Media
—representing received biomass feedstock media; (ii) Internal—consisting of the known metabolic model of the

organism; (iii) Growth—consisting organism cellular components; (iv) Product—representing desired target

metabolite; and (v) Waste—representing all non-digested media residuals and molecules by organism as growth by-

product.

https://doi.org/10.1371/journal.pone.0227363.g001
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The exact formulation of this envelope, as well as of the equations for modeling serial com-

binations of organism modules into a two-step fermentation pipeline, was previously described

[16,29].

2.2. Implementation of Azure-based distributed system

Simulating each scenario of interest can take a few seconds. Working on a single machine

becomes infeasible in cases when the number of such scenarios is in the millions (from

example when simulating several knockouts in one organism or simultaneous knockouts in

different organisms). We address this challenge by developing a flexible and scalable system

leveraging the MS Azure Cloud capabilities. This particular system is just an example of a

cloud computing environment that can be used in this context. S1 Fig presents the simplified

snapshot of the resulted distributed architecture. The entire system’s complexity is transparent

to the end user. Once the system is set up, no specific programming skills, such as Matlab

knowledge, are required. The user provides the input in HTML and/or XLS (i.e. CSV) format

and, after the simulation terminates, receives the results in HTML and CSV formats.

In the background we first place a request on the entrance server, which can run either

locally (as in our implementation) or remotely. It verifies the request correctness and generates

setup-specific requests per each desired fermentation configuration (selected pipe of organ-

isms, media and production target) to Azure Cloud side via dedicated request submission

queue (setup-requestq). This stage is parallelized into several instances on Azure Cloud side

to support simultaneous construction of multiple fermentation setups. The resulting model,

describing requested fermentation setup, is placed in a dedicated blob (file storage entity) in

the Azure Cloud and the local server is notified by dedicated notification queue (setup-resultq).

Upon receiving such notification, the local server generates a set of tasks specific to each fer-

mentation setup, which may involve slight modifications of the resulted model. Specifically, it

may include an update in reaction boundaries for several model reactions, thus giving means

to perform media gradient and sensitivity analyses; to perform estimation within same setup

of various oxygen amounts; and to simulate sets of reaction knockouts. The generated set of

single tasks is sent to Azure Cloud side for the evaluation via a dedicated queue (task-requestq).

This stage is also parallelized into several instances to support tasks multiplicity. The details of

estimation results (i.e. flux values of specific reactions) are placed in a dedicated result blob

and the local server is notified with result summary via dedicated notification queue (task-
resultq).

To address computationally challenging estimation problems, such as reaction knockout

analysis, the BioLego architecture on the local server side includes few additional components

dedicated to handling large-scale tasks. Specifically, we parallelize both the sending of task cal-

culation requests and the processing of the received single-task results.

The entire simulation framework is implemented in Perl for management of model and

media files, in Matlab for FBA formulations and in GNU Linear Programming Kit [30] for

solving the resulting linear programming problems.

2.3. Media sensitivity analysis

Sensitivity analysis aims to understand the sensitivity of estimated fermentation efficiencies to

the presence of the certain components in the received media. Specifically, we are interested in

the relative change (in %) in the production yield, further on relative yield. To this end, we iter-

atively remove media components one at a time by nullifying the value of the appropriate reac-

tion boundary (vUBr ) in Media chamber (Eq 2 and Fig 1) and repeating the estimation process.

The resulting relative yield is a ratio of the new and the original (both minimal and maximal)
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production yields (Eq 5).

RelativeYieldðcompoundÞ ¼ 100% �
vTotalProductfs:t: : vOutside!MediaðcompoundÞ ¼ 0g

vTotalProductforiginal setupg
ð5Þ

2.4. Optimization of biomass composition by media gradient

In addition to elimination of certain media compound (as in 2.3), biorefinery designer can

be interested in the minor media modifications, for example resulted from different feedstock

crop growth conditions. Media content optimization by gradient analysis is targeted to under-

stand the sensitivity of estimated fermentation efficiency to minor changes in media. To this

end, we iteratively increase the amount of media components one at a time by adding small

δ (δ = 1mg/gDW of media) value to appropriate reaction boundary (vUBr ) in Media chamber

(Eq 2 and Fig 1) and repeating the estimation process. The resulting gradient component is

equal to the difference between new and the original (both minimal and maximal) production

yields (Eq 6).

GradientðcompoundÞ ¼
vTotalProductfs:t: : vOutside!MediaðcompoundÞ þ dg

�

vTotalProductforiginal setupg

2

4

3

5
.
d ð6Þ

2.5. Fermentation pipeline optimization by reaction knock-outs

Biomass fermentation pipeline can be optimized not only by a smart selection of participating

organisms and their ordering, but also by internal organism modifications. Our software sup-

ports the evaluation of the effect of deleting any selected subset of reactions on the resulting

production rates. Mathematically, to simulate the reactions’ knockouts we nullify the values

of boundaries of corresponding reactions (vUBr ¼ vLBr ¼ 0) and repeat the estimation process

[27,28].

In the BioLego system we provide an option to simulate any number of simultaneously

deleted reactions in each organism in the pipe. Specifically, the user has an option to select in

each organism a specific reaction to knockout or to perform an exhaustive scanning of all pos-

sible reactions and reaction combinations. This selection can be performed in a nested scheme,

whereby at each repetition the new knockouts are added to the previously selected ones.

2.6. Experimental two-step fermentation with S. cerevisiae and E. coli
2.6.1 Microbial cultivation. A fresh culture of Saccharomyces cerevisiae (Ethanol Red,

Batch 62186/2, ‘Leaf’, France) or Escherichia coli, strain K-12 MG1655 wild type (WT) were

prepared by smearing the microorganism from the glycerol stock (in -80 ˚C) on agar plates

with rich media. For S. cerevisiae the rich medium was yeast extract peptone dextrose (YPD).

YPD medium was composed of 1 L of distilled water (Zalion, Israel), 10 g/L yeast extract

(BD, Bacto™ Yeast Extract), 20 gr/L peptone (BD, Bacto™ peptone) and 20 g/L glucose (Merck,

D(+)-glucose [31]). For E. coli the rich medium was Lysogeny broth (LB) agar plates. The LB

medium composition was 1 L of distilled water, 10 g/L NaCl (Bio-Lab, Israel), 10 gr/L tryptone

(Neogen, U.S.A.) and 5 g/L yeast extract (BD, Bacto™ Yeast Extract [32]). In order to prepare

YPD or LB solid medium, an agar (Merck, Agar-agar) 15 g/L was added to the medium.

After autoclaving in 121 ˚C for 30 minutes (Tuttnauer 2540MLV, 186 Netherlands), the liquid

cooled and poured into 90mm petri dishes. After the plating, the microorganisms’ plates were

incubated in 32 ˚C or 37 ˚C for S. cerevisiae and E. coli, respectively.

Distributed flux balance analysis simulations of serial biomass fermentation by two organisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0227363 January 16, 2020 7 / 17

https://doi.org/10.1371/journal.pone.0227363


2.6.2 Ulva biomass hydrolysis. The biomass of Ulva lactuca was cultivated offshore,

detailed cultivation process and cultivation conditions described in [33]. After harvesting the

biomass, it was dried in 40 ˚C up to achieve a constant weight. Then, the dry biomass is milled

with an electric grinder (Grinding machine, Henan Gelgoog Machinery GG9FZ-19) until

powdered. For obtaining a constant particles size (0.063–0.125 mm) the powder passed

through a size-selective metal-mesh (Sieve Sets S3076, Aquatic Eco-systems). The Ulva
powder was then hydrolyzed thermochemically and, next, the residual was also hydrolyzed

enzymatically.

The thermochemical hydrolysis was performed by autoclaving in 121˚C for 30 min in

50 mL autoclavable tubes (Nalgene™ Oak Ridge High-Speed PPCO 185 Centrifuge Tubes,

Thermo-Fisher Scientific, CA) with 2 g of the Ulva powder and with 20 mL of 2% sulfuric acid

(v:v) (Sigma-Aldrich, Israel). After the autoclaving, the hydrolysate neutralized to pH 6 with

NaOH (Merck, Sodium hydroxide), with about 1.7 ml of 3M NaOH. Additionally, for stabiliz-

ing the hydrolysate’s pH a 3.3 ml of 0.5M phosphate buffer was added (Phosphate Buffer Pow-

der, Sigma-Aldrich, Israel) [34]. At the end of thermochemical hydrolysis, the solid and the

liquid were separated using centrifuge (Rotanta 46 RSC, Hettich, Germany) at 4000 rpm for 7

minutes. The liquid phase was transferred to a sterile 50 mL test tube (Miniplast, Israel) while

the solid phase left in the 50 mL autoclavable tubes went to further enzymatic hydrolysis.

In order to enzymatically hydrolyze the solid phase, 20 mL of sodium acetate buffer

(200 μM) (Sigma-Aldrich, Israel) were added to the 50 mL autoclavable tubes with the solid

phase. Additionally, a mixture of enzymes was added with the following active units (in 20

ml): amyloglucosidase 36 U, α-amylase 19 U and cellulase 33 U. The enzymatic hydrolysis was

done horizontally in an orbital shaker incubator (Incu-Shaker Mini, Benchmark, USA) for 24

h at 45 ˚C with 150 rpm [35,36].

Finally, 25 ml of the thermochemical hydrolysate and 20 ml of the enzymatic hydrolysate

were mixed and the liquid phase was separated using a centrifuge, at 4000 rpm for 7 minutes.

This liquid phase was used for the two-step fermentation.

2.6.3 Two-step fermentation of Ulva hydrolysate. The Ulva hydrolysate was fermented

in a two-step fermentation process, after adding a microbial starter. The microbial starters

were prepared by transferring a single colony of each microorganism (S. cerevisiae or E. coli)
from rich solid media (YPD or LB) to 15 mL sterile test tubes (Culture tubes, PP, 2-stage-cap,

Bar-Naor, Israel) with 2 mL of hydrolysate. The microorganisms incubated in the hydrolysate

during an overnight at 32 ˚C for S. cerevisiae and 37 ˚C for E. coli, both shaken in an orbital

shaker incubator at 150 rpm.

The two-step fermentation was applied in four different microbial sequential combinations

as described in S4 Table. Every fermentation started after adding 75 μL of starter to the hydro-

lysate. The microbial concentrations in the starters were: S. cerevisiae 0.43 OD 600nm and E.

coli 0.33 OD 600nm (Tecan Infinite 200 PRO, TECAN, Switzerland). First fermentations took

place in 3 mL of Ulva hydrolysate in sealed 10 ml autoclavable tubes (Nalgene™ Oak Ridge

High-Speed PPCO 185 Centrifuge Tubes, Thermo-Fisher Scientific, CA). The microorganisms

in both fermentation steps were incubated for 24 h, in orbital shaker incubators with similar

temperature and shaking conditions as used for the starters. After every first fermentation

step, the ethanol was removed from the samples and the microorganisms were deactivated.

The ethanol was evaporated from the samples by heating to 80 ˚C for 25 min in a water bath.

The deactivation of the microorganisms was done in an autoclave, 121˚C for 30min. At the

end of every fermentation, the test tubes were weighed, and samples were taken for analyzing

monosaccharides and the ethanol content.

2.6.4 Sugars and ethanol measurements. The sugars were identified and separated with

HPIC (Dionex ICS-5000, Thermo Fischer Scientific, CA, USA), with the same chemicals,
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separation method, analytical column, electrode and detector as used in [34]. Prior to the

HPIC analysis, the samples were diluted 50 times and were filtered with 22 μm syringe-filter

(Millipore, USA) into the HPIC vials. The sugars in the samples were quantified after compar-

ing them to reference standards of rhamnose, galactose, glucose, xylose, fructose and glucu-

ronic acid (chemicals for standards from Sigma-Aldrich, Israel).

The ethanol was measured with an ethanol assay kit (K-ETOH, Magazyme, Ireland) using a

spectrophotometer (Tecan, infinite M200 PRO) at OD 340nm.

Results

This section briefly covers experiments performed for this study. This includes (1) exploratory

search for optimal biomass utilization setup for three different types of corn biomasses; (2)

analysis of possible effects of changes in composition of K. alvarezi algal biomass on the etha-

nol production yield in the anaerobic two-step process; (3) analysis of the impact of knocking

out single reactions either in one or in both organisms on the estimated ethanol production

yields, under an anaerobic two-step fermentation process of Ulva sp. into ethanol; and (4) eval-

uation of BioLego predictions using experimentally measured data (see Materials and methods

for details of the experimental measurement).

3.1. Optimizing corn utilization

We performed an exploratory search for optimal biomass utilization for three distinct types

of corn biomasses—corn cobs, corn fiber and corn stover. The exact biomass compositions for

this experiment were derived from [37–39]. Five potential fermentation targets were evaluated:

ethanol, acetone, 1-butanol, (R)-propane-1,2-diol and (S)-propane-1,2-diol.

For each tested biomass and fermentation target we performed simulations for both single-

step and for two-step fermentations under either aerobic or anaerobic conditions for four

organism models (E.coli based on model iJO1366[23], C. acetobutylicum based on model

iCAC490[40] and two models of S. cerevisiae based on Yeast5[41]—with and without xylose

digestion mechanism) currently integrated in BioLego flow. In total, this experiment included

480 different simulations. Azure cloud side for this experiment included 10 instances of model

setup constructors each with 2 threads running on Standard A1v2 nodes with 1 core and

2048MB memory and 10 instances of single fermentation task evaluation instances, running in

3 threads on Standard A1v2 nodes with 1 core and 2048MB memory. The calculation of all sce-

narios, which included construction of 240 model configurations and 480 single fermentation

task simulations, was completed in 21 mins (estimated single-thread runtime is ~1.5–2 days).

Our results are provided in S1 Table. For ethanol production we predict corn cobs to be

most promising among the studied corn media compositions. Maximal production yields

(for all media compositions) were predicted for anaerobic two-step scenarios starting with S.

cerevisiae. For (S)-propane-1,2-diol production we predict corn fibers to be most promising

among the studied corn media compositions. Maximal production yields (for all media com-

positions) were predicted for two-step scenarios starting either with S. cerevisiae or with C.

acetobutylicum. Interestingly, all the scenarios with positive production yields (including the

aerobic one) include E. coli as one of the fermenting organisms.

3.2. Sensitivity and gradient analyses for ethanol production using

fermentation of Kappaphycus alvarezzi biomass

We analyzed the possible effects of changes in composition of K. alvarezi algal biomass on

the ethanol production yield in the anaerobic two-step process, in which first organism is S.

Distributed flux balance analysis simulations of serial biomass fermentation by two organisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0227363 January 16, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0227363


cerevisiae and the second one is E. coli. As was shown previously, this fermentation configura-

tion is predicted to result in high ethanol production [42].

K. alvarezi media is composed of 37 different compounds, testing each requires single fer-

mentation estimation task. For this experiment Azure Cloud side included 5 instances of single

fermentation task estimating instances, running in 3 threads on Standard A1v2 nodes with 1

core and 2048MB memory. Both sensitivity analysis (Eq 5) and gradient estimations (Eq 6) fin-

ished after 4 minutes (estimated single-thread runtime is ~3–4 hours).

Our results for media sensitivity analysis are available in S2 Table. Naturally, the ethanol

production yields appeared to be most sensitive to the presence of galactose and glucose in

media. Omission of these metabolites respectively decreased the ethanol production yields

to 46–53% and 44–57% (range is minimal to maximal predicted productions). Surprisingly,

omission of some media components (glutamic acid, glycine, tyrosine and leucine) slightly (up

to 0.3%) increased predicted maximal ethanol production. These findings can be explained by

decreased organism growth rate resulted from the component omission, which in turn led to

increased amounts of other media components available for ethanol production.

Our media gradient analysis results are available in S2 Table. Interestingly, gradient estima-

tion results for minimal and maximal ethanol production yields differ from each other. When

considering the minimal ethanol production rate, we observe the highest gradient for various

monosaccharides media components—mannose, glucose, galactose, xylose, arabinose; and

lowest for glutamic acid, aspartic acid and asparagine. When considering the maximal ethanol

production rate, we observe higher values not only for sugars but also for some amino acids,

like threonine (highest) and serine. Interestingly, asparagine, aspartic acid and serine have pos-

itive directional derivative values for maximal rates and negative directional derivative values

for minimal predicted ethanol production rates.

3.3. Two-step fermentation with knock-outs in each organism

We analyzed the anaerobic two-step fermentation process of U. lactuca into ethanol, in which

first organism is S. cerevisiae and the second one is E. coli. Here we investigated the impact of

knocking out single organism reaction either in one or in both organisms on estimated ethanol

production yield.

The S. cerevisiae model is composed of 2,280 metabolic reactions, and the E. coli model is

composed of 2,914 metabolic reactions. In total, this leads to 6,649,115 possible single knock-

out scenarios. To handle a task of this scale, the local server side was configured to operate 25

task calculation-request-sending threads and 10 result-processing threads. The Azure Cloud

side for this calculation included 45 single fermentation task estimating instances, each one

running with 10 threads on Standard D3v2 nodes with 4 cores and 14336MB memory. Run-

ning time for this experiment was 126 hours (estimated single-thread runtime is ~60–65

years). Notably, this time can be significantly reduced (up to 50–70%), with the same Azure

Cloud side configuration, by using a more powerful local server machine.

The results of the analysis results are described in S3 Table. Histograms of the predicted

impact of all knockout pairs (one reaction in S. cerevisiae and one in E. coli) on both minimal

and maximal ethanol production rates are presented in S3 Table and in S2 Fig. The results

describing the predicted impact of all knockouts on both minimal and maximal ethanol

production rates are presented as a heatmap in Fig 2. Minimal ethanol production yield is pre-

dicted to be increased to at most 146% of the wild type (WT) yields (for effectively one knock-

out candidate pair); while for maximal ethanol production this number reaches 170% of WT

(for 867 knockout candidate pairs). Interestingly, note that the below-diagonal section of the

heatmap is almost empty, meaning that most of the knockout pairs either equally affect both
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minimal and maximal ethanol production rates (pairs on the diagonal) or have a greater effect

on the maximal ethanol production (pairs above the diagonal).

There are 24 reaction pairs for which knockouts are predicted to increase both minimal

and maximal ethanol productions by more than 130%. These reaction pairs are combination

of 2 reactions from E. coli and 12 reactions from S. cerevisiae. The E. coli reactions consist, in

fact, of one artificial and one real reaction working in a linear process of proton (H+) extractor.

This means that in effect this result represents a single unique reaction in E. coli. This reaction

pairs with 9 non-orphan S. cerevisiae reactions, leading to 9 interesting combinations that can

potentially be further explored. The E. coli reaction can be encoded by one of the following E.

coli genes: b0241, b0929, b1377, b2215. The 9 S. cerevisiae non-orphan reactions map to 35

known genes. This process can be encoded by one b0241, b0929, b1377, b2215 genes. The

S. cerevisiae side includes 9 reactions with overall 35 known related genes. Analyzing these

genes with GOrilla [43,44] resulted mostly in proton-transporting and biosynthesis processes

(p-value of 1E-15 and less, S3 Fig).

3.4. Experimental validation of prediction quality

We compared the experimentally measured ethanol fermentation efficiency with the efficiency

predicted by BioLego system in four different scenarios: two serial two-step fermentation sce-

narios (S. cerevisiae followed by E. coli and E. coli followed by S. cerevisiae) and 2 single step

fermentations (S. cerevisiae and E. coli) with presence of small initial amount of oxygen. Specif-

ically, organisms were grown for 24 hours in closed vials with small amount of air. In these

experiments we measured ethanol production yield as a function of initial amount of sugars

(rhamnose, galactose, glucose, xylose, fructose and glucuronic acid) in U. lactuca biomass. The

experimental details are provided in Section 2.6 and S4 Table.

During BioLego simulations (same computational setup as in Section 3.1) to match the

experimental conditions, we assumed that U. lactuca biomass is composed purely from the

Fig 2. Heatmap of the expected minimal and maximal ethanol production yields per knocked pair of reactions, in [%] of wild

type (WT) respectively minimal and maximal ethanol production yields. The red circle marks 24 reaction pairs with both

minimal and maximal ethanol productions above 130%.

https://doi.org/10.1371/journal.pone.0227363.g002
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measured sugars (rhamnose, galactose, glucose, xylose, fructose and glucuronic acid) and

evaluated ethanol yields under a small allowed influx of oxygen (0-2mmol�gDW-1�h-1). Fig 3

demonstrates the similarity of the predicted maximal ethanol results with the performed

measurements.

Both scenarios which started with S. cerevisiae demonstrate good alignment (increasing

with the decrease of oxygen influx) with actual measurements. In both scenarios started with

E. coli, the BioLego predicts complete digestion of sugars by this organism, which does not

happen in practice. We hypothesize that major reason for such discrepancy lays in simulation

assumption of infinite growth time given to bacteria. For example (S4 Table), we measured the

amount of glucose in the initial media to be 56 mg/mg DW, while after the fermentation with

E. coli to be 31 mg/mg DW. In infinity, assumed by BioLego simulations, we predict complete

digestion of glucose. Thus, in the setup when S. cerevisiae is grown as a second organism, it

should not have any media components sufficient for ethanol production.

Another interesting hypothesis rises from the analysis of ethanol yield as a function of oxy-

gen influx. Maximal similarity for S. cerevisiae predictions appears at low values of oxygen

influx (maximum is in completely anaerobic setup), while for E. coli predictions best similarity

needs at least 2mmol�gDW-1�h-1 influx of oxygen (2mmol of oxygen per 1 gram of dry cellular

biomass per hour). We hypothesize that oxygen-uptake transporters in these two organisms

may work with different rates (approximately 1 order of magnitude) in the same conditions.

This hypothesis is well aligned with the findings of Hagman et al, who report approximate S.

cerevisiae oxygen uptake rate of 3.5mmol�gDW-1�h-1 [45] and of Andersent et al, who report

approximate E. coli oxygen uptake rate of 20mmol�gDW-1�h-1 [46].

Discussion

The modular approach proposed and implemented in the BioLego Project results in notably

simplifying the construction of different fermentation scenarios as well as the evaluation of dif-

ferent participant organisms within the scope of existing scenarios.

Fig 3. Experimental validation of BioLego predictions. Values for wet lab experiment are displayed ±STD.

https://doi.org/10.1371/journal.pone.0227363.g003
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There are several potential directions currently considered for the next generation of Bio-

Lego. First is to provide an interface to receive models externally mapped to our envelope

metabolites. Such interface will open the opportunity for evaluation of fermentation potential

using additional, custom and proprietary organism models. A related direction in the above-

mentioned context is an integration of automatic model reconstruction algorithms, such as

MIRAGE [21], as part of the BioLego framework. Another planned promising direction is to

provide the interface to create more complex fermentation scenarios. Finally, we plan to incor-

porate knockout-optimization algorithms both from perspective of decreasing the knock-out

space such as Flux Coupling Analysis[47] and from perspective of solution optimality such

as OptKnock [27] and RobustKnock [28]. Currently, the BioLego project does not directly

address knockout optimization, rather it provides an option to evaluate the system perfor-

mance under preselected sets of knockouts of interest (including the brute-force screening of

the space of single knock-out).

In parallel, we plan to work on improving the quality of BioLego predictions by adjusting

the simulations to better fit wet experiments performed in parallel. Refinement of the existing

organism models, integration of additional process constraints, introducing the longitudinal

considerations by switching from steady-state FBA optimizations performed now to the

dynamic FBA optimizations [48] are some potential approaches to this goal.

Changes in the server architecture, including support for docker infrastructures, also repre-

sent directions for potential further developments.

Conclusion

We presented the next version of the BioLego framework, which is a freely downloadable

webservice, ready for installation in the Microsoft Azure Cloud environment. BioLego pro-

vides a friendly and intuitive interface that enables the simulation (modeling and evaluation

of the expected performance) and the optimization of single and two-step fermentation pro-

cesses. The BioLego fermentation simulator is a scalable distributed framework, providing

means to the process designers for analyzing, predicting and comparing the expected effi-

ciency of several fermentation scenarios of interest. It is based on a novel flexible modular

modelling approach, enabling smooth generation of different multi-organism fermentation

configurations consisting of independent encapsulated modules, representing individual

organisms.

The major contributions of this work are (1) freely downloadable BioLego Vn2.0 which is

ready to install on a Microsoft Azure Cloud environment platform; and (2) Biological predic-

tions for various fermentation scenarios supporting several published studies.
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