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A B S T R A C T

Offshore macroalgae biomass production is a promising, yet challenging, pathway to provide feedstock for
biorefineries. In this work, a device and a process for dewatering offshore grown biomass of the green macro-
algae Ulva sp. using high-voltage pulsed electric fields (PEF) was developed. Ulva sp. was cultivated attached to
fish cages 15 km offshore. Increasing the applied voltage from 250 V to 500 V and invested PEF energy from
9.3 ± 0.4 J g−1 FW to 54.6 ± 0.2Jg−1 FW increased the extracted water from 0.033 ± 0.006 gWater g−1 FW
to 0.150 ± 0.031 gWater g−1 FW. The energy consumption to achieve similar moisture content with air con-
vection drying was lower by 78.73 ± 10.41 (JgFW−1) for 250 V and 339.31 ± 48.01 (JgFW−1) for 500 V,
pulse duration 50 µs, pulse number 50, pulse repetition frequency 3 Hz. PEF leads to biomass compression of
8.45 ± 1.72% for 250 V protocol and 25.66 ± 2.53% for 500 V protocol. In addition, PEF leads to the re-
duction of water diffusivity of 18–19% in the treated biomass, reducing air drying kinetics.

1. Introduction

Global population growth in the era of changing climate will in-
crease the demand for food, chemicals, and fuels. A possible, sustain-
able direction for addressing this challenge is the production of mac-
roalgae biomass offshore- Seagriculture (Roesijadi et al., 2010;
Wargacki et al., 2012; Yun et al., 2015). Seagriculure could provide a
sustainable feedstock for biorefineries, for the production of food,
chemicals, and fuels without competition with food crops for arable
land or potable water. For example, using a metabolism and growth
rate model of the green marine macroalga Ulva, coupled with essential
inputs from climatological oceanographic data, we showed that off-
shore cultivation of macroalgae has the potential to provide some of the
basic products required for human society in the coming decades
(Lehahn et al., 2016). For example, this includes displacing 20% of the
used fossil fuels in the transportation sector and providing for 100% of
the predicted demand for ethanol, acetone, and butanol, and 5–24% of
the demand for proteins (Lehahn et al., 2016).

Nevertheless, offshore production and processing of the biomass, in
the high-energy environment is challenging. Thus, to date macroalgae
still present only a tiny percent of the global biomass supply of ~17·106

fresh weight (FW) ton of macroalgae in comparison to 16·1011 tons of
terrestrial crops, grasses and forests (Pimentel, 2012; Pimentel and
Pimentel, 2008; Roesijadi et al., 2010). The current approaches for
offshore seaweed cultivation include near farm concepts for kelp cul-
tivation (Bird, 1987), tidal flat farms, floating cultivation (Bird, 1987),
ring cultivation (Bak et al., 2018; Buck and Buchholz, 2004), wind-farm
integrated systems (“Marine biomass from offshore wind parks. http://
www.submariner-project.eu/index.php?option=com_content&view=-
article&id=159:marine-biomass-from-offshore-wind-parks&cati-
d=62:regionalactivitiesdenmark&Itemid=402,” n.d.) and intensified
with mixing and aeration cages. Yet, the most recent analysis shows
that there are no efficient harvesting and storage methods for large
scale seaweed production offshore (Nilsen, 2018). Studies on the agri-
cultural processing systems (French, 1960) and seaweed biorefinery
energy efficiency analysis (Golberg et al., 2014) show that feedstock
transportation costs limit the distance of the cultivation site to the
processing facility. Analyzing the energy expenses required for trans-
portation of seaweeds from remote farms, we found that the distance of
the large-sale offshore cultivation site to the processing facility is lim-
ited to 114–689 km when lower water content allowed for longer
transportation distances. Thus, technologies for rapid offshore
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dehydration are needed (Golberg et al., 2014; Nilsen, 2018). However,
the technology for rapid seaweed biomass dehydration is not yet
available.

The goal of this work is to develop a device and a process for de-
watering offshore grown macroalgal biomass using high-voltage pulsed
electric fields (PEF) coupled to the mechanical pressing. PEF is an
emerging, non-thermal method used in the food industry for food dis-
infection, enzyme activity modification and molecules extraction from
the biomass. The PEF process uses high-voltage short-duration electric
fields for modifying biological membrane permeability. Application of
PEF as an intensification method of the extraction has been widely used
in the processing of fruits and vegetables (Bodenes, 2017). In the recent
work it was shown that PEF can be used for the selective extraction of
proteins from Ulva sp. (Polikovsky et al., 2019, 2016) biomass. In ad-
dition, it was shown that PEF can be used for seaweed biomass deashing
(Robin et al., 2018). Extraction of water-soluble proteins and carbo-
hydrates from macroalgae using PEF was also demonstrated by other
authors (Postma et al., 2017). Although used for dewatering of cassettes
in the sugar beets processing (Almohammed et al., 2015; Sack et al.,
2010) and energy-efficient dehydration of green biomass (Sack et al.,
2009; Vorobiev and Lebovka, 2008) to the best of our knowledge PEF
coupled to mechanical pressing has not been used for seaweed pro-
cessing. As PEF technology is scalable (Golberg et al., 2016; Sack et al.,
2010), it could address the needs to seaweed dehydration in offshore
farming.

This work specifically examined the application of PEF for dewa-
tering of Ulva sp. biomass, which is a potential feedstock for marine
biorefineries (Glasson et al., 2017; Postma et al., 2017). PEF coupled
with mechanical pressing can partially dewater and compress Ulva sp.
biomass, providing an essential tool for the development of offshore
Seagriculture, particularly in offshore farms as dragging wet seaweed
biomass to the shore for processing to energy and food does not make
energetic basic and leads to biomass quality loss.

2. Materials and methods

2.1. Biomass inoculum production

The model seaweed used in this study belongs to the genus Ulva sp.,
green seaweeds of worldwide distribution commonly found within the
Israeli Mediterranean Sea intertidal zone. The exact taxonomic status of
the Ulva sp. used in this study suggests a mix of two morphological and
genetically similar types, Ulva rigida and Ulva fasciata (Krupnik et al.,
2018), and are referred as Ulva spp. in this study.

2.2. Ulva spp. Offshore cultivation coupled with the open-sea fish farm

Offshore cultivation was conducted by attaching the cages with Ulva
spp. biomass to the commercial fish cages farm installed 15 km west of
Ashdod port, Israel. The detailed description of the single point mooring
submergible technology appears in refs (Drimer, 2019; Milich and
Drimer, 2019). The depth of farm installation (seabed depth): 73–82m.
Type of soil- dirt. Streams: 70% of the time North, 30% of the time
South. The farm has a single point mooring and that it the way it always
rotates to the direction of the stream. The farm can be submerged to the
depth of 42 meters (top part of the cage). During the seaweed culti-
vation period, the farm produced gilt-head (sea) bream (Sparus aurata).
From the 8 cages, cages #1 and #8 were empty (Fig. 1), cage#2 con-
tained 400,000 fish till 1 June and 200,000 fish till 25 August, con-
suming 110 ton of feed from March to August. Cages #3 and #4 con-
tained 430,000 fish and consumed 180 ton and 152 ton during the
cultivation period, Cage#5 contained 510,000 fish and consumed
30 ton of feed during the seaweed cultivation period, Cage#7 had
500,000 fish from June 20 and consumed 9.7 ton of feed till August 25.
The fish composition was 45% protein and 18–22% lipid for cages
#2,3,4,5 and 50% protein and 18–22% lipid for cages #6,7. A 2 cm

layer of Ulva spp. thalli were placed between two layers of poly-
propylene tubular nets (TENAX, Gallo Plastik, Italy) to allow for full
illumination and prevent grazing. The seaweed cages were attached to
the fish cages at 6 locations at 0.5m, 5m, and 10m depths. The initial
load of the biomass was done by an inoculum grown in the laboratory
photobioreactor as described below. At the following points the initial
load was done with the biomass from stocks grown in the cages off-
shore.

2.3. Ulva spp. Biomass maintenance in the photobioreactor.

Ulva spp. biomass grown offshore was kept under controlled con-
ditions using 40 L macroalgae photobioreactors (MPBR) incorporated in
a building’s south wall under daylight conditions in a system described
in ref (Chemodanov et al., 2017b). Nutrients were supplied by adding
ammonium nitrate (NH4NO3) and phosphoric acid (H3PO4), (Haifa
Chemicals Ltd, IS) to maintain 6.4 gm−3 of total nitrogen and
0.97 gm−3 of total phosphorus in the seawater. The sole CO2 source
was bubbled air. Other conditions such as pH (8.2), salinity, and airflow
rate (2–4 Lmin−1) were maintained steady in all the reactors. The
surface water was removed from the harvested biomass with a standard
protocol by centrifuging the algal biomass in an electric centrifuge
(Spin Dryer CE-88 (6.0 kg) 2800RPM Stainless Steel Housing, Beswin,
China) until all surface water was removed (< 1mL separated).

2.4. Pulsed electric field coupled to mechanical press for seaweed biomass
electroporation and dewatering

A custom made pulsed electric field generator was developed for
seaweed biomass PEF treatment. The generator provides at a maximum
voltage of 1000 V and current of 120 A at the 5 Ohm load. The max-
imum pulse duration, the number of pulses and pulse frequencies are
limited by the permissible heating of the IGBT transistors. In our
system, described below, for 5 Ohm load and 1 Hz pulse repetition rate
the maximum pulse duration is 100 µs. The functional circuit diagram
of the developed pulsed generator is shown in Fig. 3. The main func-
tional nodes of the system include: 1) energy storage capacitor (ESC)
with a capacity of 50 µF for voltage 1.25 kV; 2) high-voltage source of
charge of energy storage capacitors (CCM1KW (Spellman, NY)); 3)
parallel-connected high-voltage switches for pulsed discharge of ESCs
(IXYN120N120C3 (IXYS, CA) with parameters of 1200 volts, 120 A; 3)
driver of high-voltage switch with electrical circuits of control of
transistors gates and own power supply (Gate Driver Optocoupler
FOD3184 (Fairchild, CA)); 4) high-power current-limiting resistors
(RR02- 3 OHM-2W); 5) circuit node for manual control of high-voltage
switch and high-voltage power supply in testing mode; 6) micro-
controller for controlling the process of PEF treatment, calculating the
current at the treated biomass, and transferring the results of calcula-
tions to the computer for writing to the experiment file; 7) low-voltage
power supply for control circuits and fans of the device. The device is
connected by a USB interface to a computer for input the experiment
parameters in the microcontroller, displaying the current state of the
process and record the received data in the experiment file. Currents
were measured using a PicoScope 4224 Oscilloscope with a Pico Cur-
rent Clamp (60A AC/DC), (Pico Technologies Inc., UK). The voltage was
measured with PicoScope TA044 70MHz 7000 V differential oscillo-
scope probe 100:1/1000:1. Currents and voltages were analyzed with
Pico Scope 6 software (Pico Technologies Inc., UK).

The gravitational press-electrode device (diameter 2.5 cm), for the
separation of solid and liquid phases during electroporation, is shown in
Fig. 3b. A load weighing up to 10 kg can be placed on the load-receiving
platform connected to the sliding electrode to create the necessary
inter-electrode pressure on the biomass (Fig. 3b). A displacement sensor
(optoNCDT, Micro-Epsilon, NC), Fig. 3b is used to monitor the volume
change of the biomass during electroporation. For continuous liquid
extraction, narrow slit-like openings were made in the lateral part of the
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electroporation cell. The extracted liquid is collected and discharge
through a groove at the base of the cell (Fig. 3b).

For PEF treatment, 1 g of the centrifuged to constant fresh weight
(FW) biomass was loaded in the chamber and PEF were applied. The
used protocols were 250 V and 500 V, pulse duration 50 µs, pulse
number 50, pulse repetition frequency 3 Hz. The currents and the dis-
tance between the electrodes were measured continuously as described
above. Three repetitions were conducted for each of the experimental
settings.

The Ulva biomass volume compression (%) after PEF treatment was
calculated with Eq. (1)

= ∙ −compression% 100% U U
U

PEF0

0 (1)

where U0 (mm3) is the initial volume of the biomass in the electro-
poration chamber before PEF and UPEF (mm3) is the volume of the
biomass in the chamber after PEF. For controls, the biomass was in the
chamber for 1min under the same pressure as the PEF treated biomass.

The energy used (Jin (Joule) for Ulva biomass treatment with PEF
was calculated with Eq. (2)

∑= ∙ ∙
=

=

J V I tin
i

i N

i p
1 (2)

where V (V) is the applied voltage, Ii (A) is the measured current for
each pulse, tp(µs) is the pulse duration and N is the total number of
pulses.

The energy saved on evaporation (Js) by Ulva biomass dewatering
with PEF coupled to mechanical press in comparison with evaporation
was calculated with Eq. (3)

= + −J c M T L M JΔ Δ Δs p
water

vap in (3)

where cp (4.2 J g−1) is the specific heat capacity of water, MΔ (g) is the
mass of removed by PEF and press water, TΔ (°C) is the temperature
difference between room temperature and evaporation temperature
(25–100 °C in our example), Lvap (2300 J g−1) is the latent heat of water
vaporization.

2.5. Biomass drying

Moisture and DW content was determined by drying the sample at
105 °C for 12.5 min (till all moisture was removed), using moisture
analyzer (BM-50-5, Biobase Biodustry (Shandong) Co. Ltd., China).
Records for total weight (g), solid content (%) and moisture content (%)
were taken every 30 sec.

Assuming that the tissue is isotropic with respect to water transport,
water diffusivity in seaweeds can be described with the Fick’s second
law of diffusion (Eq. (4)):

= ∇ ∇dw
dt

D w (4)

where D (m2 s−1) is the diffusivity of water in the sample, t (s) is drying
time, and w is the dimensionless moister content calculated as in Eq. (5)

= −
−

w M(t) M
M M

e

0 e (5)

where M(t) is the moisture content at drying time t(s), Me is the
moisture content at equilibrium and Mo is the initial moisture content.

Under the assumption of the equal distribution, negligible external
resistance, constant diffusivity, and negligible shrinkage through the
drying process, the solution for the seaweed slab is given by Eq. (6)
(Crank, 1975) validated in the food drying field (Kechaou and Maalej,
2000; Zogzas and Maroulis, 1996) and used as a first approximation in
multiple studies on PEF assisted drying (Adedeji et al., 2008; Amami
et al., 2008; Lebovka et al., 2007):
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+
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−
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( , , ) 8 1
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eff
2 0 2

2 2

2 (6)

where l (m) is the half-thickness of the infinite slab and Deff is the
empirical parameter that characterizes the drying rate (Lebovka et al.,
2007).

Fig. 1. Ulva spp. cultivation far offshore attached to the fish farm. Fish farm design, details appear in refs (Drimer, 2019; Milich and Drimer, 2019). Positions of
seaweed cages in relation to fish cages are shown. Ulva biomass growth and biochemical composition are shown.
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2.6. Biochemical characterization of the biomass

2.6.1. Determination of starch concentrations
Starch concentrations were measured by using a K-TSTA-100A total

starch assay kit (Megazyme, Ireland) as described before (Prabhu et al.,
2019a). Briefly, dry biomass (at 40 °C) powder was taken (10mg
sample (n= 3)) in 2ml tubes and washed twice in 500 µl, 80% (v/v)
ethanol to remove any glucose present. Two hundred microliters of 2M
potassium hydroxide (KOH) were then added and the tubes were
shaken horizontally for 30min at 37 °C and 150 rpm. The mixture was
further incubated at 100 °C for 1min to completely dissolve the starch.
Tubes were short spun for 1min at 23 °C and sodium acetate buffer
(800 µl, 1.2 M, pH 3.8) was added. Immediately, 10 µl α-amylase, 10 µl
amyloglucosidase were added and mixed using a vortex mixer. The
mixture was shaken for 2 h at 50 °C and 150 rpm. The tubes were then
centrifuged at 1800g for 10min (Eppendorf centrifuge 5424, Ham-
burg). The glucose released was measured at 510 nm, by reacting
0.01ml supernatant with 0.3ml glucose oxidase-peroxidase (GODPOD)
enzyme mixture for 20min. Starch concentration, as a percentage of the
DM, was calculated with the molar mass conversion from glucose to
anyhydroglucose (the starch monomer unit) of 0.9.

2.6.2. Determination of protein concentration
Total protein content in the Ulva spp. biomass was analyzed using a

modified version of the Lowry method (Lowry et al., 1951). Biomass
dried at 40 °C was accurately weighed (~15mg) in 2ml tubes and filled
to one-third with beads (zirconia, 2mm, Sarstedt) and 1.5 ml of 2M
sodium hydroxide (NaOH) solution. The tubes were run through 3
sessions of bead beating of 60 sec each, in a bead beater (Biospec (Ok,
USA) with intermittent cooling for 10minutes at 23 °C. The tubes were
then centrifuged at 14,000 rpm for 20min. The supernatants from all
the tubes were appropriately diluted with ultrapure water. Diluted
samples were analyzed by adding 100 μL in a well of a 96-well plate.
Biuret reagent was prepared by mixing 0.5 ml of 1% cupric sulfate with
0.5 ml of 2% sodium potassium tartrate, followed by the addition of
50ml of 2 % sodium carbonate in 0.1 N NaOH. Two hundred micro-
liters of biuret reagent were added to each well and mixed thoroughly
using a micropipette. The mixture was then equilibrated at 23 °C for 10
minutes prior to the addition of 20 μL per well of 1.0 N Folin & Cio-
calteu’s reagent. Samples were mixed immediately by repeated pipet-
ting following each addition. The color was allowed to develop for 30
minutes at 23 °C, following which, absorbance was measured at 750 nm
using a spectrophotometer (Infinite 200 Pro, TECAN, Switzerland). A
Standard curve was produced using bovine serum albumin (BSA) at
different concentrations (0–500 µg/mL). As a blank, water was used in
place of the sample. Analyses were done in triplicate and the results
were expressed as BSA equivalent in mg/L.

2.6.3. Elemental CHNS analysis
CHNS Elemental analysis was performed using Flash 2000 Organic

elemental analyzer (Thermo Scientific). Sample, 2–3mg was weighed
along with 8–10mg of vanadium in tin crucible. Combustion
Temperature was 950 °C, and carrier gas was helium (99.999%, flow
rate of 140mlmin−1) with addition of O2 at 250mlmin−1 for 5 sec.
Cyctine, BBOT, Sulphanilamide, Methionine were used as standards.

2.7. Statistical analysis

Statistical analysis was performed using R-studio, fitdistrplus,
ggplot2 and dplyr packages (RStudio: an Integrated development en-
vironment for R (Version 1.1.383) [Windows]. Boston, MA) and Matlab
(MathWorks, MA).

2.7.1. Comparison of drying kinetics of PEF dewatered seaweed
The comparison between the drying kinetics of seaweed biomass

treated with different protocols was performed in two steps. In the first

step, we performed a point-wise comparison by a two-tailed Student T-
Test method of the dimensionless moisture content at each time point
during drying. In the second stage, we combined all the drying time
point-based statistics into a single p-value according to Fisher’s com-
bined probability test (Fisher, 1932) (Eq. (7)):

∑= −
=

χ ln p2 [ ]
t

T

t
2

1 (7)

where t is the time point during drying for each comparison sub-set
(T=26 time points during drying: 30–13min with intervals of 30 s)
and p is the 2-tail p-value statistics of the test. The resulting score is of
χ2 distribution with 2 T=16 degrees of freedom.

2.7.2. Estimation of the diffusion coefficient
The diffusion coefficient Deff was estimated separately for each ex-

periment as an arithmetic average of three different numerical ap-
proximation approaches (Eq. (8), which minimize (i) the Mean Square
Error (MSE, Eq. (9)); (ii) the Mean Absolute Error (MAE, Eq. (10)); and
(iii) the Mean Relative Error (MRE, Eq. (11)) between the measured and
the predicted dimensionless moisture content, w, across the experi-
mental

replicate time points
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where t is the measurement time point id; T=26 is the total number of
measurements and time, t is the measurement time in seconds. The
wt

measured refers to the measured, normalized dimensionless moisture
content, which is always equal to 1.00 at the t[0]= 0 sec and equal to
0.00 at the t[T]= 12.5min. The w D h t( , , )t

predicted
eff refers to the pre-

dicted dimensionless moister content calculated with Eq. (6) using the
predicted value of Deff, measurement t and l, which is the half-thickness
of the infinite slab in meters.

A single-number estimation of the diffusion coefficient Deff for each
experimental setup (control, 250 V, 500 V) was performed in a two-step
manner. First, a median value of moisture content was calculated per
each time-point in the experimental setup. Then, total diffusion coef-
ficient was calculated as in Eq. (8) based on these median values.

3. Results and discussion

3.1. Far offshore grown biomass growth rates and yields

Our experimental design allowed us to verify the impact of the
season (Date), the cultivation depth (Depth) and the seaweed cage lo-
cation in relation to the single point mooring of the fish farm (Distance)
on Daily Growth Rate (DGR, in %), Yield (gFWm−2 d−1) and chemical
composition, such as starch content, protein content and elementary
composition (CHNS), Fig. 1.

Importantly, we achieve positive DGR (mean 3.47%, median 3.5%,
standard error (SE) 0.99%) and Yield (mean 2.82, median 3.13, SE
0.79 gFWm−2 d−1 were both positive for the whole cultivation period
(Fig. 1). Individually, Date and Depth did not have significant impact of
the DGR and yields. In addition, we also found that in this specific
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experiment the Distance from mooring did not impact the DGR and
Yield alone or in combination with Date and Depth. This could be be-
cause of the continuous rotation of the farm, which could cause to local
mix of nutrients. However, we found that cultivation Date and Depth
combined affected significantly the DGR (p= 0.02) and yields
(p=0.01) of Ulva biomass. Date and Depth predicate the essential for
biomass parameters: light and temperature.

The highest DGR (10.8%) and yield (8.7 gFWm−2 d−1) were
measured on 25 August at 10m depth at 100m distance from the
mooring point and the lowest DGR (−1.6%) and yield
(−1.9 gFWm−2 d−1) were measured on 25 August at 5m depth at 0m
from the mooring point, probably because of sporulation of biomass
washout. These results, which show a net positive growth in April-
August in the far offshore, are completely different from our previous
near-shore data, obtained for two years of Ulva cultivation in the
shallow sea waters near Tel Aviv, Israel, where no growth was observed
in June, July, and August (Chemodanov et al., 2019, 2017a). In this
study, we show that moving the cultivation 15 km from the shore could
enable year-round production of the biomass once the technology for
large-scale cultivation in these waters is available. Additional previous
studies on Ulva cultivation near stationary, not rotating like in our case,
fish cages located 3–4 km offshore in August 2012 reported up to 17%
specific daily growth rates in downstream from fish cages (Korzen et al.,
2015a). Additional work in the same location in September-December
2013 reported up to 13% specific daily growth rates downstream the
stationary fish cages (Korzen et al., 2015b). In both these studies, no
growth was observed upstream the cages. Future detailed studies
should address the fundamental differences in conditions between near-
shore and far offshore production and the impact of fish farms design
and dynamics on seaweed productivity.

3.2. Offshore grown biomass starch, protein, and elemental composition

The starch content of the biomass varied from 0.7% to 13.5% (mean
6.05%, median 7.5%, SE 0.64%) during the entire cultivation period.
The lowest value was measured on 18 May at 5m depth at Distance 0m
and the highest value was measured on 9 April at 0.5m depth at a
Distance of 100m from a mooring. We found that cultivation Depth
(p=2.02·10−5), Date (p=2.89·10−6) and combination of Date and
Distance (p=1.71·10−5) and Date, Depth and Distance (p=0.002)
affected the Ulva starch content (Fig. 2a–c). The starch content on 9
April (was higher in comparison to 18 May and 25 August (Fig. 2a).
Also, starch content on 0.5 depth was higher than on 10m depth
(Fig. 2a, c). The results of starch content dependence with date corre-
spond to our previous work on Ulva starch content in the laboratory
and near-shore data, where we showed that starch decreases in the
July-August and is the highest in December (Prabhu et al., 2019b).

The protein content of the biomass varied from 4.2% to 15. 7%
(mean 9.56%, median 8.56%, SE 0.57%) (Figs. 1, 2d). The lowest value
was measured on 9 April at 5 m depth at Distance 100 and the highest
value was measured on 25 August at 5m and 10m depth at Distance
100m from a mooring. Date (p=9.41·10−5), Depth (p=1.34·10−4),
Distance (p= 0.04) and combination of Date/Depth (p=0.02), Date/
Distance (p= 1.71·10−10) Date/Distance (p=0.03) affected sig-
nificantly the protein content of the biomass (Fig. 2d–f). The trend
shows that large distance from the mooring, deeper cultivation in Au-
gust lead to the higher protein content of the biomass. These results of
protein content could be partially explained by a higher flux of nu-
trients released from the cages farther from the mooring points, local
streams and longer day time (in August in comparison to April/May).

Analysis of elementary composition showed that the total carbon
content (%N) of the biomass was in the 19–37% range (mean 26.61%,
median 25.96%, SE 1.15%). The total nitrogen (%N) was in the 19–37%
range (mean 2.03%, median 1.75%, SE 0.18%). The total hydrogen (%
H) was in the 3.76–6.45% range (mean 4.89%, median 4.92%, SE
0.18%) and the total sulfur (%S) was in the 2.25–7.01% range (mean

4.21%, median 3.99%, SE 0.38%). We found that Date slightly affected
the %S (p=0.04); however, we did not observe any significant impact
of Date, Distance, Depth or their combinations on the total carbon,
nitrogen and hydrogen content suggesting that they were affected by
other factors. Alternatively, a large sampling size is needed to de-
termine the impact of the tested factors.

These results, however, only provide the first indication on the
impact of the multiple environmental conditions on the Ulva biomass in
the far-offshore environment growth and chemical content. The con-
ditions far-offshore are dynamic and are very complex for measurement
and interpretations.

3.3. Ulva spp. biomass compression and dewatering with pulsed electric
fields coupled with a mechanical press

The Ulva spp. biomass was dewatered with a combination of elec-
troporation coupled with mechanical pressing. The topology of the
developed pulsed electric field circuit is shown in Fig. 3a. The digital
image of the PEF generator is shown in Fig. 3b. The press electrode
device is shown in Fig. 4c. The detailed design of the electroporation
chamber is shown in Fig. 3d. The measured currents and calculated
field strengths for the first and last pulses and invested total energy for
each experiment are shown in Table 1. The shapes of voltage and
current curves for the first and last pulses are shown in Fig. 3e. One of
the currently unsolved issues with PEF application on the seaweed
biomass with our device is the appearance of uncontrolled current
spikes at the beginning and end of the pulse (highlighted in Fig. 3e).
These spikes are most probably the result of the accumulated whole
circuit inductivity and capacitance, which depends on the multiple
setup parameters including cables length and contact points. These
spikes lead to biomass exposure to high current but for a very short time
during the pulse. Such abnormal current spikes could affect the biomass
electroporation threshold (HO et al., 1995).

Previous works on green terrestrial biomass showed the PEF with
pressing leads to biomass compression (Yu et al., 2016), important for
biomass transportation from the cultivation sites to biorefinery
(Zoulalian, 2010). This volume reduction is an extremely important
feature for the seaweed biomass grown offshore. As in the nearest fu-
ture, we expect that the major processing will take place on land, the
transportation volumes of vessels will limit the distance of the farm
from the processing facility (Lehahn et al., 2016). Here we show that
pressing alone led to the biomass volume change of 301 ± 50mm3

(Table 2), which is 3.66 ± 0.46% compression (Eq. (1)). The applied
250 V protocol led to the 647 ± 207mm3 volume change
(8.45 ± 1.72% compression) and 500 V protocol led to
1981 ± 321mm3 (25.66 ± 2.53% compression) compression of the
biomass from the initial volume (Table 2, Eq. (1)).

Increasing the applied voltage from 250 V to 500 V and Jin from
9.3 ± 0.4 J g−1 FW to 54.6 ± 0.2 J g−1 FW increased the extracted
water from 0.033 ± 0.006 gWater g−1 FW to
0.150 ± 0.031 gWater g−1FW (Table 2). This also led to the saved on
evaporation energy: Js of 78.73 ± 10.41 (J gFW−1) for 250 V protocol
and Js of 339.31 ± 48.01 (J gFW−1) for 500 V protocol (Table 2,
Fig. 4a). Pressing alone lead to only 0.01 gWater g−1FW Ulva extrac-
tion and saved 26.15 (J gFW−1), Table 2, Fig. 4a. Previous work on PEF
dehydration showed that PEF could increase the dry matter of the sugar
beets cassettes after pressing from 35% to 40% (Almohammed et al.,
2015; Sack et al., 2010). However, in comparison to seaweed, the
cassettes have small initial water content. In addition, PEF has also been
used for dehydration of green terrestrial biomass as described in (Sack
et al., 2009; Vorobiev and Lebovka, 2008).

3.4. PEF dehydration impact on water diffusion in air-convention drying

We also determined the kinetics of water removal (Fig. 4b) and
effective diffusivity coefficient Deff in the control and PEF treated Ulva
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Fig. 2. The impact of Date, Depth and Distance from mooring on the starch (a–c) and protein (d–f) content.

Fig. 3. Pulsed electric field (PEF) setup for Ulva biomass dewatering. a. Schematic design of the high voltage PEF generator. b. Digital image of the assembled PEF
generator. c. Sliding electrodes with a coupled mechanical load. d. The design of electroporation chamber. e. Characteristic voltage (red) and current (black)
measurements during the first and the last pulses.
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biomass samples. The experimental data for w appears in Fig. 4c (dots).
Using numerical approximation with three different error-estimating
approaches (Eqs. (8)–(11)) we determined the Deff (Table 3) for both
control and PEF samples (Fig. 4c solid lines). The predicted vs measured
data for w is shown in Fig. 4c. These results show that PEF treatment
decreased the effective diffusivity coefficient of the seaweed biomass by
18–19% (depending on the error model), explaining the observed ex-
perimentally reduced drying kinetics (Fig. 4b). Although the kinetics of
water removal by air convection (Fig. 4b, Table 3) show that after PEF
treatment, the diffusion coefficient of water reduced (p < 0.0093 for
Control vs 250 V and p < 0.0179 for Control vs 500 V), we did not
observe any significant differences between post-PEF diffusion coeffi-
cient between the used treatments (p < 0.97 for both treatments). This
reduction of the water diffusivity after PEF could be explained by the
biomass compression and achieved a saturation already at 250 V
treatment (Table 2). The limitation of this diffusion estimation study is
that the Deff was established based on the classical diffusion models
under equal distribution, negligible external resistance, constant dif-
fusivity, and negligible shrinkage through the drying process. These
models have limitation in the description of the experimental drying

data (Hamdami et al., 2004) and validation and testing this assumption
is an important future step for this process scale-up.

4. Conclusions

A long-term positive growth and productivity was achived when
Ulva spp. was grown offshore in the proximity of fish cages. Substantial
amounts of starch and proteins can be extracted from the produced
biomass. Larger distance from the mooring, deeper cultivation in
August lead to the higher protein content. Electroporation coupled to
mechanical press allowed for rapid seaweed biomass dewatering and
compression. This dewatering, which could be done offshore leads to
potential reduced costs of evaporation energy. In addition, electro-
poration led to the reduction of water diffusivity of 18–19% in the
treated seaweed biomass and reduced drying kinetics by air convection.
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Table 1
Ulva sp. biomass dewatering with PEF. Applied PEF parameters.

Experiment number Voltage (V) Pulse duration
(µs)

Number of
pulses

Pulse Repetition Frequency
(Hz)

Total energy input
(Joule)

E (Vmm−1) First/Last
pulse

Current (A) First/Last
pulse

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 250 50 100 3 8.76 65.27/73.96 5.5/8.5
5 250 50 100 3 10.02 66.31/71.84 6.5/9.5
6 250 50 100 3 9.13 59.10/62.81 6.3/8.3
7 500 50 100 3 54.63 126.26/159.74 17.8/60
8 500 50 100 3 55.01 125.63/170.65 17.5/60
9 500 50 100 3 54.39 128.87/183.15 17.1/60
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