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g r a p h i c a l a b s t r a c t
� A Sparse NIR Optimization method
(SNIRO) for selecting a given number
of significant wavelengths from
spectra was developed.

� The computed complexity time and
the accuracy of SNIRO was compared
to Marten's test, to forward selection
test and to LASSO.

� SNIRO was used to determine protein
content in corn flour and meat, and
octane number in diesel using public
NIR datasets.

� SNIRO was used to determine the
glucose content in the green seaweed
Ulva sp.
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Visual-Near-Infra-Red (VIS/NIR) spectroscopy has led the revolution in high-throughput phenotyping
methods used to determine chemical and structural elements of organic materials. In the current state of
the art, spectrophotometers used for imaging techniques are either very expensive or too large to be used
as a field-operable device. In this study we developed a Sparse NIR Optimization method (SNIRO) that
selects a pre-determined number of wavelengths that enable quantification of analytes in a given sample
using linear regression. We compared the computed complexity time and the accuracy of SNIRO to
Marten's test, to forward selection test and to LASSO all applied to the determination of protein content
in corn flour and meat and octane number in diesel using publicly available datasets. In addition, for the
first time, we determined the glucose content in the green seaweed Ulva sp., an important feedstock for
marine biorefinery. The SNIRO approach can be used as a first step in designing a spectrophotometer that
can scan a small number of specific spectral regions, thus decreasing, potentially, production costs and
scanner size and enabling the development of field-operable devices for content analysis of complex
organic materials.
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1. Introduction measurement. The goal of the method presented in this study is to
optimize the selection of a pre-determined number of significant
Near-Infra-Red (NIR) and Visual-NIR (VIS/NIR) spectroscopy, in
the 350e2500 nm spectral range, is a widely used method for
analyzing compounds [1,2]. NIR and other imaging techniques are
currently used for several important applications such plant phe-
notyping, geological applications, food industry, and agriculture [3].
VIS/NIR spectroscopy can be performed in two modes: whole
spectrum and discrete wavelength selection [4]. Discrete wave-
length spectrophotometers have the advantage of being simple to
use and relatively cheap to develop, in comparison to whole
spectrum devices, due to the low cost of photodiodes and narrow
band light emitting diodes (LEDs) [5,6]. Furthermore, their design
can easily be miniaturized and packaged [7] to support robust and
efficient field work [8]. Wavelengths (ls) can be selected either by
using filters that screen for narrow bands or by using LEDs that
directly produce narrow bands [5,9]. An adverse result of analyzing
specific wavelengths is that their application is reduced to analytes
that absorb in the distinct selected spectral zones, whereas whole
spectrum instruments are applicable to a broad range of analytes
[10]. A major advantage of VIS/NIR spectroscopy over standard
chemical analysis methods is the speed of analysis. Therefore, many
applications of VIS/NIR can benefit from portable devices that can
be deployed in multiple locations in the field [5]. This demand
emphasizes the importance of developing low-cost, but precise,
devices. Such devices will be based on preselecting the application
specific wavelengths [7].

Complex samples chemistry analysis with low-cost portable
devices and multivariate analytics requires new methods for rapid
selection of informative wavelengths from the whole VIS/NIR
spectrum read [11,12]. One approach to extract the analytical in-
formation embodied in the VIS/NIR spectra is based on awide range
of multivariate analysis methods that relate specific variables (in
this case VIS/NIR spectrum components) to sample properties, for
example sugar or protein concentration [4,13e17]. Multivariate
analysis methods include 2D correlation plots [18], partial least-
squares regression (PLSR) [19], principal component analysis
(PCA) [20], support vector machines [21], neural networks [22] and
other machine learning approaches.

Mostmethods that address wavelengths selection often do so by
using indirect statistical approaches. For example, the Marten's
method is based on the standard deviation of the regression co-
efficients calculated from the cycles of leave-one-out cross valida-
tion [13,14]. Coefficients are rejected based on the normal
cumulative distribution function and whether they fall within a
pre-determined boundary. Another approach for feature selection
is the PLSR method. Studies have been done on fruit juice [23],
tomatoes [24] and wheat straw [25] to predict sugar and salt [26]
concentration using PLS, and the models produced vary according
to the number of factors chosen. Another approach is using slopes
across different spectral ranges as indicators of change in chemical
constitutes, combined with PLS analyses as done for fresh and dry
vegetation pasture, to determine protein content [27]. Other
studies conducted on grapes [28] used principal component anal-
ysis (PCA) to reduce the number of variables, and multiple linear
regression (MLR) for the variable selection. These PCA based ap-
proaches, while seeking to reduce the number of explanatory var-
iables, work with rotated and combined dimensions. The resulting
low dimensional explanatory vectors, therefore, cannot be directly
measured by a discrete VIS/NIR device of the corresponding
wavelength multiplicity.

One shortcoming of the discussed above methods is that they
only afford indirect control over the number of selected ls. In the
context of enabling field-operable measurement devices it is
necessary to control the number of ls upon which to base the
ls, with respect to the information that can be inferred about a
given analyte composition in a given type of sample. That is e to
develop an optimization process that takes as input a target
analyte type, A (e.g glucose), and a target sample type, T (e.g corn),
as well as training whole spectrum data from multiple samples,
and produces an efficient discrete spectra approach for measuring
A in samples of type T. The Sparse NIR Optimization (SNIRO)
process was developed to serve as a first step in designing and
potentially constructing field-operable discrete wavelength
spectrophotometers.

The framework developed herein, SNIRO, takes as input the
desired number of wavelengths, L, as determined, e.g, by engi-
neering device considerations. It then seeks an optimal combina-
tion of L wavelengths by using sparse linear regression. SNIRO is
deployed over a distributed computing platform (Azure, Microsoft,
WA).

Sparse linear regression seeks linear models that use only a
small number of explaining variables. In general, finding the
sparsest solutions to an underdetermined linear systems is NP hard
[29]. StOMP and other related techniques [30] heuristically address
a related task e find the sparsest near solution to an under-
determined system. The Westad-Martens uncertainty test (MUT)
[13] is also designed to select an adequate number of explaining
variables in a given system, but provides no direct control of L, as
above. Note that the task addressed in this paper, in the context of
VIS/NIR and inference of analyte levels, is finding the best
approximate solution of an underdetermined system, using a pre-
determined number of columns (L). While this task is strongly
related to sparse exact solutions or to solutions with fixed
approximation bounds [31], it is not the same. The current work is
driven by a fixed constraint on the number of parameters expected
to be affordable for a field operable device. Solutions produced by
StOMP or Westad-Martnes, while intrinsically more efficient, are
not necessarily useful in this context, as they are driven by accuracy
and may produce solutions with too many non-zero coefficients,
implementation of which is hardly possible in low-cost devices.

The SNIRO approach uses one of two processes to select the
wavelengths. The first starts with a correlation based dis-
jointification to reduce the set of wavelengths to be considered and
then exhaustively searches the best subset there. The other is a
forward selection approach tailored to the task at hand. To test and
validate SNIRO the process was first applied to several public
datasets including protein content in corn [32] and meat [33], and
diesel octane number [34]. Furthermore, we used SNIRO to model
glucose content in Ulva sp. macroalgae, using data that was
specially produced for this work. For diesel octane number we
demonstrate a measurement based on 5 VIS-NIR wavelengths that
has a Spearman correlation of 0.96 to the actual octane number (p-
value< 0.001), on a test set of 80 samples.

2. Methods and data

Data was obtained from various sources (see Methods e data).
The raw data was organized in a matrix in which each row repre-
sents a sample and each column represents a wavelength mea-
surement or an inferred derivative. Let NIR represent the mXn
matrix containing all the absorbance spectra and let S be the target
data, or the response vector, with every entry corresponding to a
single sample (Fig. 1). Therefore, every column of the input matrix
VIS/NIR (Fig. 1) represents the spectral absorbance measurement
results at one of the wavelengths used or an inferred derivative (we
index columns by l). Table 1 contains an explanation for each of the
variables used in the method. We provide code that implements



Fig. 1. m� n matrix representation of the VIS/NIR spectra (measured in samples of type T) and the response vector S (the analyte A measured in the same samples). These represent
the input to the learning process.

Table 1
Variables used in SNIRO.

Variable name Symbol Explanation

Analyte Type A The type of analyte targeted by VIS/NIR spectra model. For example, glucose.
Target Sample T The product containing the analyte. For example, corn flour.
Wavelength l A wavelength or inferred derivative.
Number of wavelengths n The number of ls in the full spectra.
VIS/NIR Spectra VNIR A matrix with n columns (ls) and m rows (samples).
Analyte Concentration S The target data trying to model. A vector of length m.
Training Length m The number of samples in the training dataset.
Spearman P Value pðl;SÞ The Spearman P value of a wavelength with the analyte concentration.
Disjointification ls E The number of ls for the disjointification process to allow through.
VIS/NIR disjointified matrix dVNIR A matrix with E columns and m rows.
Solution C The sparse solution vector to the underdetermined sparsity constrained system: dVNIR*C]S
Solution Length L The length of the solution vector, C. The number of wavelengths desired for the solution.
Set of changing ls L A set of L ls. Thus, a matrix of dimension m� L.
Best set of ls L* The best set of L ls which minimize the TRE.
Predicted Values PV A vector of length m of predicted values, a putative prediction of S.
Pearson Correlation t(l1, l2) The Pearson Correlation between two different ls.
Shuffled Analyte (random response) Sshuffle A shuffled analyte vector.
Best random set of ls for a random response L�

shuffle The best set of L ls produced using a randomized S vector which minimize the TRE.

Random Solution for a random response C�shuffle The sparse solution vector to the underdetermined system: dVIS-NIR*C¼Sshuffle
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SNIRO at https://github.com/yakhinigroup/sniro.git.
2.1. SNIRO e selection of the best wavelengths

SNIRO infers a small set of ls to form the basis of a linear model
for the analyte content quantification in a given sample type. The
SNIRO framework includes a training/test-data approach to support
model validation. Model results can be translated into a measure-
ment architecture based on a small number of VIS/NIR wave-
lengths. SNIRO can be applied to any sample type of interest and
will lead to feasibility assessment and to the potential development
of an efficient VIS/NIR device that allows analyte quantification in
that context, based on the inferred wavelengths that may obviously
depend on the specific analyte context. Themain steps of SNIRO are
as follows (Fig. 2):

1. Divide the data into a training dataset (of length m) and test
dataset at a ratio of 4:1. Choose samples for the test dataset
which best represent the distribution of values in the measured
target data, S. In the implemented software, the data were split
into test and training sets by using the R function ‘sample.split’
which preserves relative ratios of different labels/values in S.

2. Compute Spearman p-values, pðl; SÞ, for all ls in the initial
training data. This step is performed on a concatenated dataset
of the derivatives up to the 5th derivative (Fig. 1). Note that
higher derivatives require larger l windows which may affect
the measuring device. This step is similar to StOMP's Matched
Filter step [35]. While StOMP uses the filter step to select col-
umns for the next iteration, we use it to set the starting point of
our search based on the computational power available to the
procedure. In this work, Derivatives were calculated using
Savitzky-Golay method [36].

3. Determine a desired maximum number of ls to use in the next
steps of the calculations, denoted by E (depends on the expected
actual computing time and on the available processing power).
Note that ls can either be raw VIS/NIR measurement columns or
derivatives of different orders.

4. Perform a disjointification process to obtain a nearly orthogonal
linear system [m� E] for the training data. Thus at the end of
this step we have an m� E under-determined system to be
solved: dVNIR,C ¼ S (see pseudo code in supplementary).
Disjointification is a heuristic iterative orthogonalization pro-
cess designed to find a small (size controllable by the process)
set of co-ordinates/variables/measurements that are maximally
orthogonal. Disjointification results in a set of co-ordinates (in
our case wavelengths) that is a strict sub-set of the original co-
ordinates/measurements. This is a very important distinction
from classical methods such as PCA and SVD.While PCA is much
more efficient in finding a low dimensional representation of
the data it results in co-ordinates (or axes) that are linear
combinations of the original measurements. The same is true for
SVD. In many applications, such linear combination cannot be
directly measured. Since we are interested in a practicable set of

https://github.com/yakhinigroup/sniro.git


Fig. 2. Flow chart for the entire SNIRO method for L<<E.
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wavelengths (and/or derivatives) we must work with the orig-
inal co-ordinates. Disjointification yileds, therefore, a less effi-
cient but fully practicable set of variables to represent the data.

5. We seek a sparse solution C, where the number of non-zero
values of C are dependent on the number of ls in the desired
solution/device (the sparse size of the solution vector C is
denoted by L). To solve the system perform an exhaustive search
and generate

�
E
L

�
over-determined systems, L,C ¼ S, each of

which uses L columns of dVNIR. Each such over-determined
system is m� L. Solve each one of these using a pseudo in-
verse procedure. L depends on processing time and power as
well as the envisioned final measurement process.

6. The ls that yield the minimal Total Relative Error (TRE), denoted
L*, together with the associated solution C*, are selected as the
results of the process. The vector of predicted values (PV) for the
analytes of interest is given by: PV ¼ L*,C*.

TRE for PV and the actual measured value for the analyte
(denote by S) is defined as follows:

TRE ¼ 100
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
Si � PVi

PVi

�2
vuut (1)

7. Report results on the test dataset and validate against random
controls (see comment below for details). To visualize the vali-
dation, produce an R2

fit such as in Fig. 3a showing measured
against predicted values and reporting: TRE, Spearman corre-
lation, R2, best ls and C vector. R2 is calculated by the following
formula:

R2 ¼ 1�
P ðSi � PViÞ2P�

Si � S
� (2)
RMSE was calculated to compare SNIRO results to other litera-
ture results using the formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
SDy (3)

Where SDy is the standard deviation of the actual values.

2.1.1. Comments on permutation testing and controls
To control against over-fitting, shuffle the vector S from Step 2

and perform the entire process again. Use the resulted L�
shuffle and

C�shuffle on the test dataset. We expect to see a much higher TRE and
lower Spearman correlation on the test dataset when comparing
using the ls produced from the shuffled process L�

shuffle to those
produced from the real data L*. Such a difference indicates that the
primary results were not random. Produce a density histogram as
seen in Fig. 3b showing the distribution of 1000 TRE calculations of
a randomized S vector against the actual S vector. This is required to
determine the quality of approximation expected from shuffling
the actual values in S. This quality will differ depending on the
variance of the analyte data. When the number of wavelengths
considered gets too large the selection process may over-fit the
training data. In this case, it will approximate a randomly shuffled
analyte vector. In addition, analyte data with low variance may also
be well approximated by random shuffles of itself. Fig. 3b exem-
plifies benchmarking against random controls that addresses these
two issues. The histogram represents TREs for shuffles of S. The red
star represents the results of the entire learning process when
applied to shuffled data.

2.2. Data

2.2.1. Overview of datasets
Four different datasets that vary in sample size and spectral

range were used in the study, all on which SNIRO and other
methods were applied for comparison. The datasets for diesel, corn



Fig. 3. Test results and comparison of test results to the randomized process for the glucose concentration in the Ulva sp. dataset (a and b), protein concentration in the corn flour (c
and d), meat (e and f) and diesel octane number (g and h).
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flour andmeat are open source and available online. The dataset for
Ulva sp. glucose content was specially produced for this work, as
detailed below, and is available for use upon request. Data used for
the determination of protein concentration in Meat was recorded
on a Tecator Infratec Food and Feed Analyzer working in the
wavelength range 850 e 1050 nm by the Near Infrared Trans-
mission (NIT) principle. Each sample contains finely chopped pure
meat with different moisture, fat and protein contents. Table 2
details the sample size and spectral range of each dataset.

2.2.2. Macroalgae Ulva fasciata L. glucose measurement with high
pressure ion chromatography and VIS/NIR spectrometry

Ulva fasciata L. is a green marine macroalga of worldwide dis-
tribution found in the intertidal and shallow waters within the Is-
raeli Mediterranean shores Ulva sp. are of particular interest as a
feedstock for biorefineries [37e42] because of their high growth
rates and fermentable carbohydrate content [39,43e45]. Signifi-
cant effort is required to develop and select macroalgal species and
strains with specific properties tailored for food, chemicals or fuel
applications [46]. VIS/NIR spectrometry could enable rapid selec-
tion of strains with the required chemical composition, for example
high glucose content for biofuel fermentation [47]. The sufficient
goal for this early stage of this approach development is to differ-
entiate high and low glucose samples.

For the current study, specimens were taken from stocks
maintained at a seaweed collection at Israel Oceanographic &
Limnological Research, Haifa, Israel (IOLR). Cultivation trials were
conducted in an outdoor setting at IOLR. Single 5 cm2 pieces were
placed in 15� 15 cm plastic net baskets. A total of 100 baskets, with
a single thallus per basket, were divided into 10 groups (5 groups of
nutrients with two complete replicates), 10 baskets each, and tied
to 40-l fiberglass tanks supplied with running seawater and aera-
tion. With nutrients application (Supplementary Information
Table S2), the water exchange was stopped for 24 h to allow the
absorption. Total cultivation time for all 4 groups was 4 weeks from
8 to 29 November 2015.

Following the growth period in the outdoor tanks, each thallus
was dried separately at 60 �C for 48 h until constant weight and
ground into powder manually in a mortar with liquid nitrogen. For
hydrolysis, 0.05 g of Ulva sp. powder wasmixed with 2ml sulphuric
acid (5%) in 10-ml plastic tubes and autoclaved at 120 �C for 45min.
Next, 500mM of a phosphate buffer (Sigma, Israel) was added into
the above mix, and the resulting hydrolysate was neutralized with
3M sodium hydroxide (NaOH) to pH 7. Dionex ICS-5000 (Thermo
Fischer Scientific, CA) was used to quantify glucose in the hydro-
lysates. Carbopac MA1 (Thermo Fischer Scientific, MA) and its
corresponding guard column were used for separation. An elec-
trochemical detector with AgCl as reference electrode was used for
detection. A trinary solvent system was used for elution (Table S1,
Supplementary information). The column temperature was kept
at 30 �C and flow rate 0.25mlmin�1. Calibration curves were made
for glucose to determine its concentration in hydrolysates.

For spectral analysis, dried thalli were scanned by Fieldspec
Analytical Spectral Devices (ASD) Full-Range (FR) spectrometer
(Analytical Spectral Devices, Boulder, CO, USA) at three locations on
each thallus [61]. The FR spectrometer samples a spectral range of
Table 2
Description of datasets used.

Dataset Samples Spectral range [nm]

Diesel - Octane Number [34] 395 948e1550
Corn Flour eProtein [32] 80 1132e2498
Meat e Protein [33] 215 850e1050
Ulva sp. - Glucose 100 250e2500
350e2500 nm (http://www.asdi.com). The instrument uses three
detectors spanning the visible and near infrared (VNIR, comprising
a Si photodiode array) and shortwave infrared (SWIR1 and SWIR2,
comprising two separate InGaAs photodiodes). All samples were
measured in the laboratory by attaching the High Intensity ASD
Contact Probe (‘potato’) device to the sample and extracting an
average of 40 readings, using bare fiber and self-probed illumina-
tion. The “potato”was set on a stable tripod base andmaintained in
a constant position at a nadir-looking angle. For all measurements,
we used a Spectralon standard white reference panel (Spectralon,
Labsphere Inc. www.labsphere.com) in the same geometry as a
white reference to enable conversion of the measurement data into
reflectance values (see Excel Table in supplementary for spectral
data).

2.3. Distributed computing

The exhaustive processes in SNIRO required significant
computational time and resources. Thus, calculations were con-
ducted on several platforms using parallel computing. Code was
written on R, a language and environment for statistical computing
and graphics (https://www.r-project.org). Configurations used for
performing calculations include:

� 16 GB, 8 Core Microsoft Windows lab computer
� 8 GB, 4 Core Macbook Pro personal laptop
� 2 Microsoft Azure 32 Core Virtual Desktops operated via the
Microsoft Azure service: https://azure.microsoft.com/en-us/

� 16 Core Server at the Technion, Haifa

3. Results

Results for using SNIRO on the datasets, in the description
below, are divided into calibration and prediction datasets. We had
chosen to implement SNIRO with the parameters L and E equal to 5
and 100 respectively based on data analysis performed on the Ulva
dataset. More information regarding the data analysis can be found
in the supplementary material. Coefficients calculated for the
model VNIR,C ¼ S along with the wavelengths found are reported
using a notation scheme inwhich, for example, 350d3 indicates the
3rd derivative at wavelength 350. If the raw data is used, the
wavelength will appear without a derivative. Table 3 displays the
results for the four datasets used in this study. R2 and random
distribution graphs for the corn flour, meat and diesel datasets can
be found in the supplementary.

3.1. Determination of glucose in Ulva sp.

Dataset produced for this work includes VIS/NIR spectrum for
100 samples and glucose composition for each one. Prediction of
glucose content in Ulva sp/is paramount for the development of
algae-based bio-refineries as it enables faster screening based on a
simple form of measurement. Fig. 3a and b displays the results of
the test dataset using SNIRO to predict glucose concentration in
Ulva sp.

3.2. Determination of protein in corn flour

Prediction of nutritional values of corn is important due to the
ever-growing demand for the product in many different industries
such as food, energy and livestock. Thus NIR has been used as a fast
and accurate method for determining nutritional value of corn [48].
To date, many methods used to predict corn analytes include PLS
and PCR [49]. Fig. 3c and d displays the results of the test dataset
using SNIRO to predict protein concentration in corn flour.

http://www.asdi.com
http://www.labsphere.com
https://www.r-project.org
https://azure.microsoft.com/en-us/


Table 3
Summary of SNIRO analysis on various datasets. R2 and Total Relative Error (TRE) of regression models are shown for the Calibration (training) and Prediction (test) datasets.
Wavelengths (L*): the best set of 5 ls which minimize the TRE. Coefficients: coefficients for each of the best 5 ls for the linear regression model. Samples from the prediction
group were not included in the calibration. N is the number of samples.

Ulva sp. glucose Calibration
(N¼ 80)

Prediction (N¼ 20) Corn protein Calibration (N¼ 64) Prediction (N¼ 16)

R2 TRE [%] R2 TRE [%] R2 TRE [%] R2 TRE [%]

0.61 2.48 0.62 7.23 0.76 0.34 0.23 1.41

Wavelengths 528d1 519d2 2287d4 537d1 407d2 Wavelengths 1760d1 2262d2 2034d2 1356d4 2468d1
Coefficients 3318 �13674 16695 2052 1061 Coefficients �12570 �7899 22948 36405 2180

Meat protein Calibration
(N¼ 174)

Prediction (N¼ 41) Diesel octane number Calibration
(N¼ 315)

Prediction (N¼ 80)

R2 TRE [%] R2 TRE [%] R2 TRE [%] R2 TRE [%]

0.56 0.90 0.32 2.17 0.96 0.28 0.97 0.58

Wavelengths 904d1 928d1 958d3 956d4 1046 Wavelengths 992d1 1018d1 1266d1 1016d2 1022d2
Coefficients �743 �1129 �5178 6081 9 Coefficients 3518 �2600 1282 6449 9977
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3.3. Determination of protein in meat

NIR spectroscopy has been successfully applied to the quanti-
tative determination of major constituents (moisture, fat and pro-
tein) in meat and meat products [50]. Statistical methods used to
model these constituents include multiple linear regression, partial
andmodified partial least square (PLS), principal components (PCR)
and also techniques that allow for non-linear relationships such as
neural networks [51]. Fig. 3e and f displays the results of the test
dataset using SNIRO to predict protein concentration in meat.
3.4. Determination of octane umber in diesel

Diesel Octane Number (ON) and other fuel specifications dictate
several attributes necessary for operation in vehicles. Determining
the ON of fuels using a Cooperative Fuels Research (CFR) engine
costs over $200,000, requires trained personnel to operate and
takes 20min [52]. In an effort to reduce testing costs, researchers
sought out more cost-effective and faster noninvasive optical
techniques for determining ON, among other fuel specifications, by
way of statistical analysis. Vibrational spectroscopy, such as
infrared absorption (IR), has proved to be a reliable method for fuel
characterization. Multivariate analysis methods used to determine
fuel specifications include Genetic Inverse Least Squared [53], PCR
and PLS [54]. Fig. 3g and h displays the results of the test dataset
using SNIRO to predict protein concentration in meat.
Table 4
Comparison of different methods. COe Cutoff value used in Marten's Test. Calibra-
tion is for the training set and prediction is for the test set. R2 and Total Relative Error
(TRE) of regression models are shown.

Method L (number of ls) Calibration Prediction

R2 TRE [%] R2 TRE [%]

Ulva sp. Marten's CO¼ 0.1 8 0.41 4.98 0.41 8.24
Forward Selection 5 0.52 2.52 0.55 6.77
LASSO 5 0.41 4.40 0.32 8.16
SNIRO 5 0.61 2.48 0.62 7.23

Diesel Marten's CO¼ 0.44 12 0.76 0.78 0.74 1.61
Forward Selection 5 0.96 0.29 0.97 0.51
LASSO 5 0.95 0.41 0.96 0.79
SNIRO 5 0.96 0.28 0.97 0.58
4. Discussion

4.1. Comparison to other computational approaches

Ulva sp. and diesel datasets were used to compare SNIRO to
other statistical approaches. TRE and Spearman correlation in a test
dataset were used as the basis of the comparison. We report
running times when relevant. Note that the number of wavelengths
that are required to implement any given result is an important
parameter in the context of this work. That is e if comparable
performances are obtained by SNIRO with 5 ls (L¼ 5) and by
Martens with 8 ls then, from a practical device perspective, the 5 ls
solution is far superior and justifies the additional computational
resources. The comparative study covered the following methods
as benchmarks:

� Martens [13,14]. Several cutoffs were used for some of the
datasets as indicated.
� Forward Selection Search (FSS) [55]. This greedy approach se-
lects the next wavelength based on the best matching to the
previously selected ls. Namely: we start with the best single
wavelength and iteratively add wavelengths to the previously
selected ones. Thus, this method is computationally efficient
[56]. However, due to its greedy nature, it does not necessarily
guarantee the best combination of ls. Once a variable is added to
the model using this method, it cannot be removed. Thus, when
searching for the best combination of L out of E variables, an
exhaustive search of all such combinations is guaranteed to
produce the best results, whereas performing a forward selec-
tion search may not find the best combination.

� LASSO [57]. LASSO is an appropriate method to compare to
SNIRO since it allows the user to indirectly control for the
number of wavelengths selected. Thus, we turned the regulari-
zation coefficient of LASSO so that it returns 5 wavelengths. In
the Ulva dataset, LASSO was not able to predict the highest and
lowest values of sugar concentration. For example, the value of 9
was predicted as 5.5, thus lowering its R2 and increasing its TRE.

For each of the methods described above, a best set of NIR pa-
rameters was inferred to measure TRE and R2. Results are reported
in Table 4 and chosen wavelengths and their corresponding con-
stants are reported in Table S3 of the Supplementary material.

A second comparison, working with published studies that used
the same datasets as used here, was performed and is reported in
Table 5.

4.2. Performance of SNIRO compared to literature methods

The underlying function of SNIRO is to produce a pre-



Table 5
Comparison of results to other publications on the test dataset.

Dataset Method R2 RMSE R2 - SNIRO

Diesel - Octane Number GILSa 0.866 [53] 0.97
PCRb 0.991 [54]
PLS 0.985 [54]

Corn Flour -Protein PCR 0.14c [49] R2 - 0.23
RMSE - 0.46PLS 0.15c [49]

Meat - Protein PLS 0.51 [58] 0.32
Ulva sp.- Glucose SNIRO 0.62

a Genetic Inverse Least Squared (GILS).
b Principal Component Regression (PCR).
c Root Mean Squared Error (RMSE) of prediction on test dataset.
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determined number of wavelengths that best model the concen-
tration of a specific analyte. In comparing the results attained by
SNIRO to other publications, it is important to note that most them
produced more than 5 ls. SNIRO prioritizes the number of wave-
lengths above the accuracy of the results, which is something that
other methods do not do. SNIRO fared well compared to other
literature methods as can be seen in Table 4. Furthermore, SNIRO
fared well against other methods that were implemented in this
study.

Nonetheless, SNIRO required extensive computational power.
Under the conditions studied here, we took an average of 4.5 h to
produce results. In comparison, LASSO and Marten's Test took an
average of 2min to produce results, and forward selection took an
average of 20min. SNIRO serves as a first step in potentially
developing an efficient field-operable discrete wavelength spec-
trophotometer. Thus, if accuracy standards are the major concerns,
a SNIRO calculation should be performed as part of the design
process. Moreover, a single run may suffice for the production of an
efficient field operable device. That said, if computational time is a
major bottleneck, FSS would be a good choice for the design pro-
cess. Further investigation of the tradeoff between SNIRO and FSS
including the comparison of the actual output (see below) is an
important point for future studies with more data.

As indicated above, in the Ulva dataset, LASSO was not able to
predict the highest and lowest values of sugar concentration. For
example, the value of 9 was predicted as 5.5, thus lowering its R2

and increasing its TRE. This shortcoming of LASSO is because it is
not designed towork with a fixed number of wavelengths, rather to
regularize the number of non-zero coefficients [31].

In addition to the accuracy of the methods, it is also worth
noting the differences in the actual output. Table S3 in the sup-
plementary reports the all relevant selected wavelengths. In prin-
ciple, the sets returned by the different methods are not identical.
Some overlaps between FSS and SNIRO exist, as can be expected.
The LASSO output is completely different.

4.3. Study considerations

Model accuracy and stability are represented by the prediction
quality in the test dataset and not necessarily by the training per-
formance. Over-fitting of the data and bias-variance tradeoffs
should be taken into considerationwhilst analyzing the results. The
number of samples used in each dataset directly influenced the
accuracy of the results. Datasets with relatively small numbers of
samples may cause over-fitting. In general, the more samples
available, the better the models prediction [1]. Furthermore, it is
necessary for the analyte content to have a large enough variance to
assure themodels validity for future samples [1]. The importance of
sample size and variance is exemplified by comparing the diesel
dataset and corn flour dataset. The diesel dataset had 395 samples
with a variance of 44.4 and its model provided the most accurate
results in the study. On the other hand, the corn dataset had 79
samples with a variance of 0.23 and its model fared the least
accurate.

The histograms in Fig. 3 represent the TRE calculated for shuf-
fled versions of the response vector, compared to the real response
vector. Note that for a response vector with small variance, these
will be very small, as is the case for the corn flour dataset. As an
additional comparison to random data, we also ran SNIRO to pre-
dict a shuffled response vector. The performance of this run is
indicated by the red star. The conclusion of this analysis is that
SNIRO TRE on the real response vector is to the left of both the
histogram and the red star, affirming the validity of the selected
models.

The quality of the scanning device andmethod used to scanmay
also affect the quality of the results [59,60]. For the Ulva sp. dataset,
multiple measurements of the same sample were taken in order to
assess the variance of the scans. It was evident that in many cases
multiple scans of the same sample produced different spectral
fingerprints. In order to decrease the effect of this variability it is
important to produce multiple scans of each sample and to average
the data.

5. Conclusion

We developed SNIRO as a method for modeling Glucose in Ulva
sp. based on its VIS/NIR spectral fingerprint. Model performance is
directly influenced by the accuracy of the input data. Thus, reliable
results primarily require high-quality scans and a large number of
samples. For this reason SNIRO was able to produce excellent re-
sults for the tested datasets, and most notably for Diesel Octane
Number. The total relative error (TRE) demonstrated for the data-
sets investigated herein, often surpassed the accuracy of the de-
vices used to measure the target analyte values (for example 0.58%
for Diesel, 1.41% for corn flour), attesting to the effectiveness of the
SNIRO method. Under the given computational restraints, SNIRO
was able to provide confident results, and can adapt to other
computational platforms by having direct control over the pa-
rameters L and E. However, a full analysis of the data is required
prior to running SNIRO in order to define the appropriate param-
eters as indicated in Section 3. Comments on the data analysis
methods used in this study can be found in the Supplementary
material of the paper. Thus, SNIRO is fully adaptable to the user's
requirements and to the available computing resources. It has a
dynamic structure that allows the input of desired limitations (for
example, limiting the wavelength distance between each selected
l). In particular, the required number of output wavelengths is
taken as input by SNIRO and should be provided by the user
depending on the needs of the field operation.

Using SNIRO we demonstrated the effectiveness of selecting a
limited number of wavelengths for the development of a field-
operable spectral canning device.
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