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A B S T R A C T

To foster the development of macroalgal biomass for biorefinery applications, we tested two orthogonal tech-
niques for rapid phenotyping of the green macroalga Ulva based on its glucose, rhamnose, xylose and glucuronic
acid contents as derived for reference by acid hydrolysis. Partial Least Squares (PLS) regression analyses, cal-
culation of slopes and correlations across different spectral ranges/frequencies were used to predict the
monosaccharide contents using two complementary methods: near infrared reflection spectroscopy (NIRS) and
microelectromechanical systems (MEMS) resonating membrane vibrometry. Both methods were found to per-
form sufficiently well in monosaccharide mixtures and to enable quantitative assessment of different mono-
saccharide contents with the relative Root Mean Square Error of Prediction (%RMSEP) ranging from 8 to 16%
(with similar accuracy when using PLS analyses). The best estimation was found for rhamnose and glucose
contents, whereas xylose and uronic acid content predictions were found to be less accurate using PLS analyses.
For the two latter components, slopes across different spectral ranges and frequencies at certain signals provided
better estimates for their concentrations (e.g. for NIRS slopes: R2 values in the range 0.55–0.66 and with higher
accuracy for MEMS: between 0.75 and 0.90). This result is pivotal for opening new perspective to the con-
struction of simple, multi-functional sensors for biomass downstream processing control in biorefinery and
biometric applications.

1. Introduction

Bioeconomy provides a possible solution for the demand on the
natural resources by substitution of the nonrenewable resources with
resources derived from biomass [1]. A fundamental unit that will en-
able the bioeconomy implementation is biorefinery. Biorefinery is a
collective term for the complex system that includes biomass produc-
tion, transportation, conversion into products and distribution. A key
component of biomass is its monosaccharide content. Monosaccharides
can be directly used in food, cosmetic and industrial applications, such
as batteries and paper, or, alternatively, they can be fermented by mi-
croorganisms to advanced products including biofuels. Biomass com-
position is very diverse and each of the composing monosaccharides has
its own industrial applications and market values. In addition, the
structure and relative abundance of the monosaccharides predicate the
downstream processing for fractionation, purification and fermentation
[2]. Because of the vast diversity in the chemical composition of the
macroalgae biomass feedstock for biorefinery [3], there is a clear need
for methods for rapid quantification of monosaccharides in the biomass

or its derived intermediate products. Upon widespread availability,
these methods will enable rapid process adaptation for the variation in
the raw material input, thus increasing energetic and environmental
efficiency.

Reflectance spectroscopy of solid particles in the VIS-NIR-SWIR re-
gion (400–2400 nm) is a well known technique by which a material
chemical composition can be rapidly and quantitatively assessed [4–6].
Since the late 1970s, qualitative and quantitative applications of near
infrared spectroscopy (NIRS) in various fields including pharmaceutical
[7], food [8], textile industries [9], and fresh plants [10] have grown
dramatically. In macroalgae, spectral signatures based on absorption
features are indicative of the macroalgal type and condition [11]. The
synergy of multivariate statistical methods (such as Partial Least
Squares Regression (PLS) and Principle Component Analyses (PCA)) is
very useful for extracting quantitative information from NIR spectro-
scopy. For example, dry matter, nutrient content, oil, protein, salinity
and plant diseases have been accurately estimated in fresh vegetation
samples. NIR spectral range (700–2500 nm) in combination with re-
gression analyses was implemented to study sugar concentrations in
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fruits (e.g. apples, mango, passion fruit), vegetables (e.g. potato, sugar
beet) and dry cakes [12–16]. Interestingly, Oliveira et al. [14] found
that NIR spectroscopy was superior in determination of total acid
content, while the best results for glucose, fructose, sucrose, total sugar
and citric acid contents were obtained using mid-infrared spectral
range. Rady and Guyer [15] highlighted on a potential of using selected
wavelengths to estimate sugar content in potatoes. In the last decade,
many studies also focus on the applicability of using NIRS for biomass
analyses and biomass processing monitoring [17–19]. For example,
[19] built multispecies feedstock models for composition, as well as
monosaccharide release and yield.

Extensive research has been also conducted in using light spectro-
scopy in the field of macroalgae biomass characterization (e.g.
[10,20–22]). Robic et al. [23] applied PLS regression using reflectance
measurements to characterize the chemical composition of Ulvan, a
major polymer of Ulva, common cosmopolitan green macroalgae, with
functional properties, making it viable for Ulvan industrial production.
Shefer [24] explored the direct Ulva biomass monosaccharides pheno-
typing based on spectral slopes and spectral index analyses of mono-
saccharides, where low and high contents of glucose, rhamnose, xylose
and glucuronic acid from fresh and dried tissues of Ulva fascinata were
successfully distinguished.

Micro- and nano-electromechanical systems (MEMS/NEMS) devices
operating near vibrational resonance are emerging tools in chemical
analysis [25–27], where high sensitivity and selectivity to specific
components is potentially unlimited [26,28–30]: for example, recently
in-line piezoelectric MEMS cantilever resonators have been used to
monitor the sugar composition in wine fermentation process [31].
Surface defined chemical characterization can thus provide for a pow-
erful tool augmenting far-field optical characterization techniques.
While very large scale integration (VLSI) of MEMS/NEMS resonator
arrays for fast chemical analysis has been proven as viable [32], some
caveats still exist. The most central practical problem with the de-
ployment of MEMS/NEMS devices, specifically occurring in dynamic
rather than static wet ambient operation [33], is the strong dependence
of the measurement on the cleanliness of the sensor surface, limiting
both actuation efficiency and quality factors below their theoretical
limits [34,35]. This has been overcome with the use of open-gap
(single-film co-located electrode) [36] rather than close-gap [37]
membrane resonator geometry. In the latter geometry for micro-mem-
branes, operation in harsh aqueous conditions is achieved in single-
layer membrane geometry [38]. In the current paper, rather than using
multiplexed physical arrays of MEMS resonators with different char-
acteristics (e.g., geometry or coating), a singular membrane is used in
exposure to the sugar complexes, and the measured spectra are ana-
lyzed with advanced statistical methods in conjunction with the NIRS
characterizations.

Macroalgae are an emerging sustainable feedstock for biorefineries
[39]. However, marcroalgae feedstock show a large variation and di-
versity of the composing monosaccharides, making it a challenging
feedstock for biorefinery. In the previous work we showed that adap-
tation of the microorganism number and type to specific mono-
saccharides composition of the fermenting media increases the efficacy
of monosaccharides conversion to bio-ethanol [2]. However, rapid de-
termination and quantification of monosaccharides in the macroalgae
biomass hydrolysates, prepared for fermentation are lacking. In this
work, we exemplify the application of two complementary methods on
the monosaccharides determination in the green macroalgae Ulva hy-
drolysates, a potential input material for multiple fermentation pro-
cesses [27]. Our goal is therefore to rapidly quantify the mono-
saccharide content in the acid hydrolysates of the Ulva biomass. Rapid
quantification of the major monosaccharides in the hydrolysates will
allow adaptation of fermentation processes to increase the conversion
efficiency.

2. Materials and methods

We used two complementary methods to predict the mono-
saccharide contents: near infrared reflection spectroscopy (NIRS) and
microelectromechanical (MEMS) resonating membrane vibrometry.

2.1. Monosaccharide and sugar acid content determination with ion
chromatography

Macroalgae from Ulva genus were collected in Tel Aviv, Israel in
May 2015. The biomass dried in an oven at 40 °C until constant weight.
The dried biomass was made brittle by liquid nitrogen and then grinded
into powder manually in a mortar. The Ulva powder was sieved by 30
mesh sieve to make sure all particle sizes are smaller than 0.5mm. All
chemicals and standards were purchased from Sigma–Aldrich (Israel) if
not otherwise mentioned.

Thermochemical deconstruction for monosaccharides release was
conducted in 10mL centrifuge tubes (Nalgene™ Oak Ridge High-Speed
PPCO, Thermo-Fisher Scientific, CA) in autoclave (Tuttnauer 2540MLV,
Netherlands). For each batch, dried samples of Ulva were weighed on
analytical balance (Mettler Toledo, Switzerland), sulfuric acid
(Sigma–Aldrich, Israel) was injected into the tube and the mix was
vortexed to make the powder well distributed in acid. After decon-
struction, the hydrolysates were neutralized by sodium hydroxide
(Sigma–Aldrich, Israel). All the solid/liquid ratio, acid concentrations,
hydrolysis time and temperature are shown in Table 1.

Dionex ICS-5000 platform (Thermo Fischer Scientific, MA, USA)
was used to quantify released monosaccharides in hydrolysate. We used
standard HPLC method for sugar analysis in the biomass hydrolysate
[40]. Carbopac MA1 and its corresponding guard column were used for
separation. An electrochemical detector with AgCl was used as re-
ference electrode for detection. A trinary solvent system was used for
elution as shown in Table 2. The column temperature was kept at 30 °C
and the flow rate was set to 0.4 mLmin−1. Calibration curves were
produced for rhamnose, glucose, xylose and glucuronic acid on gradient
to determine the concentration of corresponding substances in the hy-
drolysate. All uronic acid peaks were integrated and calculated ac-
cordingly using the calibration curve of glucuronic acid (UA) for esti-
mation. The concentrations of the rest of the released monosaccharides
were negligible. For spectral analysis 10 μL of hydrolysates was dried at
40 °C on the microscope glass.

2.2. Optical and mechanical measurements

For NIRS analyses, we conducted a preliminary study to determine
the best background on which to trap the monosaccharide released

Table 1
Protocols used for Ulva biomass deconstruction to monosaccharides.

#j T (°C) Time (min) %Acid %Solid

1 100 30 0 5
2 100 45 0.5 15
3 100 60 2 25
4 100 45 5 5
5 121 30 0.5 25
6 121 45 0 15
7 121 60 5 5
8 121 30 2 15
9 134 30 2 25
10 134 45 5 25
11 134 60 0 15
12 134 60 0.5 5
13 134 30 5 15
14 121 45 2 5
15 100 60 0.5 15
16 134 45 0 25
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from the microalgae with acid hydrolysis. In previous studies, it was
found that the optimal configuration for spectral analysis is a glass disk
(2mm thick) with a black carbon background, placed underneath
[41–43] (Fig. 1(a)). Measuring the reflectance of the dry samples placed
above the glass maximizes any meaningful material spectral response.
Traps with dried monosaccharide were measured by attaching the high
intensity contact probe device (“potato”) to the sample and extracting
an average of 40 readings, using bare fiber and self-probed illumina-
tion. The “potato” was set on a stable tripod base and maintained in a
constant position at a nadir-observing angle. For all experiments halon
in the same geometry was used as a white reference to enable conver-
sion of the measurement data to reflectance values. Samples were
scanned by an Analytical Spectral Devices (ASD) Full-Range (FR)
spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The FR
spectrometer samples a spectral range of 350–2500 nm. The instrument
uses three detectors spanning the visible and near infrared (VNIR,
comprised of Si photodiode array) and shortwave infrared (SWIR1 and
SWIR2, comprised of two separate InGaAs photodiodes).

For MEMS characterization, spectra were acquired before, during,
and after application of liquid droplets of biomass hydrolysate on top of
the membrane surface injected with a micro-pipette, for subsequent
analysis. Using background before each wet measurement, wet condi-
tion measurement, and subsequent cleaning of the membrane mea-
surement trap (drying with a vacuum pump), the loaded mass and
stiffness changes alter the resonant frequency value within the band. In

frequency-domain characterization, the Si membrane resonators
(100 μm diameter, see Fig. 1(c) and (d)) are operated in flexure at the
fundamental vibration mode. A photodetector collects the reflected
light (Fig. 1(c)) into the network analyzer feedthrough, sweeping the
frequency band in synchrony with the excitation. A Laser Doppler
Vibrometer (LDV) setup is used in velocity mode, where the measured
voltage is calibrated to velocity in mm/s [26,27]. The sample was
loaded with 1 μL of liquid droplet centered on the membrane from
above.

Note that for NIRS analyses we used dried hydrolysates. Since the
light diffusion is much greater across 1100–2400 nm, spectra are more
sensitive to factors that influence light diffusion such as physical
structure and the presence of water in the sample [44]. The change in
absorption depth around 1400 and 1900 nm is particularly deep for wet
samples. Water has a broad absorption range centred around 1400 and
1940 nm that masks other absorption features associated with con-
stituents such as nitrogen, monosaccharides and cellulose.

2.3. Statistical analysis: Partial Least Squares (PLS) regression

The multivariate calibration models were generated using Partial
Least Squares (PLS) regression, with the goal of defining a relationship
between the reflectance/frequency signals of samples and their mono-
saccharide concentration (in units of μgmL−1):

= + + + + ⋯+Y A A X A X A X A Xn n1 1 2 2 3 3 (1)

where Y is the monosaccharide concentration of a sample, A is an
empirical coefficient, and X is the reflectance/frequency at a specific
wavelength.

For NIRS, to simplify the spectral signals in order to ensure stable
calibration and to improve the predictive ability of the final model, we
applied different pretreatments in the spectral domain. Calibration
models were computed using the entire range of VIS-NIR-SWIR, se-
lected wavelengths as well as using raw (reflectance), first- and second
derivative transformed data. Additionally, in order to minimize the

Table 2
Ion chromatography protocol for Ulva hydrolysates.

Time (min) A (water) B (480mM NaOH) C (1M NaAcO)

0 94% 6% 0%
10 52 8 40
12 22 8 70
18 20 80 0
20 94 6 0

Fig. 1. (a) Monosaccharide release placed above black carbon background and dried for 24 h. (b) Glasses and pipette of glucose solutions used in vibrating MEMS characterizations. (c)
Schematic of membrane cross-section, with layer composition and arrows indicating probing light (related to LDV apparatus characterizing vibrations). (d) Images of membrane surface
used for vibrating MEMS measurement (100 μm diameter), taken before (left, reference) and after (right) application of sugar solution on the membrane surface.
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effect of the glass background, we calculated Spectral Ratio (RI) by
calculating the apparent ratio values for each waveband, taking the
single-beam spectrum against that of the glass background, as follows:

=λ B λ
B λ

RI( ) ( )
( )

rad

background (2)

where Brad(λ) is the reflectance of the dried monosaccharide, plus the
reflectance of the glass trap itself, and the reflectance of the black
carbon background on which the glass trap sits, and Bbackground(λ) is
reflectance of the clean glass and that of the top of the black carbon
background. The same pre-treatments that were applied on the raw
original spectra were tested also on the RI transformations. In order to
limit the set of combinations to a manageable number, we kept both the
number and identity of glass traps constant in both calibration and
validation stages, changing only the pre-processed procedure.

For MEMS, the frequency response signals were normalized, and the
difference between the spectra measured in wet conditions and the
background spectra were calculated from the spectra measured in the
presence of deposited liquid monosaccharide mixture. Similarly to
NIRS, we used different pre-processing techniques (first and second
derivatives), as well as estimating the correlation between resonant
frequency and different monosaccharide contents. Multivariate cali-
bration models were calculated by PLS regression.

The predictive capability of all models using both techniques was
compared in terms of the relative standard error for both calibration
and validation sets (denoted as RMSEC (%) and RMSEP (%), respec-
tively).

RMSEP is defined as square root of the average of the squared dif-
ferences between predicted and measured values of the validation ob-
jects [45]:

=
∑ −X X

n
RMSEP

( )m p

v

2
2

(3)

where Xm is the measured sample concentration, XP is the predicted
value of the sample on the basis of spectral analysis, nv is the number of
samples in the calibration stage, and the summation is performed over
the whole sample range < <i n1 v. The predictive capability of all
models was compared in terms of the relative standard error for both
the calibration and validation sets (denoted as RMSECV (%) and RMSEP
(%)), where the former is defined as:

=
∑ −

∑
×

X X
X

RMSECV (%)
( )

100m p

m

2

22

(4)

The accuracy of each calibration model was evaluated based on the
coefficient of determination (R2) for predicted versus measured values.

Since we have a restricted data set (N=16), we used the most
popular “full-cross-validation” method, where only one sample at a
time is kept out of the calibration and used for prediction (also termed
as the “leave one sample out procedure”). Lowest RMSEP (%) and
highest R2 values were selected as criteria to indicate optimal model
performance and the values generated from the validation set were
used to choose the best data pre-processing technique. Additionally,
best models were chosen based on decreasing of residual variance ob-
served on the X-axis. PLS analyses and different spectral pretreatments
were performed using Unscrambler software, Version 9.1 (Camo,
Norway, 2004) and SAS software.

2.4. Statistical analysis: the impact of individual wavelengths and slopes
across different spectral ranges

In this study we also investigated the influence of using the whole
spectral region as well as selecting individual wavelengths to generate
an optimal PLS model to predict monosaccharide concentrations.
Martens’ uncertainty test is a significance testing method that can be
implemented when using cross validation PLS method, which assesses
the stability of Regression results and the selection of significant X-
variables (Unscrumbler, Version 9.1, Camo, Norway, 2004; [45]).
Therefore, we first ran our models on the whole wavelength region, and
thereafter we applied Martens’ uncertainty test, algorithm in Un-
scrambler software with the aim of identifying wavelengths that will
provide the highest accuracy estimation. Therefore, each model (raw
and pre-processed) was first run on the whole range of spectra, and then
only significant wavelengths were kept and each model was re-assessed.
In addition, the differences in spectral behavior as a function of wa-
velength, which are indicative of changes in chemical properties, were
identified. Importantly, the main criterion for spectral slope selection
across the entire spectral range was similar for all samples with dif-
ferent monosaccharide contents. Then, different slopes between a pair
of wavelengths were calculated and the most correlative ones were then
used in our analyses. The main criteria for slopes and wavelengths se-
lection were the ability to discriminate quantitatively between low vs
high monosaccharide content groups as well as selection of spectral
ranges that are not impacted directly by strong water absorbance (for
NIRS).

Fig. 2. Reflectance of the glass trap placed on the black carbon background, and reflectance of the dried monosaccharide plus reflectance of glass and black carbon, measured by ASD
spectrometer.
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3. Results

3.1. Changes in the spectral features as a function of glucose composition

Fig. 2 shows the reflectance of the clean glass and that of the top of
the black carbon background (line denoted as “glass”) and reflectance
of the dried monosaccharide (settled following two weeks), plus the
reflectance of the glass trap itself, and the ratio or subtracted back-
ground (denoted as “ratio”).

As seen in Fig. 2, clean dust traps do not exhibit significant absor-
bance bands across the spectrum, and can therefore be used as a trap for
dried monosaccharide characterization.

Next, we quantified the major released monosaccharides from the
dried Ulva biomass, based on [27]. The results are shown in Table 3.
Further, in Fig. 3 we show the reflectance of the ratio spectra of several
representative samples with different monosaccharide contents. As can
be seen, spectra are characterized by minimal noise and albedo changes
with varying dry monosaccharide intensity. For all samples, the base-
line up-drift is visible with increasing glucose intensity. This is because
as monosaccharide concentration increases, the effect of the dark
background in the glass trap diminishes, the reflectance increases and a
slope across 400–600 nm changes.

Fig. 4 shows several samples of membranes with wet samples, with
high vs low monosaccharide concentrations. As observed, there are
high frequency shifts across almost the entire frequency range (except
at high frequencies) among samples with different rhamnose content,

resulting from a combination of mass loading, chemical surface ad-
sorption, and tension changes [38]. At high frequencies, low rhamnose
samples exhibit ‘flat’ (close to zero) vibration response, whereas larger
concentrations exhibit larger signals. This range can be defined as more
stable for rhamnose monitoring.

3.2. Slopes vs monosaccharide concentrations using NIRS and MEMS
methods

Differences in five spectral ranges indicating changes in mono-
saccharide concentrations were visually identified and tested across the
VIS–NIR–SWIR region (350–2500 nm): 420–600 nm; 600–1000 nm;
1478–1870 nm; 2197–2262 nm and 2262–2364 nm. The coefficient of
determination between slope and different monosaccharide con-
centrations is reported in Table 4. Generally, the slopes increased/de-
creased with an increasing/decreasing monosaccharide content and can
be used as monosaccharide content indicators.

In Fig. 5 we examined frequency vs monosaccharide concentrations.
The correlation coefficient is clearly the largest at high frequencies and
for all monosaccharide components it is possible to estimate the con-
centrations.

3.3. PLS analyses

Table 5 shows the best modeling results using PLS analyses run on
NIRS data. As can be seen, the best accuracy estimates were achieved

Table 3
Major carbohydrates released from dried Ulva biomass after thermochemical hydrolysis.

#j T (°C) Time (min) Acid (%) Solid (%) Rha (μgmL−1) Glc (μgmL−1) Xyl (μgmL−1) UA (μgmL−1)

1 100 30 0 5 218.7 ± 5.2 0.2 ± 0.1 0.4 ± 0.1 238.6 ± 163.6
2 100 45 0.5 15 228.7 ± 10.3 3.2 ± 0.1 5.5 ± 0.125.0 1649.9 ± 38.4
3 100 60 2 25 3036.1 ± 51.3 6538.8 ± 301.5 1339.9 ± 13.6 16010.4 ± 1111.5
4 100 45 5 5 1179.1 ± 13.3 1422.4 ± 35.5 149.7 ± 1.9 1058.9 ± 149.1
5 121 30 0.5 25 49.2 ± 6.7 4.3 ± 1.6 4.8 ± 0.0 942.4 ± 218.6
6 121 45 0 15 3.0 ± 0.1 0.001 ± 0.0 0.0 ± 0.0 329.7 ± 277.1
7 121 60 5 5 1215.8 ± 93.7 1389.3 ± 89.2 82.9 ± 29.0 889.5 ± 22.8
8 121 30 2 15 3739.7 ± 185.2 5196.2 ± 124.2 675.6 ± 29.0 2866.8 ± 71.6
9 134 30 2 25 6879.6 ± 43.2 8137.7 ± 36.6 1054.2 ± 4.8 3887.0 ± 21.9
10 134 45 5 25 5218.8 ± 284.5 7606.6 ± 253.7 300.4 ± 3.2 2829.6 ± 77.7
11 134 60 0 15 3.2 ± 0.4 0.01 ± 0.001 0.01 ± 0.001 211.7 ± 101.7
12 134 60 0.5 5 976.1 ± 87 1172.3 ± 138.3 128.6 ± 11.7 744.4 ± 32.4
13 134 30 5 15 3510.8 ± 445.1 4691.1 ± 554.9 209.4 ± 33.7 2120.7 ± 222.1
14 121 45 2 5 1109.7 ± 12.3 1255.2 ± 22.0 142.2 ± 17.3 836.3 ± 178.0
15 100 60 0.5 15 10.8 ± 0.7 0.6 ± 0.1 0.4 ± 0.6 456.0 ± 91.9
16 134 45 0 25 2.9 ± 0.1 0.01 ± 0.001 0.01 ± 0.001 126.0 ± 17.8

Fig. 3. Baseline up-drift of the spectrum is visible with increasing monosaccharide concentration.
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when second derivative was applied on the RI spectra run on significant
wavelengths, followed by smoothing. Applying this RI model yielded
predicted monosaccharide concentrations with a RMSEP of 9.5%,
confirming that the model has relatively good predictive ability when
operating with five PLS components (Table 5). To give an indication of
measured vs predicted values, resulted from our model, we show in
Fig. 6, the model results estimated for glucose content as an example.
This result indicates that most of the spectral variation observed in our
study is indeed related to the monosaccharide concentrations as mod-
eled by the PLS model (and is not being influenced by unknown para-
meters). Importantly, PLS models were only generated with relatively

high accuracy for glucose and rhamnose contents and much lower R2

were obtained for glucoronic acid and xylose contents (R2≈ 0.4 using
second derivative and selected wavelengths as pre-processing tech-
nique). Note that a higher percentage of variance explained by a lower
number of PLS components indicates model stability.

Different pre-processing techniques were estimated and the best
results obtained are summarized in Table 6. Comparing Tables 5 and 6
we can conclude that MEMS performs slightly better than NIRS. How-
ever, when using PLS analyses both techniques were unable to estimate
uronic acid content with high accuracy.

We note that second derivative applied on frequency, followed by
the moving average (to reduce the signal noise), was also found to be
accurate to construct the PLS model, but with lower accuracy (these
results are not reported in Table 6). As an example of a clear separation
between high vs low monosaccharide samples we plot the results of PLS
score plot for rhamnose in Fig. 7. As can be seen, the first two LV
components explained 74% of the X variance (vibration spectra), and
91% of rhamnose of the Y variance (chemical components). The score
plot for the rha model indicated that a significant part of the vibration
spectra variations observed in the samples are indeed related to
rhamnose, as predicted by the PLS model. Specifically, there is an in-
creasing trend in rhamnose content among samples from left to the

Fig. 4. Electromechanical measurements of monosaccharide content
on a vibrating membrane with the subtracted background. Samples 6
and 11 (grey and black) are of low rhamnose contents, whereas
samples 9 and 10 (red and brown) are of high rhamnose contents. Box
highlights the region of high frequency values where low amounts of
monosaccharide concentrations exhibit almost “flat/continuous”
signal, which is significantly different from samples with larger con-
centrations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

Table 4
Coefficient of determination between slopes in selected spectral regions and carbohydrate
contents release from the microalgae.

Slope
spectral
range (nm)

Rha (mg) Glc (mg) Xyl (mg) UA (mg) Total (mg) Yield (%)

420–600 0.55 0.59 0.12 0.14 0.48 0.19
2197–2262 0.63 0.63 0.51 0.38 0.64 0.4
2262–2364 0.66 0.61 0.42 0.44 0.67 0.28

Fig. 5. Correlation coefficient calculated for four monosaccharide components vs frequency at the range 80,000–90,010 Hz (around 80 and 90 KHz).
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right, indicating that the PLS component models the changes in
rhamnose concentrations.

Finally, in Fig. 8 we show important frequencies using Martens
uncertainty test to estimate rhamnose contents. Compared with Fig. 5,
quite similar ranges were found to be important in its accuracy esti-
mation.

4. Discussion

Multivariate data analysis, based on Partial Least Squares (PLS)
regression, as well as calculation of slopes across different ranges and
models constructed on reflectance/frequency signals was utilized to
predict the monosaccharide contents using two methods: near infrared
reflection spectroscopy (NIRS) and micro-electromechanical systems

Fig. 6. (a) Measured (n=16) vs. predicted glucose content (% of dry weight) obtained for the best-fit model (second derivative of reflectance spectra when applied on selected
wavelengths). (b) Partial Least Squares loadings vectors (LV1-5) for the optimal calibration model as calculated for glucose content from the score plot.

Table 5
Statistical parameters obtained for the calibration stage for each of the Partial Least Squares (PLS) regression models to predict carbohydrate concentrations. RMSECV, root-mean-square
error of cross-validation; RPD, ratio of prediction to deviation; #LV, number of LV components (regression coefficients) used to construct the PLS model; R2-coefficient of determination
and slope (in original values) of the model. Models that were considered are: 2deriv+ smoothing (with different number of wavelengths) (reflectance considered as the second
derivative, followed by a smoothing function and run on selected wavelengths); Slopes.

Type of model Type of carbohydrate Model #LV RMSECV/RMSEP R2 Slope RPD (calculated for RMSECV only)

Ratio Glucose 2deriv+ smoothing 2 2.5 0.86 0.86 2.5
3.5 0.78 0.83

(model run on 22 wavelengths)

Rhamnose 1deriv+ smoothing 5 1.7 0.94 0.93 2.7
2.6 0.93 0.90

(model run on 28 wavelengths)

Xylose No accurate model was found

UA No accurate model was found

Total 2deriv+ smoothing 4 4.5 0.90 0.90 1.7
9.4 0.75 0.85

(model run on 28 wavelengths)

Type of model Type of carbohydrate Slopes used p value RMSE R2

Slope-based Glucose 420–600 nm <0.0001 2.9 0.88
1478–1870 nm
2197–2262 nm
2262–2364 nm

Rhamnose 420–600 nm <0.0001 2.5 0.87
1478–1870 nm
2197–2262 nm
2262–2364 nm

Xylose 420–600 nm 0.0010 0.43 0.79
1478–1870 nm
2197–2262 nm
2262–2364 nm

UA 420–600 nm 0.02 3.04 0.68
600–1000 nm
1478–1870 nm
2197–2262 nm
2262–2364 nm

Total 420–600 nm <0.0001 6.1 0.89
600–1000 nm
1478–1870 nm
2197–2262 nm
2262–2364 nm
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resonator (MEMS) measurements on a vibrating membrane. Both
methods were found to perform sufficiently and to enable quantitative
assessment of different monosaccharide contents with the relative Root
Mean Square Error of Prediction (%RMSEP) ranging from 6 to 11.5%.
The best estimation was found for rhamnose and glucose contents,
whereas xylose and uronic acid was found to be less accurate using PLS
analyses. For the two latter components, slopes across different spectral
ranges and frequencies at certain signals provided better estimates for

their concentrations. This result is encouraging for opening new per-
spective to construct simple, multi-functional sensors.

Detailed spectroscopic measurements of vegetation were made in
the 1960s and 1970s by USDA researchers [46]. These measurements
revealed that there are about 42 minor absorption features that can be
related to particular foliar chemical concentration. In fact, those fea-
tures can be categorized as being of either electronic or vibrational
origin [47–49]. Absorption bands produced by electronic processes can
be clearly distinguished from those produced by vibrational processes.
Electronic bands are very broad and shallow that occur mostly in the
ultraviolet and extend with diminishing frequency into the visible and
near IR (0.4–1 μm). Vibrational processes produce very sharp and
narrow bands that occurs predominantly in the range beyond 2 μm.
These processes define the chemical characteristics of the specific
compound. For example, absorbencies at 1540 and 1580 nm can be
attributed to the presence of starch, cellulose and sugar (due to OeH
stretch) [46]. At 1780 nm spectral features are related to the presence
of sugar and cellulose (due to CeH and OeH stretching group fre-
quency). Absorbances at 1960 nm and at 2080 nm are attributed to
presence of sugar and starch (due to OeH group stretching mode)
whereas absorbance at the range 2280 and at 2350 nm related to the
presence of starch or cellulose (due to the CeH stretch). In addition, the
wavelengths at the range 2100–2300 nm are related to functional
groups with aliphatic CeH and phenolic OeH bonds, which could be
used to predict the contents of cellulose, lignin, starch and other sugars
[46,50]. As can be seen from our results (Fig. 6, right), PLS calibrations
on monosaccharide concentrations relied strongly on the 1540 and
1580 nm (OeH stretch), 1780 (CeH/OeH stretching group fre-
quencies), 2160 nm, 2180 nm (CeH, OeH bonds) and 2350 nm (CeH
stretch).

As observed in Table 5, using changes in spectral reflectance across
different wavelength ranges, all types of monosaccharide concentra-
tions can be estimated with relatively high accuracy. Note, however,
that none of our models estimated low concentrations accurately. In
this regard, we suggest to expand the data set and include larger
number of NIRS method measurements.

As opposed to the NIRS method, in MEMS devices, rather than being
sensitive to the chemical molecular monosaccharide structure, the
sensitivity is mostly to mass loading (via resonance frequency down-
shift), or equivalently to the analyte density, as well as to the average
viscosity within the medium (via the resonance broadening) [25,27]. A
simplified model for vibrating membranes assuming circular symmetry
correlates the central resonance frequency of the (m, n) mode, f(m,n),
with the average density ρ as an inverse-square-root relation via the
following equation [27]:

=f
α

πR
Y
ρ2
ϵ

m n
m n

( , )
( , )

(5)

where R is the membrane radius, Y is the material Young's modulus
(≈130 GPa in silicon), ϵ is the pre-calibrated tensile stress in the
membrane film, and α(m,n) is a numerical factor associated with the
Bessel's function zeros along the membrane modes. Here we chose to
work with the mode designated by indices (3, 4). Whereas density
characterizations are straightforward via Eq. (5) [27,38], the combined
analytical estimation involving density and viscosity, which are both
physically characteristic of the immersed liquid [51,52], can be math-
ematically challenging, as opposed to the statistical approach. In this
regard, in our study we used chemometric approach, defined as “The
science of relating measurements made on a chemical system or process
to the state of the system via application of mathematical or statistical
methods” [45]. A main part of chemometrics is multivariate data ana-
lysis, which is essential for qualitative and quantitative analysis based
on spectral measurements. Combination of both approaches provides
important insight into hidden chemical and physical interactions
[6,45]. As mentioned in methods, electromechanical spectra of a mixed

Table 6
Statistical parameters obtained for the calibration stage for each of the Partial Least
Squares (PLS) regression models to predict carbohydrate concentrations. RMSECV, root-
mean-square error of cross-validation; RPD, ratio of prediction to deviation; #LV, number
of LV components (regression coefficients) used to construct the PLS model; R2 – coef-
ficient of determination and slop (in original values) of the model. The most accurate
models used frequency units run on selected signals.

Type of
model

Type of
carbohydrate

PLS Model #LV RMSECV R2 Slope RPD

Frequency
Glucose Frequency run 3 2.0 0.96 0.92 2.9

On 7 signals 3.1 0.90 0.85

Rhamnose Frequency run 3 1.6 0.94 0.89 2.6
On 9 signals 2.5 0.90 0.85

Xylose Frequency run 3 0.5 0.90 0.87 2.0
On 5 signals 0.3 0.78 0.80

UA No accurate
model was
found

Total Frequency run 4 5.0 0.88 0.88 1.7
On 7 signals 9.5 0.70 0.85

Fig. 7. Score plot for the Partial Least Squares (PLS) model for rhamnose using the most
important frequencies (based on Martens test). Arrow indicate the change from left to
right in rhamnose content measured in the samples.

Fig. 8. Important frequencies as identified by PLS regression using Martens uncertainty
test to estimate glucose and rhamnose contents using frequency (in Hz).
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signature (e.g. background+ liquid sugar) were first normalized using
the mean normalization. Then, corresponding background was sub-
tracted from the “mixed” signature signals. These signals for each
sample were used as input for our model. The same “background”
subtraction was applied to spectral reflectance measurements.

Analyzing Fig. 6(a) and results of all our models, one might con-
clude that the developed models are less accurate in estimation of low
monosaccharide content. To clarify this point, in Table 1S we present
average residuals values for several quantitative ranges, from low to
high concentrations using PLS models on NIRS and MEMS methods. The
ideal case is when the residual value is close to zero (e.g. measured and
estimated concentrations are similar). As can be seen, on average, re-
sidual values are quite similar between the two examined techniques
and for different concentrations. The main reasons for larger residuals
can be: (1) the model was run on a relatively small data set; and (2) a
small number of samples were used for each quantitative range of
monosaccharides. As a result, even extremely small differences between
PLS model and the reference values can result in larger residuals and
decreased accuracy of the overall model. Generally, the calibration set
must span the X (spectral) space, as well as the Y (reference) space as
widely and representatively as possible [45]. In this regard, in order to
derive the practical applications of the presented method, future studies
must include a larger number of samples than the one used in this
study, with a much wider dynamic range of values (minima and
maxima) that is considered important for developing a stable PLS
model. In addition, a separate study should be devoted to examine the
sensitivity of both techniques to measure the challenging and important
low concentrations of monosaccharides.

The results suggest that the two tested methods are potentially
useful, both separately and in their multidimensional combination, for
estimation of monosaccharide content. Since the method is non-de-
structive and can measure several constituents quickly, inexpensively,
accurately, and simultaneously, it could become a valuable tool for the
quality control of low monosaccharide content in Ulva and, hence,
enable monitoring of the monosaccharide status of plants throughout
their growth, both in solution and in powder phases. Liquid versus
powder (dried on the glass slide) were powerful for cross validation in
correlation with the Dionex 5000 reference readings. In the future all-
liquid in-line fluidic quantification of a calibrated device will be easier
in the aqueous state rather than the need to dry samples up.

Our results show that when analyses were run on significant wa-
velengths, better accuracy was achieved. Due to the different chemical
interactions and physical properties (such as particle size distribution),
the chemical and quantitative information may be obscured by changes
in the measured spectra. Therefore, using selected wavelengths was
viable for studying monosaccharide concentrations, as also supported
by other studies [15,24].

Generally, the selectivity of each monosaccharide should be given
with various background of the mixture of monosaccharides. As seen in
Table 3 and Fig. 3, each sample contains different quantitative fractions
of monosaccharides. Several methods can be used to overcome the
disturbances caused by a variety of mixture of monosaccharides. For
example, Linear Spectral Unmixing (LSU) is one of the most popular
techniques used for analyzing mixed pixels in remote sensing images for
numerous applications: geological, agricultural, and land uses quanti-
tative coverage [53–55]. LSU is a procedure by which the measured
spectrum of a pixel is decomposed into a collection of spectral “pure”
end-members. In our example, pure four end-members are four solu-
tions that contain 100% of each monosaccharide (e.g. rhamnose, glu-
cose, UA and xylose correspondingly). LSU algorithm estimates the
relative contribution of each pure end-member (e.g. its fractional
abundance) in each sample.

The two approaches presented here for the estimation of the
monosaccharide content are perhaps more convenient and user-friendly
than traditional approaches (e.g., analytical chemical analyses). Note
also that the developed approach is generic and in this study was

demonstrated for macroalgae hydrolysate. A portable spectrometer in
combination with an appropriate chemometric model allows many
glass traps to be analyzed rapidly in situ by a non-expert operator.
Vibrational MEMS elements add to optical characterizations surface
capabilities with localized contact information of the sugar composi-
tion. This novel instrument can be designed to assess the total quanti-
tative concentration. Moreover, in combination with better sensors,
based on multiple channels (including both wavelength and frequencies
bands and arrays of devices operating in parallel) or utilizing ground
image cameras, this technique can bridge the gap between required
methods for rapid and accurate assessment of monosaccharide con-
centrations in biomass harvesting.
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